이차 유리 베지에 곡선의 등각공액과 Isotomic 공액
- Author(s)
- 윤찬란
- Issued Date
- 2013
- Abstract
- It has been described in a recent paper [4] by Keith Dean and Floor van Lamoen how to express isogonal conjugates and isotomic conjugates through barycentric coordinates. It is shown that when conic points are sent to isogonal and isotomic conjugates, those conjugates are conic. In addition, the centroid's isotomic conjugate is its own conjugate as well as incenter's isogonal conjugate is its own conjugate. Therefore the centroid and incenter quadratic rational Bezier curves are the same as the isotomic conjugates and isogonal conjugates respectively.
- Alternative Title
- Isogonal and Isotomic Conjugates of Quadratic Rational Bezier Curve
- Alternative Author(s)
- Yun Chan Ran
- Affiliation
- 조선대학교 교육대학원
- Department
- 교육대학원 수학교육
- Advisor
- 안영준
- Awarded Date
- 2014-02
- Table Of Contents
- ABSTRACT
-------------------------------------- 1
1장. 소개
------------------------------------------- 2
2장. 예비지식 및 기존연구결과
------------------ 3
2.1절 베리센트릭 좌표비
------------------------- 3
2.2절 등각공액과 Isotomic 공액
--------------------- 6
2.3절 베지어 곡선
------------------ 10
2.4절 원뿔곡선과 이차유리베지어 곡선
-------------11
2.5절 삼각형의 중심관계
----------------- 14
3장. 연구결과
------------------------------------ 18
4장. 결론
------------------------------------------ 33
참고문헌
------------------------------------------- 34
- Degree
- Master
- Publisher
- 조선대학교 대학원
- Citation
- 윤찬란. (2013). 이차 유리 베지에 곡선의 등각공액과 Isotomic 공액.
- Type
- Dissertation
- URI
- https://oak.chosun.ac.kr/handle/2020.oak/15683
http://chosun.dcollection.net/common/orgView/200000264396
-
Appears in Collections:
- Education > 3. Theses(Master)
- Authorize & License
-
- AuthorizeOpen
- Embargo2014-02-26
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.