CHOSUN

A Study on Minimizing Association Delay in Machine-to-Machine Communications

Metadata Downloads
Author(s)
Pranesh Sthapit
Issued Date
2016
Keyword
Machine-to-Machine Communications, IEEE 802.15.4, IEEE 802.11ah, Association, Analysis, Network simulator (NS2)
Abstract
Machine to machine (M2M) is a technology that enables networked devices to exchange information and perform actions without the manual assistance of human. A M2M communication system is also known as a wireless sensor network (WSN). Depending on the application domain and the deployment environment, one or more communication solutions may be employed, including wireless personal area networks (WPANs) such as ZigBee, wireless local area networks (WLANs) like Wi-Fi, cellular networks like GSM, and even satellite links. In an infrastructure based wireless network such as WPAN and WLAN, devices communicate with each other through an access point (AP). AP or the coordinator bridges traffic between stations on the network. However, before a station or a node can send traffic through an AP, it must be associated with the AP. Therefore, association is a very important phase in any AP-based network. Since only after association data communication is possible, association should be as fast as possible.
In this dissertation, we present simple yet effective solutions for the fast association of stations with the AP in WPAN and WLAN. The first half of the dissertation is dedicated for WPAN. A novel fast association scheme for beacon-enabled IEEE 802.15.4 network is presented. Our proposed technique prevents nodes from scanning multiple channels. The single channel scanning scheme is able to decrease the association time of IEEE 802.15.4 operating in 2.4 GHz by 32 times. Furthermore, the proactive algorithm to anticipate the future link breakage and a method to increase the node connectivity time with its coordinator are presented for further enhancing the proposed scheme. Based on the theoretical and the simulation based analysis, we show the benefit of the proposed mechanism in terms of most relevant performance metrics.
The second half of the dissertation is dedicated for WLAN. IEEE 802.11ah is another wireless network where fast association is very important. One of the most important challenges in 802.11ah is how to support the large number of nodes (more than 8000) efficiently. The problem become worst when network resets and all stations try for authentication/association simultaneously. Since thousands of stations are simultaneously contending for association, it is obvious that it takes significant amount of time to associate all stations. In this dissertation, the authentication/association of IEEE 802.11ah is analyzed and two novel fast association methods are presented. IEEE 802.11ah employs authentication control mechanism which allows only a small group of stations for association in a beacon interval (BI). However, how to group stations and how to estimate the group size is undefined. In the proposed first method, we estimate an optimum group size for a BI and proposed an enhanced authentication control mechanism, which fully utilizes the BI giving the minimum association time. The results show that the proposed authentication control mechanism is able to minimize association delay significantly.
During network initialization, two types of stations co-exists: stations which are trying for association and those who have already got associated, but waiting for data transmission. Another open issue in IEEE 802.11ah is how to avoid collision of association requests and data traffic from already associated station. One very simple solution would be to bring the total association time of the whole network to less than 1 minute. We try to achieve same in our second method. In the proposed second method, the stations are divided into several groups, each having a group head. A group head is responsible for collecting all the association requests and sending an aggregated single block request to the AP. The proposed method is able to achieve simultaneous association in each group without interfering others. We developed both the mathematical model and the simulation model for the analysis. The detailed performance analysis is provided to demonstrate the performance gain achieved by the proposed scheme.
The schemes that we have presented in this dissertation are simple and can be implemented in any infrastructure based networks. We expect that our proposed methods will be beneficial in various M2M applications.|기계와 기계간에 (Machine-to-Machine : M2M) 이루어지는 통신은 연결된 기기간의 정보를 교환하는 기술이고 인간의 도움없이 작업을 수행하는 기술이다. 또한, M2M 통신 시스템은 무선 센서 네트워크로 (Wireless sensor network : WSN) 알려져 있다. 어플리케이션 도메인과 배치 환경에 따라서, 지그비(zigbee)와 같은 무선 개인 영역 네트워크 (WPANs), 와이파이(Wi-Fi) 같은 무선 로컬 영역 네트워크 (WLANs), GSM등의 셀룰러 네트워크, 위성 링크까지를 포함한 하나 이상의 통신 솔루션이 사용 될 수 있다. WPAN 과 WLAN 같은 설비 기반의 무선 네트워크에서, 기기는 엑세스 포인트 (Access point : AP)를 통해서 서로 통신한다. AP 혹은 코디네이터는 네트워크상의 스테이션 간 트래픽을 중개한다. 그러나, 스테이션 혹은 노드가 AP를 통해 트래픽을 전송하기 전에 AP와 반드시 연결되어 있어야 한다. 따라서, 모든 AP 기반 네트워크에서 상호 연결은 매우 중요한 단계이다. 상호 연결 이후의 단계부터 데이터 통신이 가능하므로, 이는 가능한 신속하게 이루어져야 한다.
