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Abstract

A simplicial wedge operation is a useful method to produce a new abstract
simplicial complex wedge, (K) with n+ 1 vertices from a given abstract sim-
plicial complex K with n vertices. The aim of this paper is to show that
there is no complete non-singular non-projective fan ¥ over the simplicial
wedge complex wedge,(K) whose projected fans Proj, X and Proj, X over
the same K are both projective. In other words, if a complete simplicial fan
¥ over wedge, (K) is strongly polytopal, then their projected fans Proj, %
and Proj,, > over K should be also strongly polytopal, and the converse is
also true.
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Chapter 1

Introduction

Our main concern of this paper is one special subject in toric topology. Toric
topology is a field of mathematics that is currently very active and can be
regarded as a topological generalization of toric algebraic geometry. It is
closely related to many other areas of mathematics such as algebraic topology,
symplectic geometry, convex geometry, and combinatorics ([2]).

In toric algebraic geometry, there is a well-known one-to-one correspon-
dence between toric varieties and complete fans or underlying simplicial com-
plexes, up to certain equivalence relations (refer to [5]). This means that in
order to study toric varieties it suffices to study their corresponding fans or
underlying simplicial complexes which are more tractable. Recall that a fan
in the vector space R¥ is a collection of strongly convex rational cones such
that every face of cones and every intersection of a finite number of cones
are also in the fan. In addition, a fan is called complete if the union of all
cones covers the whole vector space R¥, while a fan is called non-singular if
one-dimensional faces of each cone are unimodular in the lattice Z* embed-
ded in R*. On the other hand, a fan is called simplicial if one-dimensional
faces of each cone are linearly independent in R*.

It is possible to think of a complete non-singular fan ¥ as a pair (Kx, A)

of a underlying simplicial complex Ky and a characteristic map A, where A
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is a map from the vertex set of K to the lattice Z" obtained by assigning
a primitive integral vector to each vertex of K. Also, Ky (or X) is called
polytopal if there is an embedding of the geometric realization | K| of K into
R* such that | K| is given by the boundary of the simplicial dual polytope
P* of a simple convex polytope P. If, in addition, P* contains the origin and
¥ is given by the positive hulls of proper faces of P*, then Ky (or ¥) is said
to be strongly polytopal. 1t is well known that the toric variety associated to
a strongly polytopal fan is projective. By abuse of terminology, in this case
we will just say that the corresponding fan or underlying simplicial complex
is projective. Recall also that a simplicial complex K is fan-like if there is a
complete fan ¥ whose underlying simplicial complex K7 is exactly K.

Let X\ be a characteristic map on K, and let o be a face of K such that
the vectors A(7) for ¢ € o are unimodular. Then the projected characteristic

map Proj A of A\ with respect to o is defined by the map
Proj A : Lkg (o) — Z"/(\(i)|i € o) = Zn—‘a|7

where Lk, (K) denotes the link of ¢ in K. Similarly, there is a notion of the
projected fan Proj, > of a fan ¥ with respect to a face o of the underlying
simplicial complex Ky ( [4] for more details).

There is a well-known operation, called a simplicial wedge operation, from
abstract simplicial complexes with n vertices to another abstract simplicial
complexes with n + 1 vertices. That is, for a simplicial complex K with
n vertices and any sequence J = (j1, jo,...,jn) of positive integers we can
construct a new simplicial complex K (J) with d(J) = ji1+ja+- - -+ jn, vertices,
called a simplicial wedge complexes. Such a simplicial wedge complex K (J)
is obtained inductively by starting from K and applying the simplicial wedge
operation to one of the vertices of K. To be more precise, as above let K be
a fan-like simplicial complex in R*™~1 with vertices wy,ws, ..., w,, and let

v = w; be a vertex of K. Let vy and v; denote two newly created vertices in
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the simplicial complex wedge,(K) := K(2,1,1,...,1) obtained by applying
the simplicial wedge operation to K at v. It is natural to ask whether or not
there is a complete non-singular non-projective fan 3 over wedge, (K) whose
projected fans Proj, > and Proj, ¥ over K are both projective.

