CHOSUN

인공지능기법을 이용한 다생산정 위치선정 연구

Metadata Downloads
Author(s)
강현정
Issued Date
2017
Keyword
시추위치 최적화, 생산정 위치선정, 다생산정, 추가 생산정, 인공신경망, 인공지능기법, well placement optimization, ANN, multi well, infill well
Abstract
Well placement is one of the most important steps in conventional or unconventional field development. Reservoir simulation has been frequently used to determine the optimal locations in well-placement problems. The ideal method is to conduct simulations for all possible drilling locations, called as the exhaustive run, to obtain a true global solution wherein the cumulative production or the economic value is a maximum. However, the exhaustive run takes too much computational time. Therefore, studies using artificial neural networks have been carried out to reduce the required time and cost.
In previous studies to investigate multi-wells placement problem, artificial neural network was applied to scenarios selected by expert's experience and intuition. However, this method does not take into account all cases in which the multi-wells can be located in the entire reservoir, and thus there is possibility of not obtaining the true global solution.
In this study, a new algorithm is proposed to find the optimal locations of multi-wells by using sequentially artificial neural networks in hierarchical grid systems. By applying the sequential artificial neural network (ANN) for each hierarchical grid system, a new search space is identified, where a more detailed grid system is used for the next sequential ANN. In this methodology it is possible to identify the true global solution with relatively small number of reservoir simulations.
The proposed method was applied to optimize multi-well placement in a coalbed methane reservoir. The result proved that the proposed method provided a practical, cost-effective and robust tool for field production management in helping petroleum engineers determine locations for infill drilling wells.
Alternative Title
Optimization of Multi-well Placement using Artificial Intelligence
Alternative Author(s)
Kang, Hyeon Jeong
Department
일반대학원 에너지자원공학
Advisor
장일식
Awarded Date
2018-02
Table Of Contents
제1장 서론

제2장 이론적 배경
제1절 인공지능기법
제2절 역전파 신경망
제3절 순차적 인공신경망

제3장 다생산정 시추 위치 최적화 모델 개발
제1절 다생산정 시추 위치 최적화 과정
제2절 인공신경망의 학습 자료 선정
제3절 인공신경망의 입출력 자료

제4장 연구 결과
제1절 저류층 시스템
제2절 생산정 2개의 추가 시추 위치 선정
1. 인공신경망의 학습 자료 선정
2. 광역적 최적 추가 시추 위치 결정
가. 1단계 격자시스템을 사용한 최적 위치 선정
나. 2단계 격자시스템을 사용한 최적 위치 선정
다. 3단계 격자시스템을 사용한 최적 위치 선정
제3절 생산정 3개의 추가 시추 위치 선정
1. 인공신경망의 학습 자료 선정
2. 광역적 최적 추가 시추 위치 결정
가. 1단계 격자시스템을 사용한 최적 위치 선정
나. 2단계 격자시스템을 사용한 최적 위치 선정
다. 2단계 격자시스템을 사용한 최적 위치 선정

제5장 결론

참고문헌
Degree
Master
Publisher
조선대학교 대학원
Citation
강현정. (2017). 인공지능기법을 이용한 다생산정 위치선정 연구.
Type
Dissertation
URI
https://oak.chosun.ac.kr/handle/2020.oak/13510
http://chosun.dcollection.net/common/orgView/200000266718
Appears in Collections:
General Graduate School > 3. Theses(Master)
Authorize & License
  • AuthorizeOpen
  • Embargo2018-02-22
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.