CHOSUN

메탄 수증기-이산화탄소 개질을 위한 메탈폼 촉매의 열-화학적 특성 연구

Metadata Downloads
Author(s)
박대일
Issued Date
2015
Abstract
GTL 기술은 2000년대 들어 석유 자원의 한계성, 원유 가격의 상승 및 환경 오염문제로 인해 각광 받고 있는 기술이다. GTL 기술은 천연가스의 주성분인 메탄을 Ni계 촉매를 사용하여 개질반응 시켜 수소와 일산화탄소로 이루어진 합성가스를 제조하고, 얻어진 합성가스를 FT합성을 통하여 고 비점의 탄화수소를 얻게 된다. 마지막으로 업그레이드 공정을 통해 얻어진 액체 연료는 유황 및 방향족 화합물의 함유량이 적어 청정 연료로 간주 된다. 최근 개발이 힘든 중소규모의 한계가스전이나 수반가스전을 GTL 기술을 적용시킨 GTL-FPSO를 통하여 개발이 가능하다는 점에서 많은 관심을 받고 있다. GTL-FPSO 공정의 경우 해상에서 진행되는 공정임을 고려해서 해상환경조건(파도, 조력, 바람, 해수 온도 등)등의 가혹한 조건을 견딜 수 있는 촉매 개발이 필요하다. 기존에 연구되던 펠렛 기반의 촉매의 경우 구조적 강도나 열전도성이 떨어져 해상환경에 적용시키기에는 제약조건이 많다. 펠렛 기반 촉매의 단점을 보완하기 위해 기계 및 구조적 강도가 우수하고 열전달 특성이 우수한 금속폼 지지체를 사용하여 촉매를 제조하는 방법이 관심을 받고 있다. 금속폼 지지체를 반응에 사용하기 위해서는 졸겔법이나 슬러리법으로 제조된 담체를 워시코팅 후 촉매를 함침 시켜 사용하는데 두 가지 방법에는 각각의 장·단점이 존재한다.
본 연구에서는 졸겔법과 슬러리법의 장점만을 혼합하여 졸겔-슬러리 하이브리드 코팅법을 사용하여 워시코팅 메탈폼 지지체를 제조하였다. 하이브리드 코팅법의 장점은 균일한 코팅 표면을 얻을 수 있고, 담체 로딩양을 조절할 수 있는 점이다. 두 가지 방법을 혼합하였기 때문에 졸겔과 슬러리 코팅법의 최적의 포인트를 찾아야 한다. 본 연구에서는 첨가물의 비율을 조절하여 최적의 코팅 조건을 찾고, 실험 및 분석을 통하여 검증하였다.
첫 번째로 Al2O3와 AIP를 1~9까지 5가지 샘플을 제조하여 Al2O3/AIP 몰 비율에 따른 메탈폼 표면 상태를 SEM사진을 통해 확인할 수 있었다. Al2O3가 코팅된 메탈폼 지지체의 SEM 사진을 보면 Al2O3/AIP 몰 비율이 5일 때 균일한 메탈폼 표면을 확인 할 수 있었는데, 5 이외의 다른 샘플의 경우 표면에 균열이 심각하게 발생돼 반응에 사용하였을 때 부정적인 영향이 나타날 것이라 판단된다. 추가로 Fall-off rate 실험을 수행하여 메탈폼 지지체와 담체의 접착 강도를 확인하기위해 10시간과 50시간에 걸쳐 ultrasonic에 넣고 실험을 수행하였다. 실험 결과 Al2O3/AIP 몰 비율이 5일 때 떨어지는 담체양이 가장 적었으며, 위 결과들을 바탕으로 Al2O3/AIP 몰 비율이 5일 때 최적의 워시코팅 조건이라고 판단된다.
두 번째로 최적의 조건으로 제조된 Al2O3/Ni foam과 기존에 많이 사용되는 Al2O3 펠렛 지지체와의 열전달 성능 및 반응성의 차이를 실험을 통하여 확인하였다. 우선 열전달 성능 비교를 위해 반응기에 워시코팅된 메탈폼과 펠렛 지지체를 넣고 비활성 가스인 N2를 100~500cc까지 흘려 두 지지체간의 입·출구의 온도 차이를 측정하여 Nu 수를 계산하였다. 계산 결과 워시코팅된 메탈폼이 펠렛 지지체에 비해 높은 Nu수를 보였으며, N2 유량이 증가 할수록 두 샘플간의 Nu 수 차이가 커지는 것을 확인하였다. 위 결과를 바탕으로 워시코팅된 Al2O3/Ni foam이 펠렛 촉매에 비해 높은 열전도율을 보이는 것을 확인 하였다. 높은 열전도율이 반응에 미치는 영향을 알아보기 위해 두 지지체에 Ni 촉매를 함침 시켜 제조 후 수증기-이산화탄소 복합개질 반응을 통해 반응성을 확인하였다. 실험 결과 모든 온도 구간에서 Ni/Al2O3/Ni foam 촉매가 Ni/pellet 촉매 보다 CH4 및 CO2 전환율이 높게 나타났다. 위 결과를 바탕으로 열 전달 성능이 반응에 크게 영향을 미치는 것을 확인 하였으며, 특히 저온 반응으로 갈수록 메탈폼의 효과가 극대화 된다고 판단된다.
Ni계 촉매를 반응에 사용할 경우 많은 양의 탄소 침적이 발생되는데, 기존 Ni 촉매와 동일한 성능을 가지면서 탄소 침적이 적게 발생되는 페롭스카이트 촉매를 추가로 연구하였다. 대부분의 페롭스카이트 촉매가 분말형태로 사용하기 때문에 상용공정에는 적용이 힘들다. 이를 극복하기 위해 페롭스카이트 촉매를 메탈폼에 코팅시키는 연구를 수행하였다. 기존의 페롭스카이트 제조법의 경우 메탈폼에 코팅하였을 때 부풀어 오르거나 폭발이 발생해 코팅에 적합하지 못하기 때문에 본 논문에서는 폴리올법을 페롭스카이트에 응용하여 촉매를 제조하였다. 제조된 촉매는 다양한 분석과 실험을 통하여 검증하였으며, 폴리올법에 사용되는 PVP 물질의 농도를 조절하여 최적의 조건을 찾아내었다. 실험 및 분석결과 PVP 몰수가 1일 때 수증기-이산화탄소 개질 및 건조 개질 반응에서 CH4과 CO2 전환율이 가장 높았으며, XRD 및 TPR 분석을 통해서도 1M이 최적의 조건임을 확인 하였다. 마지막으로 Ni촉매와 페롭스카이트 촉매의 탄소 침적양을 TGA로 비교하였고, 페롭스카이트 촉매가 우수한 탄소 침적 저항성을 보인 것을 확인하였다.
실험 결과를 바탕으로 합성가스 생산량이 0.08Nm3/hr급인 Ni foam 기반 반응기를 제작 할 경우 펠렛 지지체 기반 반응기에 비해 약 38.1%의 부피감소 효과를 볼 수 있었다. 본 연구를 통하여 메탈폼 지지체를 사용함으로써 반응성뿐만 아니라 반응기의 부피 감소에도 기존 지지체 촉매에 비해 우수함을 증명하였다.
Alternative Title
Study on Thermal-Chemical Characteristics of Metallic Foam Catalyst for Steam-CO2 Reforming of Methane
Alternative Author(s)
Park, Daeil
Department
일반대학원 항공우주공학과
Advisor
김태규
Awarded Date
2015-08
Table Of Contents
Contents

