CHOSUN

카텔리시딘 유래 및 모델 항균펩타이드의 세포선택성, 작용기작 및 항염증활성

Metadata Downloads
Author(s)
남용해
Issued Date
2011
Abstract
PART Ⅰ

인간의 cathelicidin 항균펩타이드(AMP), LL-37은 lipopolysaccharide (LPS)에 의해 유도된 cellular cytokine의 생성을 억제하고 또한 항균작용을 나타낸다. LL-37과 비교했을 때 보다 짧은 서열을 가지며 prokaryotic selectivity을 증가시키고, 항-염증활성을 유지하는 새로운 항균 펩타이드를 개발하기 위해 IG-19 (LL-37의 13-31잔기)를 기초로 하여 아미노산을 치환한 유사체들을 합성하였다. IG-19 과 그것의 유사체들의 prokaryotic selectivity [therapeutic index (TI)로 나타냄)]와 항-염증활성은 펩타이드의 hydrophobicity와 중요한 직접적인 연관이 있었다. IG-19의 유사체들 중에서 a4는 제일 높은 prokaryotic selectivity (a4는 of LL-37보다 7.1배 높은 therapeutic index를 나타냈었다)를 보여주었지만 LL-37과 비교했을 때 낮은 항-염증활성을 나타냈다. 높은 hydrophobicity를 가진 a5, a6, a7, a8과 a9 유사체들은 LL-37과 비교했을 때 강한 항-염증활성을 가졌지만 약한 prokaryotic selectivity (TI: 0.1~0.5)를 나타냈다. 이러한 결과는 펩타이드의 적당한 hydrophobicity가 prokaryotic selectivity와 항-염증활성에 매우 중요하다는 것을 제시한다. 그리고 a4 유사체의 prokaryotic selectivity를 유지하면서 항-염증활성을 증가시키기 위해, a4 유사체의 Phe15 또는 Phe5를 각각 Trp으로 치환한 유사체 (a4-W1과 a4-W2)를 합성하였다. a4-W1과 a4-W2는 net positive charge +11과 비슷한 hydrophobicity와 a-helicity를 가지고 있음에도 불구하고 이들 두 펩타이드는 동일한 prokaryotic selectivity를 나타내지만 a4-W1는 a4-W2와 비교했을 때 더욱 높은 항-염증활성을 나타냈다. 이러한 결과는 prokaryotic selectivity를 크게 감소시키지 않고, 높은 항-염증 활성을 가진 prokaryotic-selective 항균 펩타이드를 설계할 때 가장 유효한 Trp의 치환위치는 펩타이드의 -helical wheel projection에서 친수성 끝나는 면과 소수성 시작면 사이의 양쪽 친매성의 경계면이라는 것을 제시하였으며, 또한 항균 펩타이드의 항-염증활성에는 net positive charge와 hydrophobicity 뿐만 아니라 다른 중요한 parameter들이 존재한다는 것을 제시한다. 그 외에도 펩타이드의 가수분해효소 절단 (proteolytic digestion)에 대한 안정성을 제공하기 위하여 a4-W1과 a4-W2의 3, 7, 10, 13 및 17의 위치에 D-아미노산을 치환한 diastereomeric 펩타이드(a4-W1-D와 a4-W2-D) 및 D-enantiomeric 펩타이드 (a4-W1-E와 a4-W2-E)를 합성하였다. Tryptic digestion후에도 diastereomeric 및 D-enantiomeric 펩타이드는 그들의 항균활성을 유지하였다. D-diastereomeric 펩타이드는 높은 prokaryotic selectivity와 protease resistance을 보여주었지만 낮은 항-염증반응을 나타냈다. D-enantiomeric펩타이드는 prokaryotic selectivity, 항-염증활성 및 protease resistance를 모두 나타내었다. 결과적으로 a4-W1, a4-W1-E와 a4-W2-E는 LL-37과 비교했을 때, 증가된 prokaryotic selectivity와 유지된 항-염증활성을 나타내었으므로 이들 펩타이드들은 미생물 감염뿐 만 아니라 폐혈증 치료를 위한 유용한 항균제로서의 발전 가능성이 있음을 제시한다.