The aim of this paper is to give a negative answer to this question. To

be precise, our main result is

Theorem 1.1. Let K be a fan-like simplicial complex with a vertexr v and let
Y. be the corresponding fan. Let wedge, (K) be the simplicial complex obtained
from K by applying the simplicial wedge operation to v, and let vy and v,
denote two newly created vertices in wedge,(K). If the complete simplicial
fan X over wedge, (K) is strongly polytopal, then their projected fans Proj, %
and Proj, X over K should be also strongly polytopal, and the converse is

also true.

We organize this paper as follows. In Chapters [2] and [3] we briefly re-
view basic facts regarding simplicial wedge complexes and Shephard criterion
which play crucial roles in the proof of Theorem [I.I} In Chapter [ we give
a proof of Theorem [L.1]
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Chapter 2

Wedge operation of simplicial
complexes

The aim of this section is to collect some basic material regarding simplicial
wedge complexes and Shephard criterion necessary for the proof of Theorem

[1.1] (see [1], [6], and [7] for more details).

2.1 Simplicial wedge operations

A (convex) polytope P is the convex hull of a finite set of point in R". Let

P be a convex polytope of dimension n.

\J

both simple simplicial neither

Note : simple polytope Sl simplicial polytope

Figure 2.1: simple or simplicial
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e P is simple if each vertex is the intersection of exactly n facet.
e P is simplicial if every facet is an (n — 1)-simplex.

There are two equivalent ways to construct simplicial wedge complexes.
One way is to use the notion of a minimal non-face of a simplicial complex
and the fact that every simplicial complex is completely determined by all
minimal non-faces (see [I] for more details).

A simplicial compler K on a finite set V' is a collection of subsets of V'

satisfying
e if v € V, then {v} € K,

e ifocec Kand 7 Co,thent e K.

Figure 2.2: simplicial complex K

Each element o € K is called a face of K. The dimension of ¢ is defined

by dim ¢ = |o| — 1. Then dimension of K is defined by
dim K = max{dim o |0 € K}.

There is a useful way to construct new simplicial complexes from a given

simplicial complex introduced in [1]. We briefly present the construction

6
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here. Let K be a simplicial complex of dimension n — 1 on vertices V =
m] = {1,2,...,m}. A subset 7 C V is called a non-face of K if it is not a
face of K. A non-face 7 is minimal if any proper subset of 7 is a face of K.
Note that a simplicial complex is determined by its minimal non-faces.

In the setting above, let J = (j1,...,jm) be a vector of positive integers.

Denote by K(J) the simplicial complex on vertices
{11,12,...,1j1,21,22,...,2j2,...,m1,...,mjm}

with minimal non-faces

11y 3 B0ya 021, 02y > Bmds s g

for each minimal non-faces {iy, ..., i} of K.
There is another way to construct K (J) called the simplicial wedge con-
struction. Recall that for a face o of a simplicial complex K, the link of o in

K is the subcomplex
Lkxo:={re K|ocUT € K,oNT = ¢},

and the join of two disjoint simplicial complexes K7 and K, is defined by
Ky x Ky ={01Uoy |0y € Ki,09 € Ky}

Let K be a simplicial complex with vertex set [m] and fix a vertex 7 in
K. Consider a 1-simplex I whose vertices are i; and iy and denote by 9 =
{i1,42} the O-skeleton of I. Now, let us define a new simplicial complex on
m-+1 vertices, called the (simplicial) wedge of K at i, denoted by wedge;(K),
by

wedge,; (K) = (I x Lkg{i}) U (01 x (K \ {i})).

where K\ {i} is the induced subcomplex with m — 1 vertices except i. The
operation itself is called the simplicial wedge operation or the (simplicial)
wedging. See Figure 2.3]
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Figure 2.3: An illustration of a wedge of K
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It is an easy observation to show that wedge,(K) = K(J) where J =
(1,...,1,2,1,...,1) is the m-tuple with 2 as the i-th entry. By consecutive
application of this construction starting from J = (1,...,1) we can produce
K(J) for any J. Although there is some ambiguity to proceed from J =
(J1y---yJm) t0o J = (J1,-- -, Ji—1,Ji + 1, Jix1, -+ Jm) of J; > 2, we have no
problem since any choice of the vertex yields the same minimal non-face of the
resulting of K(J). In conclusion, one can obtain a simplicial complex K (.J)
by successive simplicial wedge constructions starting from K, independent of
order of wedgings.