본 논문에서는 WPAN과 WLAN에서 AP와 스테이션의 빠른 연결을 위한 간단하면서도 효과적인 솔루션을 제시한다. 본 논문의 전반부는 WPAN에 대한 내용을 다루며, 비콘 기반 IEEE 802.15.4 네트워크에서의 새로운 고속의 상호 연결 방식을 소개하였다. 제안 기술은 노드의 다중 채널 탐색을 방지한다. 단일 채널 탐색 방식은 2.4GHz 대역에서 동작하는 IEEE 802.15.4의 상호 연결 시간을 32배 가량 단축할 수 있다. 뿐만 아니라, 제안 방식을 보다 향상시키기 위해 미래 연결 손실 예측을 위한 알고리즘과 코디네이터와의 노드 연결성 향상을 위한 방법을 선보였다. 이론과 모의실험 분석 을 기반으로, 대다수 관련 성능 지표 측면에서 제안 메커니즘의 이점을 나타내었다.
본 논문의 후반부에서는 WLAN에 대한 내용을 다루었다. IEEE 802.11.ah는 빠른 상호 연결이 매우 중요한 또 다른 무선 네트워크이다. 802.11ah에서 가장 중요한 문제 중 하나는 어떻게 효율적으로 8000개 이상의 다수 노드를 지원하는가에 있다. 문제는 네트워크가 리셋되거나 모든 노드가 동시에 인증 또는 연결하려고 할 때 가장 심각해진다. 수천 개의 스테이션들이 일제히 연결하기 위해 경쟁하면서, 모든 스테이션을 연결하는데 상당한 시간이 소요될 것은 명백하다. 본 논문에서는 IEEE의 802.11ah의 인증 및 연결을 분석하고 빠른 상호연결을 위한 두 가지 새로운 방법을 제안한다. IEEE 802.11ah는 비콘 주기(BI) 내에서의 상호 연결을 위해 작은 그룹의 스테이션들만의 연결을 허용하는 인증 제어 메커니즘을 사용한다. 그러나, 스테이션 그룹의 결정과 그룹의 크기를 예측하는 방법까지 정의하지는 않는다. 제안하는 첫 번째 방법에서, BI를 위한 최적의 그룹 사이즈를 추정하고, 최소 연결 시간을 제공하는 BI를 전적으로 활용하는 향상된 인증 제어 메커니즘을 제안한다. 실험 결과는 제안된 인증 제어 메커니즘이 상호 연결 지연을 최소화시킬 수 있음을 보이고 있다.
네트워크를 초기화하는 동안, 상호 연결을 얻고자 하는 스테이션과 이미 연결되어 있지만 데이터 송신 대기 중인 두 가지 형태의 스테이션이 공존한다. IEEE 802.11ah 에서의 또 다른 문제는 이미 연결되어 있는 스테이션으로부터 연결 요청과 데이터 트래픽의 충돌을 회피하는 방법에 있다. 한 가지 매우 간단한 해결 방법은 주어지는 전체 네트워크의 총 연결 시간을 1분 이하로 설정하는 것이며, 두 번째 제안 방법에서 이와 동일한 방법을 적용한다. 두 번째 제안 방법에서, 스테이션은 각각의 그룹 헤드를 갖는 다수의 그룹으로 분할된다. 그룹 헤드는 모든 상호 연결 요청과 AP에 집계된 단일 블록 요청 전송을 담당한다. 제안 방법은 각각의 그룹에서 서로 간섭을 주지 않고 동시에 상호 연결을 이룰 수 있다. 본 연구에서는 분석을 위해 수학적 모델과 모의실험 모델이 함께 개발되었고, 제안 방법에 의해 달성한 성능 이득을 선보이기 위해 본 상세 성능 분석을 제공한다.
본 논문에서 선보인 방법들은 간단하면서 어떠한 기반 네트워크에서도 구현이 가능하므로, 본 논문의 제안 방법은 다양한 M2M 응용분야에서 유용할 것으로 판단된다.
