CHOSUN

熱分解가스化 鎔融施設의 有害物質 排出特性에 關한 硏究

Metadata Downloads
Author(s)
신찬기
Issued Date
2007
Abstract
The incineration process has commonly used for wastes amount reduction and thermal treatments of pollutants as the technologies accumulated. However, the process is getting negative public images owing to matter of hazardous pollutants emission. Specially dioxins became a main issue and is mostly emitted from municipal solid wastes incineration. In this reason, pyrolysis gasification melting furnace is presented as a alternative of incineration process.
In this study, I selected three types(S,T,P) of pyrolysis-gasification-melting facilities with pilot scale, investigated emission behaviors of dioxin and hazardous materials having similar toxicity of dioxin, investigated an environmental review for melting slags from by-product of the facilities, and could obtain the following results.

1. In the case of S-type(stoker type pyrolysis-gasification-melting), domestic wastes with 39.81% of moisture content, 47.15% of combustible content , and 3.03% of ash content are used, and dioxin concentration at outlet of waste heat boiler(184℃) under low temperature zone is higher than that at outlet(878℃) of pyrolysis-gasification furnace or at outlet(650℃) of melting furnace of under high temperature zone. However, it was examined that dioxin concentration at the stack is 0.155 ng TEQ/Sm3 and lies below the emission standard(10 ng TEQ/Sm3) of dioxin concentration for small size incinerator. Also, average removal efficiency of dioxin is 93.23% in semi-dry-reactor/bag-filter(SDR) as a prevention facility. It is found that concentration of co-planar-PCB at outlet of pyrolysis-gasification chamber of S-type facility is 0.126 ng-WHO TEQ/Sm3 and ratios of gas-phase and particle-phase are 12.8% and 87.2%, respectively. It occurs that concentration of total co-planar-PCB at outlet of waste heat boiler is 0.101 ng-WHO TEQ/Sm3 and this concentration at outlet of waste heat boiler is about 20% less than that at outlet of pyrolysis-gasification chamber.

2. In the case of T-type(compression-pusher type pyrolysis-gasification-melting), domestic wastes with 52.82% of moisture content, 41.21% of combustible content, and 5.97% of ash content are used, and dioxin concentration at outlet(39℃) of water-jet-type cooling system under low temperature zone is higher than that at outlet(1,026℃) of gasification-melting burner under high temperature zone. Also, it is found that removal efficiency of gasification treatment facility as dioxin prevention facility are 0.217 ng-TEQ/Sm3 of dioxin at back-end of gasification-melting chamber and 0.046 ng-TEQ/Sm3 of dioxin at outlet of water-jet-type cooling facility. It occurs that dioxin concentration in gasification treatment facility is about 4.7 times less than that at outlet of gasification-melting chamber and this type facility satisfies the emission standard(10 ng TEQ/Sm3) of dioxin concentration for small size incinerator. It is found that concentrations of co-planar-PCB are 0.070 ng-WHO TEQ/Sm3 at outlet of gasification-melting chamber and 0.009 ng-WHO TEQ/Sm3 at the final outlet and removal efficiency of co-planar-PCB in gasification treatment facility is about 87%.

3. In the case of P-type(plasma pyrolysis-gasification-melting), contents of target wastes containing much vinyl are 8.83% of moisture, 83.62% of combustible, and 7.55% of ash, respectively. It occurs that dioxin concentration at outlet(250℃) of semi-dry-reactor/bag-filter(SDR) under low temperature condition is higher than that at outlet(893℃) of pyrolysis-gasification furnace. It occurs that dioxin concentrations of each process are 3.107 ng-TEQ/Sm3 at outlet of pyrolysis-gasification burner and 0.439 ng-TEQ/Sm3 at the final outlet and that average removal efficiency of dioxin in semi-dry-reactor/bag-filter is about 85.87%. However, it is found that the concentration at the final outlet satisfies the emission standard(10 ng TEQ/Sm3) of dioxin concentration for small size incinerator. It would be concluded that combination of bag-filters having excellent removal efficiency for micro-size particles might have advantage as dioxin prevention facility because ratio of particulate-phase dioxin is higher than that of gas-phase in flue gas of all of three type facilities.

4. While passing heat exchanger, waste heat cooling system, and semi-dry-reactor/bag-filter in P-type facility, concentration of particulate-phase chlorobenzenes decreases and that of gas-phase chlorobenzenes increases. Also, among six kinds of chlorobenzene isomers, concentrations of mono-chlorobenzene and hexa-chlorobenzene decrease, and concentrations of di-chlorobenzene, tri-chlorobenzene, tetra-chlorobenzene, and penta-chlorobenzene increase. While passing heat exchanger, cooling system,and semi-dry-reactor/bag-filter, concentration of particle-phase chlorophenols decreases and that of gas-phase chlorophenols increases. Also, among five kinds of chlorophenol isomers, concentrations of mono-chlorophenol and tetra-chlorophenol decrease, and concentrations of di-chlorophenol, tri-chlorophenol, penta-chlorophenol increase.

5. Observation result of scanning electron microscope about surface of melting slag from three pyrolysis-gasification-melting processes represents that melting slag cooling with water has smooth surface, on the other hand melting slag cooling with air has rough surface and small-sized bubbles. It is concluded that crystalline structure of slag is influenced by composition of domestic waste melted, melting condition, cooling condition of slag, and so on. In melting slag of three facilities, amount of dioxin existence is 2.92 pg-TEQ/g of S-type, 0.87 pg-TEQ/g of T-type, and 0.21 pg-TEQ/g of P-type, and lies below the Japanese emission standard(3 ng TEQ/Sm3) of dioxin concentration for burning materials. Also, it is investigated that almost no heavy metal flows out from slag of three facilities(S,T,P) and slag becomes stable passing through pyrolysis-gasification-melting processes.

