CHOSUN

R 언어를 이용한 프레일티를 포함한 비례위험모형에 대한 베이지안 추론

Metadata Downloads
Author(s)
전준훈
Issued Date
2006
Abstract
Survival analysis is, statistic methods analyzing data about lifetime which gotten in animal experiment or clinical demonstration, or survival time. Statistic analysis of survival time is applied widely in not only medical and physiology but also technology and sociology.
Generally when analyzing survival data, we use Cox(1972)'s proportional hazards model which doesn't need a assumption about distribution of survival time when there are covariates which have effect on survival time. Cox's proportional hazards model assumed that every subject's survival time is independent each other and relation along covariates is linear. but in survival data which doesn't satisfy the independent assumption about survival time, use of cox's proportional hazards model isn't proper. Many researchers suggest the frailty model to solve this.
In this paper, we compare and analyze the Cox's proportional hazards model and frailty model using Cox's partial likelihood by using real data.
Alternative Title
Bayesian Inference for the Proportional Hazards Model with Frailty using R
Alternative Author(s)
Jeon, Jun-hoon
Affiliation
조선대학교 대학원
Department
일반대학원 전산통계학과
Advisor
장인홍
Awarded Date
2007-02
Table Of Contents
ABSTRACT
제 1 장 서론 = 1
제 2 장 비례위험모형 = 4
제 1 절 생존자료 = 4
제 2 절 생존함수와 위험함수 = 4
제 3 절 Cox의 비례위험모형 = 6
제 4 절 부분우도함수 = 8
제 5 절 비례성 가정에 대한 검토 = 11
제 3 장 프레일티 모형 = 15
제 1 절 감마 프레일티를 포함한 비례위험모형 = 15
제 2 절 부분우도에 기초한 베이지안 프레일티 모형 = 16
제 4 장 적용 = 19
제 5 장 결론 = 23
참고문헌 = 24
부록 = 27
Degree
Master
Publisher
조선대학교 대학원
Citation
전준훈. (2006). R 언어를 이용한 프레일티를 포함한 비례위험모형에 대한 베이지안 추론.
Type
Dissertation
URI
https://oak.chosun.ac.kr/handle/2020.oak/6513
http://chosun.dcollection.net/common/orgView/200000233884
Appears in Collections:
General Graduate School > 3. Theses(Master)
Authorize & License
  • AuthorizeOpen
  • Embargo2008-09-01
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.