CHOSUN

Study on thermal comfort based on bio-signals of driver according to seat condition under heating and cooling environment

Metadata Downloads
Author(s)
신윤찬
Issued Date
2021
Keyword
CSV(Comfort sensation vote), EEG(Electroencephalogram), MST(Mean skin(surface) temperature), PMV(Predicted mean vote), PPD(Predicted percent dissatisfied), PPG(Photoplethysmography), Thermal comfort, TSV(Thermal sensation vote), Water thermal seat(cold and hot water seats)
Abstract
In this study, EEG, PPG, and surface temperature of subjects were measured while performing a driving simulation as the automobile cabin temperature and vent discharge temperature in summer and winter were changed from discomfortable conditions to comfortable conditions. Besides, subjective questionnaires (TSV, CSV, CLV) were used to analyze the subject's thermal comfort under the various driving environment. Besides, the subject's bio-signals such as brain waves, pulse waves, and skin temperature were measured according to using various seats under the thermal environment of the vehicle interior in summer and winter condition. At the same time, the subject's thermal comfort was analyzed through subjective questionnaires (TSV, CSV, CLV). In addition, thermal comfort was analyzed at the different location of local heating in winter by measuring the subject's bio-signals and performing a subjective questionnaire. Through this, the following conclusions were obtained.
As the simulation results for the thermal comfort of the automobile indoor, when using the basic seat in summer condition, the temperature of the back and hips which are in contact with the seat is high. In case of using the cold water seat, the temperature of the back and hips is greatly decreased, therefore the PPD is also significantly reduced. In addition, when the basic seat is used in winter condition, a slight dissatisfaction on the PPD (10.1%) is presented, and it is 7.8% in the initial 5 minutes when the hot water seat is used, which confirming that a pleasant thermal environment is achieved.
As the average surface temperature measurement result for the thermal comfort of a driver in the automobile indoor during cooling in summer condition, it was confirmed that the surface temperature of the subject during driving could be reduced by operating the vent of 12.5°C at the cabin temperature of 35°C. As comprehensively analyzing the subjective survey results, PPG analysis results, and EEG analysis results, at cabin and vent temperatures of 27.5°C and 18.5°C, it was confirmed that a pleasant driving environment could be provided to the driver and concentration on driving could be increased. In case of the average surface temperature measurement result for the thermal comfort of a driver in the automobile indoor during heating in winter condition, it was confirmed that the surface temperature of the subject while driving could be increased by operating the vent temperature of 40°C under the cabin temperature of 15°C. As the subjective survey results, PPG analysis results, and EEG analysis results, at cabin and vent temperatures of 17.5°C and 37.5°C and cabin and vent temperatures of 20°C and 35°C, it was confirmed that a pleasant driving environment could be provided to the driver and concentration on driving could be increased.
