CHOSUN

단백질체 분석을 통한 metabolic pathway 변화에 대한 연구

Metadata Downloads
Author(s)
김려화
Issued Date
2008
Abstract
본 연구는 주로 단백질체 분석을 통하여 균 주로부터 필요한 산물을 생산해 내는데 직간접적으로 작용하는 효소들을 찾아냄으로써 균 주의 대사경로의 변화를 알아보는 데 초점을 맞추었다. 이는 한층 생산적이고 유익한 균 주를 개발하는 중요한 기초 자료로 활용할 수 있으며 효소화 반응을 통하여 화학물질을 합성하는 등 여러 분야에 대량의 자료를 제공할 수 있는 연구라고 볼 수 있다.
본 연구에서는 주로 세가지 단백질체 분석 결과를 보여주고 있다.
첫째, 우수한 특성을 가진 생체성 고분자인 커들란을 생산하는 균 주인 Agrobacterium sp. 의 균 주 성장 단계와 커들란 생산 단계의 단백질체의 분석을 통하여 커들란 합성에 관여하는 주요 효소들을 찾아내고 그 합성 대사 경로의 변화를 알아보았다. pH 7.0 인 균 주 성장 단계와 비교할 때 pH 5.0 인 커들란 생산 단계에서는 커들란 합성 관여 효소와 뉴클레오타이드, 바이오 합성에 관여하는 효소들이 상당한 변화를 보였다. 이러한 결과는 균 주가 환경이 바뀜에 따라 커들란 합성에 필요한 UTP, UDP-glucose 등을 축적하고 리포다당류, 펩티도글리칸 등 합성 경로를 저해하는 방향으로 효소들을 합성 하고 대사물질들을 축적하고 있음을 제시하고 있다.
둘째, 우라실을 발효과정에 첨가하였을 때 Agrobacterium sp. 균주는 더 높은 커들란 생산성을 보인다. 따라서 우라실을 넣기 전, 후의 단백질체 분석을 진행하여 우라실이 커들란 합성에 관여하는 효소들은 활성화 시키고 부가 반응으로 가는 효소들을 차단시키는 작용을 하여 커들란 생산량이 증가하고 있음을 증명하였다.
셋째, 차세대 석유 대체물로 인기가 좋은 1,3-propanediol(PDO)을 생산하는 대장균 재조합 균 주의 단백질체 분석을 진행하였다. 1,3-propanediol 생산단계와 균주 성장 단계를 비교하여 보았을 때 PDO 생산 단계에서 PDO의 전구체인 glycerol 합성에 관여하는 주요 단백질들의 발현이 증가하는 것을 확인하였다. 또한 PDO의 전구체인 글리세롤은 기질중의 글루코즈의 농도가 5 g/ℓ 보다 크면 대량으로 생성되면서 PDO의 생성을 억제하나 글루코즈의 농도를 1 g/ℓ 이하로 유지하는 경우 글루코즈는 100 % PDO로 전환되었다. 여기서 우리는 기질중의 글루코즈의 농도를 조절하여 발효를 진행하면 60 h 발효로 최대로 43 g/ℓ의 1,3-propanediol까지 얻을 수 있었다.|This paper reports the results of three different proteomic experiments.
In the first series of experiments, comparative proteome analyses of a control (pH 7.0) and low pH culture (pH 5.5) of Agrobacterium sp. revealed curdlan overproduction to be accompanied by significant changes in the level of synthesis of the key metabolic enzymes involved in the curdlan biosynthesis and nucleotide biosynthesis pathways. These results suggest that the altered metabolic conversion leading to the accumulation of UTP and UDP-glucose as well as the inhibition of the lipopolysaccharide and peptidoglycan biosynthesis pathways and key precursors play important roles in producing large amounts of curdlan.
In the second series of results, the intracellular level of enzymes and metabolites were measured at the cell growth phase with or without adding uracil as a UDP-glucose precursor, and used to explain the increase in the rate of 1,3-β-glucan synthase production during Agrobacterium sp. fermentation. From proteomic analysis, after uracil addition, all key metabolic enzymes used for the synthesis of 1,3-β-glucan were activated significantly with the exception of UTP-glucose-1-phosphate uridylytransferase. Moreover, enzymes, such as glucose-1-phosphate adenylyltransferase and glucose-6-phosphate isomerase, which were catalyzed as a side reaction of 1,3-β-glucan synthase, were repressed.
In the third series of experiments, there were changes in the proteomic profiles of 1,3-PDO producing recombinant E. coli using 2-D gel electrophoresis. Seven out of 11 enzymes in the 1,3-PDO production metabolism were identified, and their changes in expression from cell growth to 1,3-PDO production were examined. The major enzymes that enhanced the level of 1,3-PDO production, except for alcohol dehydrogenase, were over expressed.