Related to the simplicial wedging, we recall some hierarchy of simpli-
cial complexes. Among simplicial complexes, simplicial spheres form a very

important subclass.

Example 2.1. Let K be the boundary complex of a pentagon. Then the

minimal non-faces of K are

{1,3}, {1,4}, {2,4}, {2,5}, and {3,5}.

Hence, the minimal non-face of wedge,(K) := K(2, 1, 1, 1, 1) are

{1171273}7 {1171274}7 {274}7 {275}7 and {375}

Figure 2.4: wedge, (K)
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Definition 2.2. Let K be a simplicial complex of dimension n — 1.

(1) K is called a simplicial sphere of dimension n — 1 if its geometric real-

ization | K| is homoeomorphic to a sphere S™~1.

(2) K is called star-shaped in p if there is an embedding of | K| into R™ and
a point p € R™ such that any ray from p intersects |K | once and only

once. The geometric realization |K| itself is also called star-shaped.

(3) K is said to be polytopal if there is an embedding of |K | in to R™ which
is the boundary a simplicial n-polytopal P*.

We have a chain of inclusions

simplicial complexes D simplicial spheres D star-shaped complexes D
polytopal complexes.

It is worthwhile to observe that each category of simplicial complexes

above is closed under the wedge operation as follows.

Proposition 2.3. Let K be a simplicial complex and v its vertex. The the

followings hold:
(1) If K is a simplicial sphere, then so is wedge, (K).
(2) K is star-shaped if and only if so is wedge,(K).
(3) K is polytopal if and only if so is wedge,(K).

When K is polytopal, we often regard K as the boundary complex of a
simple polytopal P. To be more precise, let K be the boundary of a simplicial
polytope ). Then the dual polytope to () is a simple polytope P. Recall
that an n-dimensional polytope P is called simple if exactly n facets (or
codimension 1 faces) intersect at each vertex of P.

We next define the notion of the (polytopal) wedge. Let P C R"™ be a

polytope of dimension n and F' a face of P. To do so, consider a polyhedron

10
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P x[0,00) C R*"™ and identify P with P x {0}. Pick a hyperplane H in R"*!
so that HN P = F and H intersects the interior of P x [0, 00). Then H cuts
P x [0, 00) into two parts. The part which contains P is an (n + 1)-polytope
and combinatorially determined by P and F, and it is called the (polytopal)
wedge of P at F and denoted by wedge(P). Note that wedgey(P) is simple
if P is simple and F' is a facet of P. See Figure [2.5

. '\
i AN
— i |
# \ / b L\
s N
i \\ - J{’, "\ f>
'\\\\ \ {I', /\\
. P B P N
M‘\ - \\_ oo
. A “x\_‘ i
o T e /:/’
F v
P
wedge(P)

Figure 2.5: An illustration of a wedge of K

The next lemma is due to [4, Lemma 2.3].

Lemma 2.4. Assume that P is a simple polytope and F is a facet of P. Then
the boundary complex of wedgep(P) is the same as the simplicial wedge of

the boundary complex of P at F.

Suppose P is an simple polytope and F = (Fy,..., F,,) is the set of
facets of P. Let J = (ai,...,a,) € N™ be a vector of positive integers.
Then define P(J) by the combinatorial polytope obtained by consecutive
polytopal wedgings analogous to the construction of K(J) with simplicial
wedgings.

Lemma guarantees that if the boundary complex of P is K, then the
boundary complex of P(J) is K(J).

