비파괴 평가를 위한 교류형 자기카메라의 다이폴 모델 기반 시뮬레이션 기법에 관한 연구
- Author(s)
- 레민후이
- Issued Date
- 2014
- Abstract
- 비파괴평가는 항공기, 원자력발전소, 석유화학플랜트 및 철도 등과 같은 대형기기 구조물에 내재한 결함을 검출하고, 정량적으로 평가하기 위한 중요한 수단이다. 비파괴평가를 위해서는 결함주변에서 발생하는 물리량의 변화에 대한 시뮬레이션이 필요하며, 이를 위하여 지금까지 유한요소해석법과 수치해석법이 개발되었다. 이러한 시뮬레이션기법은 실제 비파괴검사시스템을 이용한 방법에 비하여 쉽고, 빠르며, 경제적이면서도, 신호를 예측할 수 있으므로 꼭 필요한 기술 중 하나이다. 또한, 실제 비파괴검사시스템을 설계할 때, 필요한 유용한 정보를 사전에 확보하여 해당 시스템을 최적 설계할 수 있다. 그러나, 지금까지의 시뮬레이션은 컴퓨터의 대형 용량은 물론 계산속도를 높이기 위한 하드웨어적인 성능의 우수성도 요구되었으며, 그럼에도 불구하고 시뮬레이션에 소요되는 시간이 길다는 단점이 있었다. 본 연구에서는 이러한 용량, 성능, 속도와 같은 단점을 극복하기 위하여, 다이폴모델을 이용한 시뮬레이션 기법을 제안한다. 특히, 비파괴검사시스템의 하나인 교류형 자기카메라에 의한 결함 평가를 시뮬레이션의 대상으로 하였다. 도전성 시험편의 결함 주변에 발생하는 교류자기장의 분포를 영상화하여, 결함의 형상 및 크기를 예측하였으며, 단일균열 및 다중균열을 동시에 시뮬레이션할 수 있도록 하였다. 시뮬레이션은 평판형 시험편에 직사각형, 삼각형, 타원형, 스텝형의 단면형상을 가지는 결함을 대상으로 하였다. 또한, 배관형 시험편의 경우에는 내면 및 이면결함을 대상으로 시뮬레이션하였다. 다이폴모델을 이용한 시뮬레이션 기법의 유용성과 성능을 검증하기 위하여, 유한요소해석에 의한 시뮬레이션 및 교류형 자기카메라에 의한 실험결과를 비교하였다.|Nondestructive evaluation (NDE) is an important methodology for quantifying cracks in engineering structures such as airplane, nuclear power plants, petroleum and gas systems, and railways. Several simulation methods such as finite element method and analytical method have been developed for using in NDE. The simulation is necessary because it is easy, signal predictable, fast and economic when compare with a real NDE system. Moreover, the simulation is useful in the design state of NDE systems because it helps to predict signal, optimize the system factor such as number of sensor, coiling method and size. Among many advantages of the simulation methods, they have weak points of slow simulation, taking much computer resource and complication of implementation. This study proposes an improvement of dipole model method for simulation of magnetic camera in NDE. The method is used to simulate an alternating magnetic field around cracks on a conductive specimen and to estimate the shape and volume of the crack. Several crack shapes such as rectangular, triangular, elliptical, circular, and stepped sectional shape in plate specimen, and hole-type inner and outer diameter cracks in a pipe are simulated in this study. Single crack or multiple cracks can be simulated in one simulation. The dipole model method enables faster and simpler simulation and evaluation of crack size than the conventional simulation methods such as the finite element method. The dipole model performance is verified by comparing its simulation results with simulation results of a finite element method and experimental results obtained using an AC-type magnetic camera. The shape and volume of crack are evaluated using the simulation methods and the experimental method in the study.