Contents ···················································································· ⅰ

LIST OF FIGURES ······································································ ⅳ

LIST OF TABLES ······································································ ⅶ

ABSTRACT ··············································································· ⅷ

Chapter 1. Introduction ·································································· 1

Chapter 2. Research background ······················································ 4
2.1. GTL technology ······································································ 4
2.2. Reforming of Methane ······························································ 6
2.3. Metallic foam ········································································· 7
2.4. Perovskite-type structure ···························································· 8
2.5. Polyol method ······································································ 10

Chapter 3. Metallic foam catalyst ··················································· 11
3.1. Preparation of catalyst ······························································· 11
3.2. Characterization of the catalysts ···················································· 15
3.2.1 X-ray diffraction (XRD) ························································· 15
3.2.2. Field emission scanning electron microscopy (FE-SEM) ······················ 15
3.3. Adhesion strength of the metallic foam catalyst ··································· 16
3.4. Heat transfer of the metallic foam catalyst ········································ 16
3.5. Steam-CO2 reforming of methane ··················································· 19
3.6. γ-Al2O3/Ni foam characterization ···················································· 23
3.7. Surface quality of the wash-coated catalyst ········································ 27
3.8. Adhesion strength of the wash-coated catalyst ····································· 31
3.9. Heat transfer characteristics of the wash-coated catalyst ·························· 33
3.10. Comparison of the Ni/γ-Al2O3/Ni foam with the Ni/γ-Al2O3 pellet catalyst ··· 36
3.11. Effect of temperature on the reactivity of the Ni/γ-Al2O3/Ni foam catalyst ··· 39
3.12. Effect of space velocity on the reactivity of the Ni/γ-Al2O3/Ni foam catalyst · 41
3.13. Catalytic activity of the wash-coated catalyst ····································· 43
3.14. Long-term durability of the Ni/γ-Al2O3/Ni foam catalyst ························ 46

Chapter 4. Perovskite-type catalysts (Polyol method) ···························· 50
4.1. Preparation of perovskite type catalyst ············································· 50
4.2. Characterization of perovskite type catalyst ········································ 52
4.2.1. H2-temperature programmed reduction (H2-TPR) ······························· 52
4.2.2. Fourier transform infrared spectrometry (FT-IR) ······························· 52
4.2.3. Thermogravimetric analysis (TGA) ·············································· 52
4.3. XRD analysis ········································································ 53
4.4. H2-TPR profiles ······································································ 56
4.5. FT-IR analysis ········································································ 58
4.6. Reactivity of reforming ····························································· 60
4.7. Carbon deposition (TGA) ··························································· 62
4.8. Surface reaction mechanism ························································· 64

Chapter 5. Perovskite-type catalysts (Other sol-gel method) ··················· 69
5.1. Preparation of perovskite type catalyst ············································· 69
5.2. Characterization and Reaction test ·················································· 70
5.3. Catalyst characterization ····························································· 72
5.4. Effect of gelation agents on the reactivity of perovskite type catalyst ·········· 76

Chapter 6. Conclusion ·································································· 78

Reference ·················································································· 80

Curriculum Vitae
Degree
Doctor
Publisher
조선대학교
Citation
박대일. (2015). 메탄 수증기-이산화탄소 개질을 위한 메탈폼 촉매의 열-화학적 특성 연구.
Type
Dissertation
URI
https://oak.chosun.ac.kr/handle/2020.oak/12510
http://chosun.dcollection.net/common/orgView/200000265018
Appears in Collections:
General Graduate School > 4. Theses(Ph.D)
Authorize & License
  • AuthorizeOpen
  • Embargo2015-08-25
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.