생성적 적대 신경망(GAN)을 이용한 광학렌즈 결함판정 모델 개발
- Author(s)
- 이상현
- Issued Date
- 2023
- Keyword
- GAN, CNN, Semi-supervised Anomaly Detection, Optical Lens
- Abstract
- Currently, the defect determination of the optical lens is performed by a method through an inspection personnel. This not only consumes a lot of time and money during the inspection process, but also adversely affects the production quality of products due to continuous detection errors. To solve this problem, we tried to develop a defect detection model based on convolutional neural networks, but the performance of the deep learning model could not be secured due to the data imbalance problem.Therefore, in this paper, a defect determination model of optical lenses was developed using generative adversarial neural networks and convolutional neural networks. Three types of upper and lower images of optical lenses were used for development, and polar coordinate conversion, Canny edge, Sobel filter, and Laplacian filter were combined and used as image preprocessing methods. The convolutional neural network model conducted transfer learning using vggNet, ResNet, and DenseNet structures, and performance evaluation was conducted for each model, image conversion, and abnormal image ratio. The semi-supervised Anomaly detection models used AnoGan, Ganormaly, and skip-Ganormaly, and the optimal model was selected through performance evaluation of each model. After that, the performance was evaluated by implementing a weight-based ensemble model of the two models.
- Alternative Title
- Development of an Optical Lens Defect Detection Model using Generative Adversarial Networks
- Alternative Author(s)
- Sang Hyun Lee
- Affiliation
- 조선대학교 일반대학원
- Department
- 일반대학원 산업공학과
- Advisor
- 신종호
- Awarded Date
- 2023-02
- Table Of Contents
- ABSTRACT ⅷ
제 1장 서론 1
제 1절 연구배경 1
1. 스마트 팩토리와 인공지능 1
2. 제조 분야 인공지능 2
제 2절 연구 목적 4
1. 광학렌즈 결함 판정의 한계 4
2. 제조 현장에서의 인공지능 5
제 3절 연구 구성 6
제 2장 데이터 수집 및 변환 7
제 1절 광학렌즈 데이터 7
1. 광학렌즈 개요 7
2. 광학렌즈 데이터 수집 8
제 2절 이미지 변환 및 엣지 추출 11
1. 극좌표 변환 11
2. Sobel filter 13
3. Laplacian filter 15
4. Canny edge 17
제 3장 CNN 기반 결함 검출 19
제 1절 Convolution Neural Network 19
제 2절 CNN Model 22
1. VGG Net 23
2. ResNet 24
3. DenseNet 26
제 3절 Transfer Learning 27
제 4절 구현 및 평가 28
1. 성능 평가 지표 28
2. Dataset 29
3. 실험 환경 31
4. 성능 평가 및 분석 31
제 4장 Anomaly Detection 42
제 1절 Anomaly detection 42
제 2절 AnoGAN 44
제 3절 GANomaly 45
제 4절 Skip-GANomaly 46
제 5절 구현 및 평가 47
1. Dataset 47
2. 성능 평가 및 분석 48
제 5장 Ensemble Model 52
제 1절 Ensemble Learning 52
제 2절 비정상 검출기 54
제 3절 적용 및 평가 55
제 6장 결론 및 토의 63
참고문헌 64
- Degree
- Master
- Publisher
- 조선대학교 대학원
- Citation
- 이상현. (2023). 생성적 적대 신경망(GAN)을 이용한 광학렌즈 결함판정 모델 개발.
- Type
- Dissertation
- URI
- https://oak.chosun.ac.kr/handle/2020.oak/17653
http://chosun.dcollection.net/common/orgView/200000650264
-
Appears in Collections:
- General Graduate School > 3. Theses(Master)
- Authorize & License
-
- AuthorizeOpen
- Embargo2023-02-24
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.