11
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Remark 2.5. Tt is known that the converse of (1) in Proposition does
not hold, in general. This is due to the famous Double Suspension Theorem
of Edwards and Cannon [3] which states that every double suspension of a

homology n-sphere M is homeomorphic to an (n + 2)-sphere.

2.2 Toric varieties and fans

Let us review the definition of a fan. For a subset X C R", the positive hull
of X, that is,

pos X = {Zaixilai >0, aq; € X}.
i=1

By convention, we put pos X = {0} if X is empty. A subset C' of R™
is called a polyhedral cone, or simply a cone, if there is an finite set X of
vectors, called the set of generators of the cone, such that C' = posX. The
elements of X is called generators of C'. We also say that X positively spans
the cone C. A subset D of C'is called a face of C' if there is a hyperplane H
such that C N H = D and C does not lie in both sides of H. A cone is by
convention a face of itself and all other faces are called proper.

A cone is called strongly convex if it does not contain a nontrivial linear
subspace. In this paper, every cone is assumed to be strongly convex. A
polyhedral cone is called simplicial if its generators are linearly independent,
and rational if every generator is in Z". A rational cone is called non-singular
if its generators are unimodular, i.e., they are a part of an integral basis of
7.

A fan ¥ of real dimension n is a set of cones in R™ such that
(1) if C € ¥ and D is a face of C, then D € ¥,

(2) and for C1,Cy € ¥, C; N Cy is a face of C7 and Cy respectively.

12
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A fan ¥ is said to be rational (resp. simplicial or non-singular) if every
cone in X is rational (resp. simplicial or non-singular). Remark that the
term “fan” is used for rational fans in most literature, especially among toric
geometers. We will sometimes use the term “real fan” to emphasize that
generators need not be integral vectors.

If a fan ¥ is simplicial, then we can think of a simplicial complex K, called
the underlying simplicial complex of X, whose vertices are generators of cones
of ¥ and whose faces are the sets of generators of cones in ¥ (including the
empty set). We also say that ¥ is a fan over K. In this thesis, a fan is
assumed to be simplicial unless otherwise mentioned.

A fan X is called complete if the union of cones in ¥ covers all of R™.
Observe that the underlying simplicial complex of a fan is a simplicial sphere
if and only if the fan is complete. It is a well-known fact that a rational fan
is complete (resp. non-singular) if and only if its corresponding toric variety
is compact (resp.smooth). A compact smooth toric variety is called a toric
manifold in this paper. We remark that a toric variety is an orbifold if and
only if its corresponding fan is simplicial.

We close this section by giving definition of two notions relating a fan to
a polytope. A fan is said to be weakly polytopal if its underlying simplicial
complex is polytopal in the sense of Definition 2.2 A fan ¥ is called strongly
polytopal if there is a simplicial polytope P*, called a spanning polytope, such
that 0 € int P* and

Y = {poso |o is a proper face of P*}.

Observe that the underlying complex of 3 is 9P*. Therefore strong poly-
topalness implies weak polytopalness.

It is a well-known fact from convex geometry that a fan ¥ is strongly
polytopal if and only if 3 is the normal fan of a simple polytope P. For a
given simple n-polytope P C R", correspond to each facet F' the outward

13

Collection @ chosun



normal vector N(F'). The normal fan of ¥ of P is a collection of cones

Y ={pos{N(F)|F D f}| f is a proper face of P}.

14
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Chapter 3

Gale transforms, and
Shephard’s criterion

3.1 Projected characteristic map

A closed connected smooth orientable manifold M of dimensional 2n is called
a torus manifold if is equipped with an effective T™-action which has a
nonempty fixed point set. Torus manifolds make a large class of manifolds
properly containing topological toric manifolds. A torus manifold has its own
combination object, called a multi-fan, which can be roughly understood as
a collection of cones similar to a fan but the cones may overlap. Although
we do not present the precise definition of multi-fans, we use the concept of
overlapping cones to consider fan-givingness of a characteristic map.

