CHOSUN

저바이패스 터보팬 엔진 시험장치용 고고도 초음속 이젝터 덕트의 압력 및 열 회복에 관한 연구

Metadata Downloads
Author(s)
조지
Issued Date
2010
Abstract
저바이패스 터보팬 엔진 시험장치용 고고도 초음속 이젝터 덕트의 압력 및 열 회복에 관한 연구



By Owino George Omollo

Advisor : Prof Changduk Kong Ph. D

Department of Aerospace Engineering

Graduate School of Chosun University



이 논문은 저바이패스 터보팬 엔진 시험장치용 고고도 초음속 이젝터 덕트의 압력 및 열 회복에 관한 연구입니다.

고고도 시험설비는 가상엔진 입구 환경을 위한 설비입니다.
시운전 시험 설비는 엔진 입구를 만든 환경이 실제고도 환경과 비슷해야 합니다.
위의 비슷한 조건을 만들기 위해서 시험 설비 설계와 계산 방법은 이 논문에 표현되어 있습니다.
시험 설비 구성은 첫 번째로 스털링 챔버가 맨앞에 있고 이 역할은 엔진 입구 공기압력과 온도를 조절하는 것입니다.
두 번째로 입구노즐은 스털링 챔버와 엔진 스탠드 사이에 있으며 엔진 입구에 연결되어 있습니다. 엔진 스탠드는 엔진 시험실에 설치되어 있고, 엔진은 엔진 스탠드 위에 장착되어 있습니다.
엔진 성능 감시 센서와 필요한 장치들을 엔진 스탠드 주변에 배치해야 합니다.
그리고 시험 챔버 내의 압력은 항상 약 1bar로 유지 되어야 합니다. 왜냐하면 엔진 백프레셔가 발생하지 않도록 하기 위해서입니다.

배기 이젝터는 엔진 테스트 스탠드 뒤에 설치되어 있습니다.
엔진 배기와 시험실에 있는 냉각 공기는 이젝터를 통해서 밖으로 배출됩니다. 원래 이젝터 계산 방식은 엔진배기량과 100% 냉각 공기로 계산 되어 집니다.

이 두가지는 이 논문에서 계산 결과가 180Kg/s로 나왔습니다.
이런 큰 공기량은 계산결과 180Kg/s로 배출해야 한다면 이젝터 지름이 1800mm 이상은 되야 합니다. 이 논문이 제시하는 이젝터의 모양, 크기는 1100mm로 하면 냉각 공기량이 20%만 이젝터로 통과합니다. 이렇게 구성하여 나온 연구 결과는 압력회복이 0.89에서 0.99사이로 나타났습니다.

이젝터 안에 있는 엔진에서 나온 뜨거운 배기가스 냉각방식은 Pin tube방식으로 합니다.

냉각수를 Methylene Chloride로 5단계 냉각장치로 구성한다면 안전하게 온도를 줄 일수 있습니다. 그리고 이 Pin tube방식을 쓰면 독한 액체가 발생되지 않습니다.

이 논문에 관련되어 있는 학회발표논문들과 출판물들은 밑에 XV 페이지에 수록되어 있습니
Alternative Title
Pressure and Heat Recovery in High Altitude Supersonic Ejector of a Low Bypass Turbofan Engine Test Facility
Alternative Author(s)
Owino George Omollo
Affiliation
조선대학교 일반대학원
Department
일반대학원 항공우주공학
Advisor
공창덕
Awarded Date
2011-02
Table Of Contents
Table of Contents
List of Figures VI
List of Tables X
Nomenclature XI
Abstract XIII

Chapter 1 Fundamental Classifications 1

1.0 Introduction 1
1.1 Wind Tunnel Theoretical Summary 1
1.2 Wind Tunnel Classifications 1
1.2.1 Closed Circuit Wind Tunnel 2
1.2.2 Advantages of closed circuit wind tunnel 2
1.2.3 Disadvantages of closed circuit wind tunnel 2
1.2.4 Open Circuit Wind Tunnel 2
1.2.5 Advantages open circuit wind tunnel 3
1.2.6 Disadvantages open circuit wind tunnel 3
1.3 Main Components of Wind Tunnel 3
1.3.1 Application Areas of Wind Tunnel and Test Chambers 3
1.3.2 Applications related to jet engine testing 4
1.4 Summary 5
List of papers publications related to this thesis 8