6. Through a case study on domestic and foreign researches and a result of this study on pyrolysis-gasification-melting processes and emission behavior of hazardous materials, exhibition operation and political support for research and development would be required because of advantages of pyrolysis-gasification-melting technology that reduces toxic hazardous materials of dioxin, chlorobenzene, chlorophenol etc. as against existing incinerating facility and makes very stable and harmless melting slag
Alternative Author(s)
Shin Chan - Ki
Affiliation
환경생명공학과
Department
일반대학원 환경생명공학과
Awarded Date
2008-02
Table Of Contents
List of Figures ⅳ
List of Tables ⅶ
ABSTRACT ⅸ

제1장 서 론 1
제1절 연구배경 1
제2절 연구목적 2

제2장 이론적 배경 4
제1절 열분해가스화 용융기술 4
1. 열분해 기술 4
2. 가스화 기술 11
가. 폐기물의 열분해반응 11
나. 폐기물의 열분해특성 16
3. 용융기술 16
4. 열분해가스화 용융기술 19
가. 원리 및 특성 19
가. 소각 후 바닥재용융과 열분해가스화용융방식의 경제성 20
제2절 열분해가스화 용융기술의 연구동향 22
1. 국내 22
2. 국외 24
3. 스토커방식 소각기술과 열분해가스화 용융기술의 연구동향 25

제3절 형식 및 구조 28
1 일체식 열분해 용융 고온연소로 28
2 압축가열식 열분해가스화 용융로 29
3 화격자식 열분해 고온 용융로 30
4 유동상식 열분해가스화 용융로 31
제4절 다이옥신 및 다이옥신 전구물질 32
1. 다이옥신 32
2. 다이옥신의 발생 37
가. 연소공정의 다이옥신 생성메커니즘 37
나. 소각과정의 다이옥신발생 39
(1) 불완전연소 시 먼지형태배출 39
(2) 연소과정의 생성 39
(3) 폐기물의 다이옥신함량과 배출가스의 다이옥신농도 41
3. 다이옥신 전구물질 41
4. 코프라나-PCB 42
가. 다이옥신과 코프라나-PCB 42
나. 환경중의 코프라나-PCB실태 46
(1) 환경대기중의 코프라나-PCB 46
(2) 공공수역의 코프라나-PCB 47
(3) 배출가스 및 소각잔사중의 코프라나-PCB 48
5. 다이옥신 기준 및 독성등가환산 49
가. 소각시설의 다이옥신 배출기준 49
(1) 우리나라 49
(2) 일본 50
(3) 미국 50
나. 배출가스의 다이옥신 측정 51
다. 다이옥신 독성등가환산농도 52
6. 외국의 다이옥신방지시설 52
가. 일본 53
나. 일본 54
다. 일본 54
제5절 열분해가스화 용융로의 부산물 56
1 바닥재 재활용제품의 환경유해성 56
2. 외국의 소각부산물 재활용 기준 및 시험방법 59

제3장 실험장치 및 분석방법 61
제1절 실험장치 61
1. S형 용융시설(스토커방식 열분해가스화 용융로) 61
2. T형 용융시설(압축투입방식 열분해가스화 용융로) 63
3. P형 용융시설(플라스마방식 열분해가스화 용융로) 64
제2절 시료채취 및 전처리 67
1. 현장측정 67
2. 시료채취 67
3. 다이옥신 전처리 67
4. 클로로벤젠류 및 클로로페놀류 전처리 70
가. 클로로벤젠류 70
나. 클로로페놀류 71
제3절 시료의 분석방법 72
1. 다이옥신 분석 72
2. 클로로벤젠 및 클로로페놀 분석 73
3. 용융슬래그의 특성분석 73
가. 표면특성 및 화학적 조성 73
나. 결정질 구조 74
다 중금속 용출율 74

제4장 결과 및 고찰 75
제1절 시료 폐기물의 성상 75
제2절 열분해가스화 용융시설의 유해가스 배출특성 76
1. S형 용융시설(스토커방식 열분해가스화 용융로) 76
가. 다이옥신 76
나. 코프라나-PCB 79
2. T형 용융시설(압축투입방식 열분해가스화 용융로) 80
가. 다이옥신 80
나. 코프라나-PCB 82
3. P형 용융시설(플라스마방식 열분해가스화 용융로) 84
가. 다이옥신 84
나. 코프라나-PCB 86
다. 클로로벤젠 90
라. 클로로페놀 92
제3절 열분해가스화 용융시설 부산물의 재활용성 94
1. 슬래그의 표면특성 및 화학조성 94
2. 슬래그의 결정질 특성 97
3. 슬래그의 중금속 용출율 및 유기염화물 함량 99
가. 슬래그의 중금속 함량 및 용출율 99
나. 용융슬래그의 다이옥신 함량 99
다. 용융슬래그의 클로로벤젠 함량 103
4. 용융슬래그의 재활용성 104

제5장 결 론 106
References 109
Appendixes 121
Degree
Doctor
Publisher
조선대학교
Citation
신찬기. (2007). 熱分解가스化 鎔融施設의 有害物質 排出特性에 關한 硏究.
Type
Dissertation
URI
https://oak.chosun.ac.kr/handle/2020.oak/7130
http://chosun.dcollection.net/common/orgView/200000236177
Appears in Collections:
General Graduate School > 4. Theses(Ph.D)
Authorize & License
  • AuthorizeOpen
  • Embargo2008-02-19
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.