Let (K, A) be a characteristic map of dimensional n and I € K a face
of K. One defines the cone over I be the positive hull pos {\(4)|i € I} and
denote it by ZA;. from now on, we assume that (K, \) is complete. So we
consider the simplicial complex |K| which is an (n — 1)-dimensional space.
We set

oy = {Zai€i|zai_ L, a; 207} CR™for I € K,
i—1 i=1

15
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where e; is the i-th coordinate vector of R™. The geometric realization |K|

of K is given by

K| =] o

IeK
In this section, we study the relation of simplicial wedging and toric

objects. First of all, we need the notion of “projected characteristic map”.

Definition 3.1. Let (K, \) be a characteristic map of dimension n and o € K
a face of K such that the set {\(i)|i € ¢} is unimodular. Let v be a vertex
of Lkgo. Then one maps v to [A(v)] which is an element of the quotient
lattice of Z™ by the sublattice generated by A(i), ¢ € 0. This map, denoted
by Proj, A, is called the projected characteristic map.

There is a similar notion called the projected fans. Note that projection
characteristic maps generalize projected fans whenever it is applicable. we

denoted by Proj,> the projected fan of ¥ with respect to a face of K(X).

Lemma 3.2. Let K be a fan-like sphere. then for any proper face o of
K, Lkgo is a fan-like sphere. If is a complete non-singular characteristic
map, then for any o, Its projection (Lkxo ,Proj ) is also complete and non-

singular. If X is fan-giving, so is Proj, .

Suppose this is a topological toric version of projected fans and the proof
is essentially the same. Since K is fan-like, there exist a complete real fan 3
over K. Its projected fan is complete and therefore Lk o is a fan-like sphere.

Note that one can define projected topological fans in the same way.
When o is a vertex, the projection Proj,\ corresponds to a characteristic
submanifold of M (\). We also remark that the above lemma shows that any
multi-fan given by a complete characteristic map is complete. If (K, \) is
an oriented complete characteristic map, then a projected characteristic map

(Lkgo,Proj,A) inherits an orientation so that

16
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Let K be a fan-like sphere with V(K) = [m] = {1,--- ,m}. A character-
istic map A : V(K) — Z" can be regarded as an n x m — matriz, called the
characteristic matriz, which is again denoted by A. Each column is labeled

by a vertex and the i-th column vector of the matrix A corresponds to A(7).

Example 3.3. Let K be a simplicial complex and ¢ € K The link of o is
Lkxo:={re K|ocUT € K,oNT = ¢}

Then LKyeqge, (k)12 is equivalent to K.

oila}

1 1, Lk wedge (K

Figure 3.1: Lkyedge, (k)12 = K

Let wedge,(K) be the simplicial complex shown in Figure and let A

be defined by the characteristic matrix
0 1 0

A=10 0 1 1 0 -1
1 -1 0

whose columns are labeled by the vertices 14, 15,2, 3,4, 5, respectively. That
is, we define
A(11) = (0,0,1),

A1) = (1,0,-1),
A(2) = (0,1,0),

17
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ABB) =(-1,1,0),
A(4) = (~1,0,0),
A(5) = (0,-1,0).

Since A(1y) is a coordinate vector, the projection Proj; A is easily obtained

by
L 2 3 4 5
ProjyA=11 0 -1 -1 0 |,
01 1 0 -1

where the first row is for indicating column labeling. To complete Projs;\, one
should perform a row operation so that A(3) becomes a coordinate vector.
Then add the second row of A to the first one, and one obtains

0 110 -1 -1

0O 011 0 -1

1 -1 00 0 O

Since Lkg{3} has vertices 11, 15,2, 4, its characteristic matrix looks like

L 1, 2 4
Proj,A=[0 1 1 -1
1 =10 0

Example 3.4. Let us find Proj;\. First of all, one should do the row op-
eration by multiplying by —1 to the second row so that A(5) becomes a

coordinate vector. That is, we have

1, 1, 2 3 4 5 1, 1, 2 3 4 5
P U S T A 0 1 0 -1 —10
“lo o 1 1 o =17 ]lo 0 -1 -1 0 1
1 =10 0 0 0 1 -1 0 0 0 0

Since Lkyedge, ()15} has vertices 14, 15,4, we have

I, 1, 4

ProjjA=10 1 -1
1 -1 0
18
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3.2 (Gale transforms and Shephard’s criterion

The aim of this chapter is to set up basic notations and definitions, and
to collect some important facts necessary for the proof of Theorem 1.1. To
do so, we first begin with reviewing linear transforms and Gale transforms.