PART Ⅱ

a-helical homo-dimeric항균 펩타이드의 disulphide bond의 위치가 염-저항성(salt resistance)과 LPS의 중성화에 미치는 영향을 조사하기 위하여, a-helical 모델 펩타이드인 K6L4W1 와 그것의 disulphide bond가 각각 아미노말단, 서열중앙위치, 카르복실말단에 있는 homo-dimeric 펩타이드인 di-K6L4W1-N, di-K6L4W1-M와 di-K6L4W1-C를 합성하였다. K6L4W1 및 di-K6L4W1-M과 다르게 K6L4W1-N 및 di-K6L4W1-C의 항균활성은 150 mM NaCl에서 영향을 받지 않았다. di-K6L4W1-M과 비교했을 때 di-K6L4W1-N 및 di-K6L4W1-C는 LPS로 자극한 쥐의 대식세포인 RAW264.7 세포에서 일산화질소(nitric oxide)의 생성을 아주 크게 억제하였다. 결론적으로 펩타이드 분자의 disulphide bond가 아미노말단 또는 카르복실말단에 위치하는 것이 서열중앙위치에 위치하는 것 보다 항균활성과 LPS중성화 능력을 가진 염-저항성 a-helical homo-dimeric 항균 펩타이드를 설계하는데 더욱 효과적이라는 것을 제시한다.

PART Ⅲ

Arg 또는 Lys을 함유하고 Trp이 풍부한 모델 항균 펩타이드 (K6L2W3 및 R6L2W3) 와 그들의 D-enantiomeric 펩타이드 (K6L2W3-D 및 R6L2W3-D)에 대하여 mammalian 세포독성과 항균활성의 기작에 대하여 조사하였다. Arg을 함유한 펩타이드는 Lys이 함유된 펩타이드와 비교했을 때 인간 적혈구(human erythrocytes)와 mammalian cells에서 더욱 강한 독성을 가졌다. 역상 액체크로마토그래피 (RP-HPLC)의 지연시간(retention time)에서 판단하였을 때, Arg이 함유한 펩타이드는 Lys이 함유한 펩타이드 보다 더욱 강한 hydrophobicity를 나타내었다. 이러한 결과는 펩타이드의 약간의 hydrophobicity 의 차이는 그들의 용혈활성과 mammalian 세포독성에 영향 준다는 것을 말해준다. 흥미롭게도 K6L2W3와 K6L2W3-D는 거의 비슷한 mammalian 세포독성을 나타내지만, R6L2W3-D는 R6L2W3과 비교 했을 때 더욱 높은 독성을 나타내었다. C. albicans의 세포막을 모방하는 vesicles로 부터의 약한 형광마크의 방출은 Lys을 함유한 펩타이드의 주요한 표적위치는 C. albicans의 세포막이 아니라, 세포질이라는 것을 제시한다. Confocal laser-scanning microscopy실험에서는 FITC로 표지된 Lys을 함유한 펩타이드는 세포벽과 세포막을 통과하여 세포 안으로 들어가지만 FITC로 표지된 Arg을 함유한 팹타이드는 세포막을 통과 하지 못하였다. 이상의 결과는 Arg을 함유한 펩타이드의 최종 표적위치는 C. albicans의 세포막이며, Lys을 함유한 펩타이드의 최종 표적위치는 세포질이라는 것을 제시한다.|PART Ⅰ

