인공지능기법을 이용한 다생산정 위치선정 연구
- Author(s)
- 강현정
- Issued Date
- 2017
- Keyword
- 시추위치 최적화, 생산정 위치선정, 다생산정, 추가 생산정, 인공신경망, 인공지능기법, well placement optimization, ANN, multi well, infill well
- Abstract
- Well placement is one of the most important steps in conventional or unconventional field development. Reservoir simulation has been frequently used to determine the optimal locations in well-placement problems. The ideal method is to conduct simulations for all possible drilling locations, called as the exhaustive run, to obtain a true global solution wherein the cumulative production or the economic value is a maximum. However, the exhaustive run takes too much computational time. Therefore, studies using artificial neural networks have been carried out to reduce the required time and cost.
In previous studies to investigate multi-wells placement problem, artificial neural network was applied to scenarios selected by expert's experience and intuition. However, this method does not take into account all cases in which the multi-wells can be located in the entire reservoir, and thus there is possibility of not obtaining the true global solution.
In this study, a new algorithm is proposed to find the optimal locations of multi-wells by using sequentially artificial neural networks in hierarchical grid systems. By applying the sequential artificial neural network (ANN) for each hierarchical grid system, a new search space is identified, where a more detailed grid system is used for the next sequential ANN. In this methodology it is possible to identify the true global solution with relatively small number of reservoir simulations.
The proposed method was applied to optimize multi-well placement in a coalbed methane reservoir. The result proved that the proposed method provided a practical, cost-effective and robust tool for field production management in helping petroleum engineers determine locations for infill drilling wells.
- Alternative Title
- Optimization of Multi-well Placement using Artificial Intelligence
- Alternative Author(s)
- Kang, Hyeon Jeong
- Department
- 일반대학원 에너지자원공학
- Advisor
- 장일식
- Awarded Date
- 2018-02
- Table Of Contents
- 제1장 서론
제2장 이론적 배경
제1절 인공지능기법
제2절 역전파 신경망
제3절 순차적 인공신경망
제3장 다생산정 시추 위치 최적화 모델 개발
제1절 다생산정 시추 위치 최적화 과정
제2절 인공신경망의 학습 자료 선정
제3절 인공신경망의 입출력 자료
제4장 연구 결과
제1절 저류층 시스템
제2절 생산정 2개의 추가 시추 위치 선정
1. 인공신경망의 학습 자료 선정
2. 광역적 최적 추가 시추 위치 결정
가. 1단계 격자시스템을 사용한 최적 위치 선정
나. 2단계 격자시스템을 사용한 최적 위치 선정
다. 3단계 격자시스템을 사용한 최적 위치 선정
제3절 생산정 3개의 추가 시추 위치 선정
1. 인공신경망의 학습 자료 선정
2. 광역적 최적 추가 시추 위치 결정
가. 1단계 격자시스템을 사용한 최적 위치 선정
나. 2단계 격자시스템을 사용한 최적 위치 선정
다. 2단계 격자시스템을 사용한 최적 위치 선정
제5장 결론
참고문헌
- Degree
- Master
- Publisher
- 조선대학교 대학원
- Citation
- 강현정. (2017). 인공지능기법을 이용한 다생산정 위치선정 연구.
- Type
- Dissertation
- URI
- https://oak.chosun.ac.kr/handle/2020.oak/13510
http://chosun.dcollection.net/common/orgView/200000266718
-
Appears in Collections:
- General Graduate School > 3. Theses(Master)
- Authorize & License
-
- AuthorizeOpen
- Embargo2018-02-22
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.