Refer to [7, Chapter II-Section 4] for more details.

Let X = (21, 9,...,%,) be a sequence of (not necessarily different) vec-
tor in an n-dimensional vector space U, and let xy, 2o, ..., x,, span U. We
consider a m-dimensional vector space V and a basis by, bs, ..., b, of V. Then

there is a well-defined linear map
L:V —=U.

Let X = (z1,22,...,2y) € (R")™ be a finite sequence of vectors x; in R”
which linearly spans R™. Then we consider the space of linear dependence

(or linear relations) of X which is given by the (m — n)-dimensional space
{(ab Qg, . .. ,Ckm) c Rm‘ Z ;T = O}
i=1

By choosing a basis {©!,...,©™ "} of the space of linear dependencies as

above, it is convenient to write it as a matrix of size (m —n) x m, as follows.

a1 T Q1m
©@,...,om T —
Am—n)1 " Qm—n)m

= (-Tla---;-fm) = X

(m—n)xm

The finite sequence X is called a linear transform (or linear representa-
tion) of X. Clearly, a linear transform is not unique and depends only on a
choice of a basis. Note also that we have the following relationship between
X and X:

(3.1) XXT =o.

19
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It is also easy to see that X X7 = 0 by taking the transpose of the equation
(3.1). Thus, if X is a linear transform of X, then X is also a linear transform
of X.

Example 3.5. Let z1,25,...,26 be the vertices of a prism in real affine
3-space H and consider H as a hyperplane in R* such that 0 is not in H.
Then (—1,1,0,1,—1,0) and (—1,0,1,1,0,—1) are linear dependencies and

the columns of

are the elements of a linear transform of X

Lemma 3.6. A linear transform X of X satisfies T, + -+ + Z, = 0 if and
only if the points x; lie in a hyperplane H of R™ for which 0 ¢ H.

Note that one can assume that H is the hyperplane of points whose last
coordinate is 1 since we can take (1,...,1) for a linear dependency of X. In
general, for any strongly convex cone C| there is a hyperplane H which does
not intersect the origin and C'N H = P is a convex polytope which has the
same face poset with C'.

Now we are ready to define the Gale transform. In order to define a
Gale transform by using the notion of a linear transform, as before let X =
(x1,x2,...,xm) € (R™)™ be a finite sequence of vectors z; € R™ which affinely
spans R™. Then we identify R" as an affine space with a hyperplane H in a

linear space R"*! by the natural embedding
j:R" = R™™ v (v, 1).

Then H = {(v,1) € R™" |v € R"} does not contain the origin of R™™!. Thus

it follows from [7, Lemma 4.15] that a linear transform X = (T1,.. ., Tm) €

20
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(Rmfnfl )m Of

in R™t! satisfies

and X is called a Gale transform (or an affine transform) of X.

Now, we are ready to characterize a complete fan that is strongly poly-
topal. To be more precise, we have the following criterion given by Shephard
in the paper [§] (or [7, Theorem 4.8] and [0, Section 2]) for a complete fan to
be strongly polytopal.

Theorem 3.7. Let
X = (l’l, To, ... ,.Tm) & (Rn)m

be a finite sequence of lattice points x; € Z* C R™ that span the 1-dimensional
cones of a complete fan ¥, and let X be a Gale transform of X for each proper

face 0 = pos{z;,,...,x;,} of ¥, let C(o) denote the convexr hull generated by

X\{Zj,,..., %}

That 1s,
C(o) = conv(X \ {Zj1,--,%5.})-

Then ¥ is strongly polytopal if and only if we have

ﬂ relint C (o) # ()

oeX

Here, relint C(o) means the relative interior of C'(o). Recall also that,

when o is a proper face of X generated by {zj,,...,z; },

X\{i‘ﬁ""ﬂjjk}
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is called a coface of o in X.
In fact, in order to use the Shepherd’s criterion for a complete fan to be
strongly polytopal, we shall start with a finite sequence X whose column

sum is equal to zero. Then we obtain a linear transform X of X.