Human cathelicidin antimicrobial peptide (AMP), LL-37 has been shown to have the potential to inhibit lipopolysaccharide (LPS)-induced cellular cytokine release, as well as its direct antimicrobial function. In order to develop novel AMPs with shorter in length, improved prokaryotic selectivity and retained anti-inflammatory activity compared to natural LL-37, a series of amino acid-substituted analogs based on IG-19 (residues 13-31 of LL-37) were synthesized. There was a significant linear correlation between the hydrophobicity of IG-19 and its analogs and their prokaryotic selectivity or anti-inflammatory activity. Among IG-19 analogs, the analog a4 showed the highest prokaryotic selectivity (a4 had therapeutic index enhanced 7.1-fold over that of LL-37), but much lower anti-inflammatory compared to LL-37. The analogs, a5, a6, a7, a8 and a9 with higher hydrophobicity had strong anti-inflammatory activity comparable to that of LL-37, but poor prokaryotic selectivity (TI values: 0.10.5). These results indicated that the appropriate hydrophobicity of the peptides to exert good prokaryotic selectivity and anti-inflammatory activity is of great importance.
In addition, to retain the prokaryotic selectivity and increase anti-inflammatory activity of the analog a4, I synthesized Trp-substituted analogs (a4-W1 and a4-W2) which Phe15 or Phe5 of a4 are replaced by Trp, respectively. Both a4-W1 and a4-W2 showed the same prokaryotic selectivity, but a4-W1 displayed much higher anti-inflammatory activity, compared to a4-W2. These results suggested that the effective site for the Trp-substitution in designing novel AMPs having higher anti-inflammatory activity without a significant reduction in prokaryotic selectivity is the amphipathic interface between the hydrophilic ending side and the hydrophobic starting side in the helical wheel projection and other important parameters of AMPs may be involved in their anti-inflammatory activity, as well as their net positive charge and hydrophobicity.
Furthermore, to provide the stability to proteolytic digestion of designed peptides, I synthesized the diastereomeric peptides (a4-W1-D and a4-W2-D) with D-amino acid substitution at positions 3, 7, 10, 13 and 17 of a4-W1 and a4-W2, respectively and their D-enantiomeric peptides (a4-W1-E and a4-W2-E) composed D-amino acids. After tryptic digestion, these diastereomeric and D-enantiomeric peptides preserved their antimicrobial activity almost completely. D-diastereomeric peptides exhibited the best prokaryotic selectivity and protease resistance, but much low anti-inflammatory activity. D-enantiomeric peptides showed prokaryotic selectivity, anti-inflammatory activity and protease resistance.
In conclusion, a4-W1, a4-W1-E and a4-W2-E with more improved prokaryotic selectivity and retained anti-inflammatory activity compared to parental LL-37 could serve as the templates for the development of antimicrobial agents for the treatment of sepsis, as well as microbial infection.

PART Ⅱ

To investigate the effects of the position of a disulphide bond on the salt resistance and lipopolysaccharide (LPS)-neutralizing activity of -helical homo-dimeric antimicrobial peptides (AMPs), I synthesized an -helical model peptide (K6L4W1) and its homo-dimeric peptides (di-K6L4W1-N, di-K6L4W1-M, and di- K6L4W1-C) with a disulphide bond at the N-terminus, the central position, and the C-terminus of the molecules, respectively. Unlike K6L4W1 and di-K6L4W1-M, the antimicrobial activity of di-K6L4W1-N and di-K6L4W1-C was unaffected by 150 mM NaCl. Both di-K6L4W1-N and di-K6L4W1-C caused much greater inhibitory effect on nitric oxide (NO) release in LPS-induced mouse macrophage RAW264.7 cells, compared to di-K6L4W1-M. Taken together, our results indicate that the presence of a disulphide bond at N- or C-terminus of the molecule, rather than at the central position, is more effective when designing salt-resistant -helical homo-dimeric AMPs with potent antimicrobial and LPS-neutralizing activities.