Chapter 2 Research and Development of Wind Tunnels 9

2.0 Literature review 9
2.1 Introduction 9
2.2 Wind tunnel diffuser 9
2.3 Ramjet diffuser 13
2.4 Ejectors 15
2.5 Summary 17

Chapter 3 Fundamental System Theories 19

3.0 Principles of gas turbine engines 19
3.1.1 Conservation Equations 19
3.1.2 Conservation of mass 20
3.1.3 Conservation of momentum 20
3.1.4 Conservation of energy 20
3.1.5 Zero heat addition with Ve>V0 21
3.1.6 Zero heat addition with Ve 3.1.7 Zero heat addition with P =constant >0 22
3.2 Propulsive efficiency 22
3.2.1 Heat addition, ΔQ>0 23
3.2.2 Constant heat addition, ΔQ=constant>0 24
3.3 Overall efficiency. 24
3.3.1 Fuel Consumption efficiency 25
3.4 The Force Field for Air breathing Engines 26
3.5 Summary 29

Chapter 4 Fluid Dynamics Principles of a Test Cell 30

4.0 Test facility operation principals 30
4.1 Quasi one dimensional flow equation 30
4.1.1 Equation of State 30
4.1.2 Speed of Sound 31
4.1.3 Mach Number 31
4.1.4 Conservation of Mass 32
4.1.5 Conservation of Energy 34
4.1.6 Conservation of Momentum 34
4.2 The Equations of Motion in Standard Form 35
4.3 Summary 38


Chapter 5 Nozzles 39

5.0 Intake nozzle 39
5.1 Inlet 39
5.1.1 Inlet Maximum Mass Flow 39
5.1.2 Internal Compression Inlet 41
5.1.3 External Compression Inlets 45
5.2 Summary 47

Chapter 6 Supersonic Diffuser 48

6.0 Diffusers 48
6.1 Elements of supersonic diffuser flow 48
6.2 Summary 53

Chapter 7 Pressure loss calculation in duct 54

7.0 Duct Flow and Pressure Loss Calculations 54
7.1.1 Laminar flow in a pipe 54
7.1.2 Turbulent flow in a pipe 54
7.1.3 Fanning Friction Factor for Laminar Flow 57
7.1.4 Flow measurements 57
7.1.5 Reynolds number calculation 59
7.1.6 Pressure increase experiments of the Ejector 59
7.1.7 Turbulence 61
7.1.8 Experimental setup 61
7.1.9 Pressure Calculation Procedure For High Speed Gas Flow 62
7.2.1 Mach Number 62
7.2.2 Total Pressure and Loss Coefficients. 62
7.3 Straight Constant Area Ducts 63
7.3.1 Area Change 63
7.3.2 Abrupt Area Increase 63
7.3.3 Diffusers 64
7.3.4 Convergent Duct (Nozzles) 65
7.4 Calculation Procedures 66
7.4.1 Mach Number Calculations 67
7.4.2 Straight Duct (intake) 67
7.4.3 Abrupt area increase (intake) 70
7.4.4 Abrupt area increase (exhaust) 71
7.5 Sample Calculation 74
7.6 Summary 76

Chapter 8 F404-402 Engine Design Point Simulation 77

8.0 Study Engine selection 77
8.1.1 Selected Engine Characteristics 78
8.1.2 Engine Design Point Analysis 78
8.1.3 Design Point iteration Data 79
8.1.4 Test Cell Schematic Layout 83
8.1.5 Direct Connection Mode (DC) 84
8.1.6 Free Jet Connection Mode (FJ) 84
8.1.7 Steady State Simulation Mode 84
8.1.8 Ground Test Simulation Mode (Altitude Testing) 85
8.1.9 Left Side of Mach Number 86
8.2 Right Side of Mach Number 87
8.2.1 Engine Steady State Simulation Results 103
8.3 Summary 104

Chapter 9 2D Design of Altitude Test Chamber 105

9.0 Test cell design and modelling 105
9.1.1 Bell Mouth Nozzle 106
9.1.2 Bell Mouth engine air mass flow 106
9.1.3 Test Section 107
9.1.4 Direct Connection 108
9.1.5 Measurement Schemes 108
9.1.6 Airflow metering method 109
9.1.7 Engine Stand 112
9.1.8 Full Schematics Altitude Testing Facility 113
9.2 Analysis and Results 116
9.3 Summary 120