Alternative Title
머신대 머신 통신 환경에서 연결 설정 최소화 연구
Alternative Author(s)
스타핏 프라네쉬
Affiliation
Chosun University, Department of Information and Communication Engineering
Department
일반대학원 정보통신공학과
Advisor
Prof. Jae-Young Pyun
Awarded Date
2016-02
Table Of Contents
Abstract i
Abstract [Korean] iv
Acronyms vi
List of Figures xiii
List of Tables xv

1 INTRODUCTION 1
1.1 Selected Wireless Technologies in the Thesis . . . . . . . . . . . . . . . 3
1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Contributions of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Organization of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 6
2 IEEE 802.15.4 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Overview of IEEE 802.15.4 . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Physical Layer (PHY) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Medium Access Control Sub-Layer (MAC) . . . . . . . . . . . . . . . . 10
2.5 Superframe Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 PAN Initialization, Channel Scan, and Association . . . . . . . . . . . . 12
2.7 Guaranteed Time Slot Mechanism (GTS) . . . . . . . . . . . . . . . . . 15
2.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 MINIMIZING ASSOCIATION DELAY IN IEEE 802.15.4 17
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Proposed Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.1 Initialization of a PAN Coordinator . . . . . . . . . . . . . . . . 25
3.4.2 Proactive Re-association Decision . . . . . . . . . . . . . . . . . 26
3.4.3 Coordinator Selection and Association . . . . . . . . . . . . . . . 28
3.5 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5.1 PAN Initialization . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5.2 Association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5.3 Detection of Connectivity Loss . . . . . . . . . . . . . . . . . . 31
3.5.4 Reassociation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.5 Connectivity Time . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.7 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.7.1 Association Time . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.7.2 Association Success Rate and Packet Delivery Ratio . . . . . . . 36
3.7.3 Connectivity Time and Throughput . . . . . . . . . . . . . . . . 37
3.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4 WIRELESS LOCAL AREA NETWORKS 41
4.1 Overview of WLAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Basic Elements of 802.11 Networks . . . . . . . . . . . . . . . . . . . . 42
4.3 WLANs Protocol Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4.1 Distribution of Messages . . . . . . . . . . . . . . . . . . . . . . 46
4.4.2 Association Services . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4.3 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.4 Spectrum Management . . . . . . . . . . . . . . . . . . . . . . . 48
4.5 Medium Access Control . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5.1 Carrier Sense mechanism . . . . . . . . . . . . . . . . . . . . . . 49
4.5.2 Distributed Coordination Function . . . . . . . . . . . . . . . . . 50
4.5.3 Enhanced Distributed Channel Access . . . . . . . . . . . . . . . 51
4.6 Standardization of WLAN . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.6.1 WLAN Amendments . . . . . . . . . . . . . . . . . . . . . . . . 53
4.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5 IEEE 802.11AH 55
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Motivation for Development of 802.11ah . . . . . . . . . . . . . . . . . . 55
5.3 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3.1 Sensor Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3.2 Backhaul Networks for Sensors . . . . . . . . . . . . . . . . . . 57
5.3.3 Extended Wi-Fi Range . . . . . . . . . . . . . . . . . . . . . . . 57
5.4 PHY Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4.1 Channelization . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4.2 Transmission Modes . . . . . . . . . . . . . . . . . . . . . . . . 58
5.5 MAC Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.5.1 General MAC Improvements . . . . . . . . . . . . . . . . . . . . 59
5.5.2 Frame Shortening . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.5.3 Channel Access . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.5.4 Power Saving . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.6 Association in IEEE 802.11ah . . . . . . . . . . . . . . . . . . . . . . . 65
5.6.1 Authentication Control Mechanism (ACM) . . . . . . . . . . . . 66
5.6.2 Centralized Authentication Control . . . . . . . . . . . . . . . . 66
5.7 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.7.1 Co-existence of Data and Association Frames . . . . . . . . . . . 67
5.8 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.8.1 System Model and Analysis . . . . . . . . . . . . . . . . . . . . 68
5.8.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.9 Experimental Results and Analysis . . . . . . . . . . . . . . . . . . . . . 72
5.9.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.9.2 Experimental Results And Discussions . . . . . . . . . . . . . . 73
5.10 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6 AUTHENTICATION CONTROL IN 802.11AH 77
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3 System Model Used for Analysis . . . . . . . . . . . . . . . . . . . . . . 78
6.4 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.5 Proposed Association Mechanism . . . . . . . . . . . . . . . . . . . . . 81
6.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7 BLOCK ASSOCIATION FOR 802.11AH 86
7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.2 Network Model and Assumptions . . . . . . . . . . . . . . . . . . . . . 87
7.3 Proposed Block Association Scheme . . . . . . . . . . . . . . . . . . . . 88
7.3.1 Phase I: GH Selection . . . . . . . . . . . . . . . . . . . . . . . 89
7.3.2 Phase II: Association . . . . . . . . . . . . . . . . . . . . . . . . 90
7.3.3 Phase II: Communication . . . . . . . . . . . . . . . . . . . . . . 91
7.4 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8 CONCLUSIONS 101
Bibliography 103
Degree
Doctor
Publisher
Graduate School of Chosun University
Citation
Pranesh Sthapit. (2016). A Study on Minimizing Association Delay in Machine-to-Machine Communications.
Type
Dissertation
URI
https://oak.chosun.ac.kr/handle/2020.oak/12589
http://chosun.dcollection.net/common/orgView/200000265170
Appears in Collections:
General Graduate School > 4. Theses(Ph.D)
Authorize & License
  • AuthorizeOpen
  • Embargo2016-02-25
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.