As experimental results on the use of various seats based on bio-signals and subjective surveys, the use of the ventilation seat in summer condition provided an unpleasant environment to the driver by blowing the surrounding hot air. While, it was confirmed that the use of the cold water seat was lower the driver's stress index and provided the proper environment with high concentration on driving. In addition, as the results of thermal comfort based on bio-signals and subjective surveys under winter condition, the use of the heating seat provided an unpleasant environment to the driver due to the high temperature of the heating wire. The use of the hot water seat decreased the concentration on driving, however, it was confirmed that the stress index and relative β/α in the occipital lobe were reduced, which was provided a thermally comfortable environment to the driver.
As the results of local heating position in winter, the temperature of the parts where was applied local heating increased significantly regardless of the use of HVAC, but there was no effect of increasing the temperature in other parts. In the analysis results of PPG and EEG, when a local heating to the thighs was applied, the stress index was the lowest, and SDNN and RMSSD were relatively high when the local heating to the chest and thighs was used. In addition, it was confirmed that the relative β/α in the occipital lobe was low, thus it could provide a comfortable thermal environment to the driver.
Therefore, it was confirmed that thermally comfortable environment can be provided to the driver in the automobile indoor environment by using the cold water seat in the summer. In addition, a hot water seat and local heating to the thighs and chest in winter are also increased thermal comfort to the drive during driving.|본 연구는 여름철과 겨울철 자동차 실내 온도와 벤트의 토출온도가 불쾌적조건에서 쾌적조건으로 변하는 동안 피험자가 운전 시뮬레이션을 수행할 때 뇌파, 맥파, 표면온도를 측정하였으며, 주관적 설문조사(TSV, CSV, CLV)를 통하여 운전환경에 대한 피험자의 온열쾌적성을 분석하였다. 그리고 여름철과 겨울철 자동차 실내의 초기 열환경에 대한 온열쾌적성 해석을 수행하였다. 또한, 여름철과 겨울철 자동차 실내의 열환경에서 다양한 시트의 사용에 따른 피험자의 생체신호인 뇌파, 맥파, 피부온도를 측정하고 주관적 설문조사(TSV, CSV, CLV)를 통하여 피험자의 온열쾌적성을 분석하였다. 마지막으로, 겨울철 국부난방의 위치에 따른 피험자의 생체신호 측정과 주관적 설문조사를 수행하여 온열쾌적성을 분석하였다. 이를 통하여 다음과 같은 결론을 얻었다.
자동차 실내의 열쾌적성 해석 결과, 여름철 조건에서 기본시트 사용시 시트와 접촉되는 등과 엉덩이의 온도가 높게 나타났다. 냉수시트 사용시 등과 엉덩이의 온도를 크게 감소시켜 이에 따라 PPD도 크게 감소함을 확인하였다. 또한, 겨울철 조건에서 기본시트 사용시 PPD는 10.1%로 약간의 불만족도가 존재하였으며, 온수시트 사용시 초기의 5분에서 PPD는 7.8%를 나타내어 쾌적한 열환경을 달성하였음을 확인하였다.
여름철 냉방시 자동차 실내 운전자 열쾌적성에 대한 평균 표면 온도 측정결과 벤트를 작동시키지 않은 Cabin 온도 35˚C에서 12.5˚C의 벤트를 작동시킴으로 운전중인 피험자의 표면온도를 낮출 수 있음을 확인하였다. 주관적 설문조사 결과, PPG 분석 결과, EEG 분석 결과를 종합적으로 분석하였을 때, Cabin 온도 27.5°C/벤트온도 18.5°C에서 운전자에게 열적으로 쾌적한 운전환경을 제공하고 운전에 대한 집중도 높일 수 있는 것으로 확인되었다. 겨울철 난방시 자동차 실내 운전자 열쾌적성에 대한 평균 표면 온도 측정결과 벤트를 작동시키지 않은 Cabin 온도 15˚C에서 40˚C의 벤트를 작동시킴으로 운전중인 피험자의 표면온도를 높일 수 있음을 확인하였다. 주관적 설문조사 결과, PPG 분석 결과, EEG 분석 결과를 종합적으로 분석하였을 때, Cabin 온도 17.5°C/벤트온도 37.5°C와 Cabin 온도 20°C/벤트온도 35°C에서 운전자에게 쾌적하고 운전에 대한 집중도가 높은 열환경을 제공하는 것으로 확인되었다.
생체신호 및 주관적 설문조사를 기반으로 다양한 시트 사용에 대한 실험 결과를 종합적으로 분석하였을 때, 여름철 통풍시트의 사용은 주위의 더운 공기에 대한 송풍으로 운전자에게 불쾌적한 환경을 제공하였다. 반면에, 냉수시트의 사용시 운전자의 Stress index를 낮추고, 운전에 대한 집중도가 높은 환경을 제공하는 것을 확인하였다. 또한, 겨울철 조건에서 생체신호 및 주관적 설문조사 기반 온열 쾌적성 분석 결과 온열시트의 사용은 열선의 높은 온도로 인하여 운전자에게 불쾌적한 환경을 제공하였으며, 온수시트의 사용은 운전에 대한 집중도는 감소하였지만, Stress index와 후두엽에서의 relative β/α를 감소시켜 운전자에게 열적으로 쾌적한 환경을 제공하는 것을 확인하였다.
겨울철 국부난방 위치에 대한 실험 결과, HVAC 사용 유무에 상관없이 국부난방이 적용된 부위의 온도는 크게 상승하였지만, 다른 부위에서의 온도 상승효과는 없었다. PPG와 EEG의 분석 결과에서 HVAC 사용 유무에 상관없이 허벅지에 국부난방을 적용한 경우 Stress index가 가장 낮게 나타났으며, 가슴과 허벅지의 국부난방 적용시 SDNN 및 RMSSD이 상대적으로 높게 나타났다. 또한, 후두엽에서의 Relative β/α를 감소시켜 운전자에게 쾌적한 환경을 제공하는 것을 확인하였다.
따라서, 자동차 실내환경에서 여름철에는 냉수시트를 사용하고 겨울철에는 온수시트의 사용 및 허벅지와 가슴의 국부 난방을 적용함으로써 운전자에게 열적으로 쾌적한 환경을 제공할 수 있음을 확인하였다.
Alternative Title
자동차 실내환경에서 냉난방시 시트조건에 따른 생체신호 기반 열쾌적성 연구
Alternative Author(s)
Yunchan Shin
Department
일반대학원 기계공학과
Advisor
조홍현
Awarded Date
2021-02
Table Of Contents
Contents i
List of Figures v
List of Tables- x
Nomenclature- xi
ABSTRACT(English)- xiii