Chapter 10 Heat Recovery 121

10.0 Heat Exchanger 121
10.1.1 Classification of Heat Exchangers 121
10.1.2 Introduction 121
10.1.3 Classification according to transfer processes 122
10.1.4 Indirect-Contact Heat Exchangers 123
10.1.5 Direct Transfer Type Exchangers 123
10.1.6 Heat Recovery 123
10.1.7 Material Thermal Conductivity 125
10.1.8 Convection from a fluid to wall and thickness of liquid (unknown) 126
10.1.9 Turbulent flow through a shell and tube heat exchanger 128

Chapter 11 Conclusion 132

References 133
Appendix 136
Acknowledgement 137
Copyright Document Last page
List of Figures
Fig. 1 Wind Tunnel Layout 2
Fig. 2 Main Parts of Wind Tunnel 3
Fig. 3 Test cell application areas 4
Fig. 4 Engine testing chambers 4
Fig. 5 Gas turbine engine 19
Fig. 6 Schematic of idealized flow machine a 19
Fig. 7 The specific thrust produced by a propeller 22
Fig. 8 The efficiency of a propeller 23
Fig. 9 The thrust of a turbojet engine as a function of flight speed 24
Fig. 10 Specific fuel consumption as a function of average velocity for turbojet 26
Fig. 11 Schematic diagram of the control volume for an air breathing engine 26
Fig. 12 Control volume for one-dimensional analysis of an air-breathing engine 27
Fig. 13 Schematic diagram of a simple inlet 40
Fig. 14 Maximum mass flow of air passed by the inlet 40
Fig. 15 Captured stream tube for maximum mass flow through an inlet 41
Fig. 16 Internal compression under maximum mass flow conditions 42
Fig. 17 Variation of captured stream tube area 45
Fig. 18 Variation of total pressure recovery as a function of flight Mach number 45
Fig. 19 Schematic diagram of an external compression 46
Fig. 20 Adiabatic Inlet compression process 46
Fig. 21 Shock pattern through supersonic diffuser 49
Fig. 22 Force balance (macroscopic momentum balance) on straight pipe 55
Fig. 23 Data correlation for friction factor (delta P) Versus Re(flow rate) in pipe 56
Fig. 24 Re<2100 Laminar 56
Fig. 25 2100 < Re <4000 Transitional 56
Fig. 26 4000Fig. 27 Wind Velocity Measurement 57
Fig. 28 Difference in Static and Total Pressure 58
Fig. 29 Mixed ejector schematic arrangement 60
Fig. 30 Ejector System Schematics 61
Fig. 31 Abrupt Area Change 63
Fig. 32 Diffuser Angle 64
Fig. 33 Calculation Procedure 66
Fig. 34 Pressure ratio calculation 66
Fig. 35 Reynolds Calculation 66
Fig. 36 Straight intake duct 67
Fig. 37 Straight Duct (Intake) 68
Fig. 38 Straight Duct (Exhaust) 68
Fig. 39 Duct inlet with bellmouth entrance 69
Fig. 40 Duct inlet length with sharp edged with or without screen 69
Fig. 41 Sharp edged entrance with or without screen at entrance 69
Fig. 42 Entrance with or without screen at entrance 70
Fig. 43 Abrupt intake area increase 70
Fig. 44 Abrupt intake area increase 71
Fig. 45 Abrupt exhaust area increase 71
Fig. 46 Abrupt intake area decrease 72
Fig. 47 Abrupt exhaust area decrease 72
Fig. 48 Exhaust Increase 73
Fig. 49 Intake diffuser configuration 73
Fig. 50 Intake diffuser calculation 74
Fig. 51 Exhaust diffuser calculation 74
Fig. 52 Propeller exhaust diffuser example 74
Fig. 53 Intake pressure loss 75
Fig. 54 F Series Engine Classification Courtesy of GE Aviation 77
Fig. 55 Multi Spool mixed flow turbofan engine with Afterburner 78
Fig. 56 Station Numbering and Bleed Points 79
Fig. 57 Design Point Simulation Results @ Sea Level Static Condition 80
Fig. 58 Low Pressure Compressor 81
Fig. 59 High Pressure Compressor 81
Fig. 60 High Pressure Turbine 82
Fig. 61 Low Pressure Turbine 82
Fig. 62 Test Cell layout 83
Fig. 63 Enthalpy/entropy 84
Fig. 64 Flight test Mode 85