- Alternative Title
- Simulation Method based-on Dipole Model for the AC-type Magnetic Camera in the Nondestructive Testing and Evaluation
- Alternative Author(s)
- LE MINH HUY
- Affiliation
- Chosun University, Graduate School of Chosun University
- Department
- 일반대학원 제어계측공학과
- Advisor
- 이진이
- Awarded Date
- 2014-08
- Table Of Contents
- CONTENTS
Contents i
List of Tables v
List of Figures vi
NONMECLATURE x
초 록 xiii
ABSTRACT xiv
Chapter 1 INTRODUCTION 1
1.1. Nondestructive Testing and Evaluation 1
1.1.1. Penetrant Testing (PT) 2
1.1.2. Radiographic Testing (RT) 3
1.1.3. Ultrasonic Testing (UT) 4
1.1.4. Electromagnetic Testing (EMT) 5
1.2. Magnetic Camera 9
1.3. Simulation of Electromagnetic Testing 11
1.3.1. Numerical Simulation 12
1.3.2. Analytical Simulation 12
1.3.3. Dipole Model 13
1.4. Objectives of Thesis 15
Chapter 2 FINITE ELEMENT METHOD AND PREVIOUS DIPOLE MODEL METHOD 16
2.1. Electromagnetic Field 16
2.1.1. Maxell Equations 16
2.1.2. Constitutive Relations 19
2.1.3. Integral Form of Maxwell’s Equations 19
2.1.4. Skin Effect 22
2.1.5. Scalar Potential Magnetic Field 26
2.1.6. Vector Potential Magnetic Field 27
2.2. Simulation in ANSYS Software 28
2.2.1. Procedure of Simulation 28
2.2.2. 3-D Rectangular Shape of Crack on a Flat Specimen 32
2.2.3. Cracks on Pipe Specimen 38
2.3. Previous Dipole Model Method 48
2.3.1. Static Magnetic Field 48
2.3.2.1. Horizontal Magnetization 48
2.3.2.2. Vertical Magnetization 53
2.3.2. Alternating Magnetic Field 57
Chapter 3 IMPROVED DIPOLE MODEL METHOD 61
3.1. Dipole Model of Cracks on a Flat Specimen 62
3.1.1. Dipole Model of a Rectangular crack 63
3.1.2. Simulated Results of a Rectangular Crack 65
3.1.3. Dipole Model of a Triangular crack 66
3.1.4. Simulated Results of a Triangular Crack 69
3.1.5. Dipole Model of an Elliptical crack 71
3.1.6. Simulated Results of an Elliptical Crack 73
3.1.7. Dipole Model of a Rectangular Stepped crack 75
3.1.8. Simulated Results of a Rectangular Stepped Crack 76
3.1.9. Dipole Model of a Triangular Stepped crack 78
3.1.10. Simulation Result of a Triangular Stepped crack 79
3.2. Dipole Model of Cracks on Pipe Specimen 81
3.2.1. Distribution of Magnetic Charge 82
3.2.2. Calculations 85
3.2.2.1. Hole-type outer diameter crack (OD) 87
3.2.2.2. Hole-type through crack (through) 88
3.2.2.3. Hole-type complicated OD crack (COD) 88
3.2.2.4. Hole-type inner diameter crack (ID) 89
3.2.3. Simulated Results of Cracks on a Pipe 90
3.3. Dipole Model Software 94
3.3.1. Dipole Model Analysis Software 94
3.3.2. Dipole Real-time Simulation Software 99
Chapter 4 VERIFICATION OF DIPOLE MODEL 103
4.1. Cracks on Flat Specimen 103
4.1.1. Area-type Magnetic Camera 103
4.1.1.1. Principle 103
4.1.1.2. Experimental Setup 104
4.1.1.3. Experimental results 107
4.1.2. Maximum Magnetic Charge Factor 108
4.1.3. Qualitative Comparison 111
4.1.4. Quantitative Comparison 112
4.2. Cracks on Pipe Specimen 114
4.2.1. Cylinder-type Magnetic Camera 114
4.2.1.1. Principle and Components 116
4.2.1.2. Experiment Setup 117
4.2.1.3. Experimental results 119
4.2.2. Maximum Magnetic Charge Factor 120
4.2.3. Qualitative Comparison 122
4.2.4. Quantitative Comparison 124
4.3. Simulation of Scanning Bobbin-type Magnetic Camera 126
4.3.1. Bobbin-type Magnetic Camera 126
4.3.1.1. Experimental Setup 126
4.3.1.2. Experimental Results 128
4.3.2. Simulation Algorithm 130
4.3.3. Maximum Magnetic Charge Factor 132
4.3.4. Effective Region 133
4.3.5. Comparison 133
Chapter 5 CONCLUSIONS 136
REFERENCES 139
ACKNOWLEDGEMENT 151
- Degree
- Doctor
- Publisher
- 조선대학교 대학원
- Citation
- 레민후이. (2014). 비파괴 평가를 위한 교류형 자기카메라의 다이폴 모델 기반 시뮬레이션 기법에 관한 연구.
- Type
- Dissertation
- URI
- https://oak.chosun.ac.kr/handle/2020.oak/12268
http://chosun.dcollection.net/common/orgView/200000276282
-
Appears in Collections:
- General Graduate School > 4. Theses(Ph.D)
- Authorize & License
-
- AuthorizeOpen
- Embargo2014-08-26
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.