Theorem 3.8. A complete fan ¥ is strongly polytopal (or projective) if and
only if
S(Z, X) = ﬂ relint C'(o) # 0.

oeY
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Chapter 4

Proof of main results: Theorem

1.1

The aim of this section is to give a proof of Theorem [I.1} To do so, it suffices

to prove the following theorem.

Theorem 4.1. Let X be a complete simplicial fan in R™ over wedge, (K) on
vertex set {vo,v1,...,v,}. Let x; be a primitive integral generating vector for

each 1-dimensional cone of X. Assume that
X = (wo,71,...,7,) € R™)" ™ n>m

is an (n+ 1)-tuple of vectors in R™ which positively spans the origin in R™.

Then the following statements hold:

(1) If X is strongly polytopal (or projective), then so are both of the projected
fans Proj, X and Proj, X.

(2) If either of the projected fans Proj, X and Proj, 3 is strongly polytopal

(or projective), then so are both of them as well as 3.

In order to prove Theorem [4.1, by Theorem again it suffices to prove

the following theorem.
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Theorem 4.2. Let X be the same as in Theorem[{.1], and let

N

X = (20,21, ..,2,) € (R HL
be the Shephard transform for . Then the following statements hold:
(1) The subsequences
X\{Zo} = (&1, %2, ...,&n) and X\{i1} = (20,22, ..., &)

are Shephard transforms for the projected fans Proj, % and Proj, ¥,

respectively.
(2) S(,X) # 0 if and only if S(Proj,, 3, X\{#0}) # 0.
(3) S(X,X) # 0 if and only if S(Proj,, %, X\{i1}) # 0.

Proof. To begin with, we may assume without loss of generality that the first

m + 1 vectors xg, x1,...,T,, is an affine basis of R™. Let
k ko k k k k n
up = (2 — x5, x5 — x5, ..., 2, —x5) €ER", 1<k <m.

Then we fix a basis B of R™ whose first m basis vectors are u; and whose
last n — m basis vectors are a part of the canonical basis {e;}; of R". That
is, we have
B = {uy,ug, ..., Un, €, - ,ei(nfm)}.

Let E (resp. F) be the m-dimensional (resp. (n — m)-dimensional) vec-
tor subspace of R"™ generated by basis vectors ug, 1 < k < m, (resp.
€iys Ciy - - .,ei(n_m)). So we have the direct sum decomposition such that
RP2E@F.

Now, let P be the square matrix of size n x n such that

P = (ug,ug, ..o Um, €1y €0 Jnxns
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and let J be a matrix of size (n —m) x n such that

J = (O(R—m)Xm](n—m)x(n—m))(n—m)xn'
Here 0(;,—m)xm denotes the matrix of size (n—m) xm consisting of only zeros,
while I(,—p)x(n—m) denotes the identity matrix of size (n —m) x (n —m).
Note that clearly P is invertible by its construction.

With these understood, let
I=Jp!
be the matrix of size (n —m) x n, and let
Lp:R"—R"™

be the linear map associated to the matrix II. Then it follows from its
construction that the linear map Ly maps onto F' and the kernel ker Ly of
Ly is exactly equal to F.
As before, let e; (1 <1i < n) denote the canonical basis vector of R", and
let
ep=—(e1+---+ep).