I. Introduction 1
A. Background 1
B. Previous studies 6
1. Research trends on the thermal comfort in building 6
2. Research trends on the thermal comfort in automobile 11
3. Research trends on bio-signals 15
C. Objectives 18

II. Thermal comfort and emotional signal (bio-signal) theory 20
A. Theory of thermal comfort 20
1. Relationship between humans and the thermal comfort environment 20
2. Physical factors of thermal comfort environment 23
3. Personal factors of thermal comfort environment 25
4. PMV (Predicted mean vote) 31
5. PPD (Predicted Percentage of Dissatisfied) 33
B. Emotional signals of the human body 34
1. Overview of emotional signals (bio-signals) 34
2. EEG (Electroencephalogram) 36
3. PPG (Photoplethysmography) 41
4. Skin temperature 34

III. Automotive indoor thermal environment modeling and analytical method 46
A. Automotive indoor thermal environment modeling 46
B. Governing equations 48
C. Analytical method and conditions 55

IV. Experimental setup and method 57
A. Experimental setup and subject conditions 57
1. Experimental setup 57
2. Measurement devices 65
3. Subject conditions 75
B. Experimental method and conditions 77
1. Driver’s thermal comfort experimental method and conditions 77
2. Driver’s thermal comfort experimental method and conditions 83
3. Driver’s thermal comfort experimental methodology using local heating in winter condition 85
C. Analysis method of experimental results 87
1. EEG analysis method 87
2. PPG analysis method 90
3. Questionnaire analysis method 90

V. Simulation results and discussions 91
A. Validation of the simulation results of the automotive thermal environment 91
1. Validation methodology 91
2. Validation results 93
B. Simulation results of the automotive thermal environment 101
1. Simulation results of the automotive thermal environment in summer 101
2. Simulation results of the automotive thermal environment in winter 109
C. Thermal comfort analysis on simulation results of automotive thermal environment 117
1. Analysis results on thermal comfort of the automotive thermal environment in summer 117
2. Analysis results on thermal comfort of the automotive thermal environment in winter 122

VI. Experimental results and discussions 126
A. Experimental results and discussions on the driver’s thermal comfort according to the condition changes of the automotive indoor 126
1. Experimental results and discussions on the driver’s thermal comfort according to the condition changes of the automotive indoor 126
2. Experimental results on driver's thermal comfort according to the change of automotive indoor conditions in winter 142
B. Experimental results and discussion on driver’s thermal comfort according to various seats in automotive indoor conditions 157
1. Experimental results on the driver's thermal comfort in summer 157
2. Experimental results on the driver’s thermal comfort according to various seats in winter 173
C. Experimental results and discussion on driver’s thermal comfort according to the position of local heating in automotive indoor under winter condition 189
1. Mean surface temperature measurement results 189
2. Subjective questionnaire survey results(TSV, CSV, CLV) 193
3. PPG measurement results 196
4. EEG measurement results 200

VII. Conclusions 206

VIII. Future work 209

Reference 210

Abstract(Korean) 219

Aknowledgement 221
Degree
Doctor
Publisher
조선대학교 대학원
Citation
신윤찬. (2021). Study on thermal comfort based on bio-signals of driver according to seat condition under heating and cooling environment.
Type
Dissertation
URI
https://oak.chosun.ac.kr/handle/2020.oak/16781
http://chosun.dcollection.net/common/orgView/200000373784
Appears in Collections:
General Graduate School > 4. Theses(Ph.D)
Authorize & License
  • AuthorizeOpen
  • Embargo2021-02-25
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.