PART Ⅲ

In this study, I investigated the mammalian cell toxicity and candidacidal mechanism of Arg- or Lys-containing Trp-rich model antimicrobial peptides (K6L2W3 and R6L2W3) and their D-enantiomeric peptides (K6L2W3-D and R6L2W3-D). Arg-containing peptides were more toxic to human erythrocytes and mammalian cells as compared to Lys-containing peptides. Arg-containing peptides are slightly more hydrophobic than Lys-containing counterparts, as judged from their reverse phase-high performance liquid chromatography (RP-HPLC) retention time. These results suggested that a little difference in hydrophobicity of these peptides affect their hemolytic activity and mammalian cell toxicity. Interestingly, K6L2W3 and K6L2W3-D almost similar mammalian cell cytotoxicity, whereas R6L2W3-D showed much higher cytotoxicity as compared to R6L2W3. A low ability to facilitate fluorescent marker escape from C. albicans membrane-mimicking vesicles suggested that the major target site of Lys-containing peptides may be not the cell membrane but the cytoplasm of C. albicans. Confocal laser-scanning microscopy revealed that FITC-labeled Lys-containing peptides penetrated the cell wall and cell membrane and accumulated inside the cells, whereas FITC-labeled Arg-containing peptides did not penetrate but associated with the membranes. Collectively, our results suggested that the ultimate target site of action of Arg-containing peptides and Lys-containing peptides may be the membrane and the cytoplasm of C. albicans, respectively.
Alternative Title
Cell Selectivity, Mechanism of Action and Anti-inflammatory Activity of Cathelicidin-derived and Model Antimicrobial Peptides
Alternative Author(s)
Nan, Yong Hai
Affiliation
생물신소재학과
Department
일반대학원 생물신소재학과
Advisor
신송엽
Awarded Date
2012-02
Table Of Contents
CONTENTS..................................................................................................i
LIST OF TABLES................................................................................... iv
LIST OF FIGURES...................................................................................v
ABSTRACT (KOREAN).....................................................................viii
PART Ⅰ. Prokaryotic selectivity and anti-inflammatory activity of Short antimicrobial peptides sesigned from human cathelicidin antimicrobial peptide, LL-37………………………1
1. INTRODUCTION……………………………………2
2. MATERIALS AND METHODS……………………4
3. RESULTS………………………………………11
3.1. Peptide design…………………………11
3.2. Hydrophobicity of peptides………………………11
3.3. Circular dichroism (CD) spectroscopy……………………12
3.4. Antimicrobial (MIC) and hemolytic (MHC) activities…………12
3.5. Therapeutic index (TI)……………………………12
3.6. Cytotoxicity toward RAW264.7 cells …………………13
3.7. Inhibition of nitric oxide (NO) production in LPS-stimulated RAW264.7 cells ……………13
3.8. Inhibition of TNF- release from LPS-stimulated RAW264.7
cells …………………………………………………14
3.9. Inhibition of LPS-induced iNOS gene expressio………………14
3.10. Resistance to proteolytic digestion …………………………14
3.11. LPS neutralizing activity ………………………………………15
4. DISCUSSION……………………………………………………31
5. REFERENCES…………………………………………34

PART Ⅱ. Effect of the position of the disulphide bond on salt resistance and LPS-neutralizing activity of the -helical homo-dimeric model antimicrobial peptides………………………41
1. INTRODUCTION………………………………………….42
2. MATERIALS AND METHODS………………………44
3. RESULTS AND DISCUSSION……………………… 48
3.1 Synthesis of 3 dimeric peptides with a disulphide bond …48
3.2 Antimicrobial and haemolytic activities …………48
3.3 Therapeutic index ……………49
3.4 Salt resistance ………50
3.5 Mode of bactericidal action ………………………………..51
3.6 LPS-neutralizing activity ………………………51
4. REFERENCES……………………… 60

PART Ⅲ. Mammalian cell toxicity and candidacidal mechanism of Arg- or Lys-containing Trp-rich model antimicrobial peptides and their D-enantiomeric peptides…63
1. INTRODUCTION…………………………………………………64
2. MATERIALS AND METHODS……………………………66
3. RESULTS………………………………………………………71
3.1. Anti-Candida and hemolytic activities …………………………71
3.2. Cytotoxicity against mammalian cells…………………………71
3.3. Hydrophobicty ……………………………………………………71
3.4. Quenching of Trp emission by acrylamide…..............…71
3.5. Dye leakage ………………………………………………………72
3.6. Confocal laser-scanning microscopy ………………………72
4. DISCUSSION…………………………………………………………82
5. REFERENCES……………………………………………………84
ABSTRACT (ENGLISH)………………………………………89
ACKNOWLEDGEMENTS……………………………………101
Degree
Doctor
Publisher
일반대학원
Citation
남용해. (2011). 카텔리시딘 유래 및 모델 항균펩타이드의 세포선택성, 작용기작 및 항염증활성.
Type
Dissertation
URI
https://oak.chosun.ac.kr/handle/2020.oak/9459
http://chosun.dcollection.net/common/orgView/200000256971
Appears in Collections:
General Graduate School > 4. Theses(Ph.D)
Authorize & License
  • AuthorizeOpen
  • Embargo2012-02-02
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.