Fig. 65 Ground test Mode 85
Fig. 66 Reheat on(afterburner) 88
Fig. 67 DC 1 a/b on low 89
Fig. 68 DC 2 a/b on low 89
Fig. 69 DC 3 a/b on low 90
Fig. 70 DC 5 a/b on low 90
Fig. 71 DC 7 a/b on low 91
Fig. 72 DC 9 a/b on low 91
Fig. 73 FJ a/b on low 92
Fig. 74 No Reheat (Afterburner off) 92
Fig. 75 DC 1 a/b off low 93
Fig. 76 AB off high working @ temp 449K 93
Fig. 77 DC 2 a/b off low 94
Fig. 78 DC 2 a/b off high@449K 94
Fig. 79 DC 3 a/b off low 95
Fig. 80 DC 3 a/b off High @440K 95
Fig. 81 DC 4 a/b off High @440K 96
Fig. 82 DC 5 a/b off low 96
Fig. 83 DC 5 a/b off high@440K 97
Fig. 84 DC 6 a/b off high@440K 97
Fig. 85 DC 7 a/b off high@440K 98
Fig. 86 DC 7 a/b off low 98
Fig. 87 DC 8 a/b on low 99
Fig. 88 DC 8 a/b off high 99
Fig. 89 DC 9 a/b on high 100
Fig. 90 DC 9 a/b off high 100
Fig. 91 DC 10 a/b on high 101
Fig. 92 DC 10 a/b off high 101
Fig. 93 FJ a/b off low 102
Fig. 94 Sterling Chamber 105
Fig. 95 Bell Mouth Nozzle 106
Fig. 96 Test Section Configuration 108
Fig. 97 Flow metering devices 109
Fig. 98 Traditional Ejector model 110
Fig. 99 Proposed Model 110
Fig. 100 Effect of mixed flow on shock wave 111
Fig. 101 Engine Stand 112
Fig. 102 Exhaust Ejector and Heat Exchanger 112
Fig. 103 2D Autocad Modeling of The Test Facility 113
Fig. 104 3D Solid works modeling 113
Fig. 105 Ejector and heat exchanger 3D model 114
Fig. 106 Intake nozzle mounted for Direct test 114
Fig. 107 Supersonic ejector 115
Fig. 108 Heat exchanger model 115
Fig. 109 Intake nozzle 116
Fig. 110 Supersonic Ejector 116
Fig. 111 Pressure and velocity along the ejector 117
Fig. 112 Ejector flow regime 117
Fig. 113 Ejector end face flow 117
Fig. 114 Pressure recovery comparisons of the two ejectors 119
Fig. 115 Pin Tube heat exchanger schematics 121
Fig. 116 Heat Transfer by conduction 124
Fig. 117 Conduction through pipe 124
Fig. 118 Specific heat property of Methylene Chloride 125
Fig. 119 Heat exchanger tube 126
Fig. 120 Boundary Condition of Heat exchanger 127
Fig. 121 Heat Transfer between two fluids 127
Fig. 122 Heat transfer through conduction 128
Fig. 123 Streamline Velocity field over Heat exchange tubes 129
Fig. 124 Velocity Contour through Heat Exchanger 129
Fig. 125 Heat Exchanger Analysis 130
Fig. 126 Heat exchanger simulation results 131
List of Tables
Table. 1 Heating values for typical liquid fuels 26
Table. 2 Coefficients for Quasi-One Dimensional Flow for Variable Molecular Weight and Isentropic Exponent 36
Table. 3 Coefficients for Quasi-One Dimensional Flow for Constant Molecular
Weight and Isentropic Exponent 37
Table. 4 Contraction ratios for internal compression inlets 44
Table. 5 Input parameters 67
Table. 6 Calculation of Total Pressure drop at different flow velocities 75
Table. 7 Selected Engine Characteristics 78
Table. 8 Engine performance data 79
Table. 9 Simulation testing range 86
Table. 10 Ejector CFD Simulation Results 87
Table. 11 Simulation results 103
Table. 12 Prevailing ambient conditions 107
Table. 13 Calculated pressure loss 118
Table. 14 Calculated pressure recovery data 118
Table. 15 Material properties thermal conductivity 125
Table. 16 CFD Temperature heat exchanger simulation 130
Degree
Doctor
Publisher
조선대학교
Citation
조지. (2010). 저바이패스 터보팬 엔진 시험장치용 고고도 초음속 이젝터 덕트의 압력 및 열 회복에 관한 연구.
Type
Dissertation
URI
https://oak.chosun.ac.kr/handle/2020.oak/9000
http://chosun.dcollection.net/common/orgView/200000241305
Appears in Collections:
General Graduate School > 4. Theses(Ph.D)
Authorize & License
  • AuthorizeOpen
  • Embargo2011-03-03
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.