It will be important to note that by its construction of Ly the set

Y = (LH(GO), LH(el), . 7LH(6n)) = (yo, Y1y - .- 7yn) € (Rn—m)n—‘rl

positively spans R"™". Since the kernel of the linear map Ly is exactly F,

this enables us to obtain a Shephard transform Y of Y such that

A~

Y = (?J(),?Ql; cee agn) € (Rm+1)n+la

where ¢; = (z;,1) € R™ for 0 < i < n. Since Y is a Gale transform of X

by construction and X is a linear transform of X, it follows that X (resp.

A

Y') should be of the form

Y n—m+1\n+1 X m+1\n+1
(11_._11)€(R ) resp- (1., .11 e (R™) .
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Let
Y, = (ylv Yo, ... 7yn) € (Rn_m)n

Then, since Xisa Shephard transform of X, we see that

~ Y’
;) n—m-+1\n
X_(ll---ll)E(R )

is a Shephard transform of X’ = (x1,z9,...,2,) € (R™)" that can be also

considered as a characteristic matrix of Proj, X. Similarly, let

Y” = (yo, Y2, ... ,yn) € (Rn—m)n

Then, we see that

R Y//
" — n—m+1\n
X —(11“.11)6(1& )

is a Shephard transform of X” = (xq,xs,...,z,) € (R™)" that can be also

considered as a characteristic matrix of Proj, ¥. This completes the proof

of Theorem (1).

For the proof of (2), we now suppose that Proj, 3 is strongly polytopal
(or projective). Then it follows from Theorem that we have

S(Proj,, %, X\{#0}) # 0.
That is, we have

(4.1) () Py #0,

/ /
P EZ(m)

where P’ = P\{0} C {1,2,...,n} for P € ¥, and X, , denotes the collec-

tion of all such P"’s. We then claim that we have

S(2, X) #0.
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Indeed, note first that it follows from (4.1)) that there exists z € C'(P’)° for

all P'={i,... im—1} € X,,). So we can write
m—1
v= Ny, o+ Aoady, . > A =1 with A; > 0.
j=1

Then it is obvious to see

11 1. 1, A .
Sto+ 5o = g0+ 5 (Mdi + -+ A, ) € C(P)

with 2+3 375"\ = 1 and P = P'U{0}. Since P’ is arbitrary in &
implies that

) this

/
(m

[ o)y #0,
PES ()
where P = P'U{0} for P' € X, . Hence, it follows from Theorem (3.8 that
¥ is strongly polytopal (or projective), as desired.
Conversely, suppose that X is strongly polytopal (or projective). Then it

follows again from Theorem [3.8| that we have
S(, X) # 0.
Thus, by definition we have

() )y #0.
PEZ(m)
For the sake of simplicity, we may assume that 2o = 0 in R"~™*!. Now, if
x € C(P)° for each P = {0,i1,...,ipm—1} € X4, then there exists X > 0
such that Az € H), where H|, denotes a hyperplane of R"~""! which contains

vji;; for i; € P'= P\{0} C {0,1,...,n} and v; > 0. So we can write

m—1 m—1
(42) Tr = )\ji’i]., >‘j =1 and )‘j > 0.
J=1 J=1
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It is also true that we can write

m—1 m—1
(4.3) Ao = pi(vidy), Y =1,
P =1

since any P' € ¥, is an affine R-basis of H;. Thus it follows from (4.2) and

(4.3) that we have

AN = pvy, 1< j<m—1,
which implies that p; > 0 for all 1 < j <m — 1. Hence Az € C(P’)°. This
immediately implies that Proj, ¥ is strongly polytopal (or projective), as

desired.
It is obvious that the proof of Theorem (3) can be dealt with in a
similar way. This completes the proof of Theorem [4.1] O

Finally, we are ready to prove Theorem as follows.

Proof of Theorem[1.1]. For the proof, we continue to use the notations as
in Theorem [£.1 Now suppose that the complete simplicial fan ¥ over
wedge, (K) is strongly polytopal. Then, by Theorem S(2, X) is non-
empty. But then it follows from Theorem (1) that their projected fans
Proj, X and Proj, ¥ over K should be also strongly polytopal. Further-
more, it is easy to see that by Theorem (2) the converse is also true. This
completes the proof of Theorem [I.1] O
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