CHOSUN

Simplicial wedge complexes and projectivity

Metadata Downloads
Author(s)
임영신
Issued Date
2016
Keyword
simplicial complexes, fan, Gale transforms
Abstract
A simplicial wedge operation is a useful method to produce a new abstract simplicial complex wedgev(K) with n+1 vertices from a given abstract simplicial complex K with n vertices. The aim of this paper is to show that there is no complete non-singular non-projective fan over the simplicialwedge complex wedgev(K) whose projected fans Projv0 and Projv1 over
the same K are both projective. In other words, if a complete simplicial fan
over wedgev(K) is strongly polytopal, then their projected fans Projv0
and Projv1 over K should be also strongly polytopal, and the converse is
also true.|이 단체 쐐기 작용은 n개의 꼭짓점을 가진 단순복합체 K에서 부터 n+1개의 꼭짓점을 가진 새로운 단체복합체를 얻기 위한 유용한 방법이다. 본 논문의 목적은 비사영이고 비특이적이며 완성적인 팬으로 Projv0과 Projv1이 모두 사영적인 경우도 없음을 증명했다. 또한 완성인 단순팬이 강한 폴리토팔이면 그들의 사영적인 팬인 Projv0 과 Projv1도 강한 폴리토팔이고 그 역도 성립함을 보였다.
Alternative Title
Simplicial wedge complexes and projectivity
Alternative Author(s)
Lim, Young Shin
Affiliation
조선대학교 교육대학원
Department
교육대학원 수학교육
Advisor
김진홍
Awarded Date
2017-02
Table Of Contents
1. Introduction 3

2. Wedge operations of simplicial complexes 8
2.1 Simplicial wedge operations 8
2.2 Toric varieties and fans 13

3. Gale transforms and Shephard's criterion 16
3.1 Projected characteristic map 16
2.2 Gale transforms and Shephard's criterion 20

4. Proofs of main result: Theorems 1.1 23
Degree
Master
Publisher
조선대학교 교육대학원
Citation
임영신. (2016). Simplicial wedge complexes and projectivity.
Type
Dissertation
URI
https://oak.chosun.ac.kr/handle/2020.oak/16046
http://chosun.dcollection.net/common/orgView/200000265912
Appears in Collections:
Education > 3. Theses(Master)
Authorize & License
  • AuthorizeOpen
  • Embargo2017-02-21
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.