Glycerol, an intermediate compound of 1,3-PDO production, was produced rapidly when the glucose concentration was > 5 g/ℓand inhibited 1,3-PDO production. As a result, the amount of 1,3-PDO accumulation increased to 35 g/ℓ. The level of 1,3-PDO production increased when the glucose concentration was < 1 g/ℓ, which prevented the overproduction of glycerol. 43 g/ℓ of 1,3-PDO was produced after 60 hrs of fed-batch fermentation.
Alternative Title
A study on the metabolic pathway change by the proteomic analysis
Alternative Author(s)
Jin, Li Hua
Affiliation
일반대학원 화학공학과
Department
일반대학원 화학공학과
Advisor
이중헌
Awarded Date
2009-02
Table Of Contents
ABSTRACT ix
국문 요약 xii
Chapter 1 1
Introduction 1
Chapter 2 6
Proteomic analysis of curdlan-producing Agrobacterium sp. in response to pH downshift 6
2.1. Introduction 6
2.2. Materials and Methods 10
2.2.1. Bacterial strain and culture conditions 10
2.2.2. Cell mass, curdlan, and beta-1,3-glucan synthase assay 11
2.2.3. UTP, and UDP-glucose assay 12
2.2.4. Sample preparation for two-dimensional electrophoresis 13
2.2.5. Two-dimensional gel electrophoresis 14
2.2.6. MALDI-TOF mass spectrometric analysis and database search 16
2.3. Results and discussion 18
2.3.1. Proteomic response of Agrobacterium sp. ATCC 31750 batch culture to pH downshift 18
2.3.2. Estimation of curdlan overproduction metabolism after pH downshift 25
2.3.3. Lipopolysaccharide, peptidoglycan, and isoprenoid biosynthesis 36
2.3.4. Amino acid biosynthesis 37
2.3.5. Stress-induced proteins 38
2.4. Conclusion 40
Chapter 3 41
Effect of Uracil Addition on Proteomic Profiles and 1,3-beta-Glucan Production in Agrobacterium sp. 41
3.1. Introduction 41
3.2. Materials and Methods 43
3.2.1. Strain and culture conditions 43
3.2.2. Analytical methods 43
3.2.3. Sample preparation 44
3.2.4. 2D SDS-PAGE analysis 44
3.2.5. Detection of key metabolites 45
3.3. Results and discussion 46
3.3.1. Effect of uracil addition at 90h 46
3.3.2. Analysis enzymes expression levels with 2-dimensional electrophoresis 48
3.3.3. Effect of uracil addition on metabolite concentration 55
3.3.4. Change of 1,3-β-glucan synthase activity 55
3.3.5. Change of enzymes expression level 56
3.4. Conclusion 62
Chapter 4 63
The Change in the Proteomic Profiles of Genetically Modified 1,3-Propanediol Producing Recombinant E. coli 63
4.1. Introduction 63
4.2. Materials and methods 66
4.2.1. Recombinant strain 66
4.2.2. Protein Preparation 67
4.2.3. 2D Gel Electrophoresis 68
4.2.4. Data Processing and Analysis 69
4.2.5. Analytical Procedure 71
4.2.6. High Performance Liquid Chromatography Analysis 71
4.3. Result and discussions 72
4.3.1. Effect of controlled glucose level on glycerol, 1,3-PDO, and acetic acid 72
4.3.2. Analysis of 1,3-PDO synthesis metabolic pathway 76
4.4. Conclusion 82
Chapter 5 84
Conclusion 84
Chapter 6 84
The other studies during the course work: 87
6.1 Introduction 87
6.2 Materials and Methods 90
6.2.1 Materials 90
6.2.2 Methods 90
6.2.2.1. Preparation and characterization of the supporting magnetized nanomaterials 90
6.2.2.2. Enzyme immobilization process 92
6.2.2.3. Scanning electron microscopy (SEM) 93
6.2.2.4. Activity measurement 93
6.2.2.5. Application of the immobilized enzymes 95
6.3 Results and Discussion 96
6.3.1 SEM images of PANI and PAMP 96
6.3.2 Properties of nanomaterials 98
6.3.2.1. BET and BJH of the PANI and PAMP 98
6.3.2.2. Long term stability and characterization 102
6.3.3 Application of the immobilized enzymes. 106
6.3.3.1 Pectin gellation with immobilized laccase 106
6.3.3.2. Immobilized lactase hydrolyze the lactose and can recycle. 106
6.3.3.3. Immobilized lysing enzyme produce the glucose from carbohydrates. 107
References 114
Degree
Doctor
Publisher
조선대학교
Citation
김려화. (2008). 단백질체 분석을 통한 metabolic pathway 변화에 대한 연구.
Type
Dissertation
URI
https://oak.chosun.ac.kr/handle/2020.oak/7483
http://chosun.dcollection.net/common/orgView/200000237523
Appears in Collections:
General Graduate School > 4. Theses(Ph.D)
Authorize & License
  • AuthorizeOpen
  • Embargo2009-02-04
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.