CHOSUN

미세조직 결정립 크기 측정에 대한 기계학습

Metadata Downloads
Author(s)
정준호
Issued Date
2024
Abstract
Machine learning for grain size measurement from microstructure images Jun ho Jung Advisor: Prof. Heesoo Kim, Ph. D. Dept. of Advanced Materials Engineering Graduate School of Chosun University Observing microstructure is the most basic way to determine the properties of materials.The mechanical and electrical properties of metallic materials vary depending on their microstructure. The microstructure of a material is not only deeply related to physical properties and mechanical behavior, but can also help optimize the manufacturing process or prevent damage to material, so observing the microstructure of material can be said to be a fundamental step in materials engineering. The method of observing microstructure generally involves grinding a target specimen, etching it with a solution, and observing it with an optical microscope. This work requires a lot of time and effort, and there is a possibility that subjective judgment may be involved. However, the average grain size can be accurately obtained by dividing the entire microstructure image by the number of grains. Unlike the mechanical properties or composition of the material, the grain size of the microstructure is information that can be obtained directly from the image, so it is suitable for using convolutional neural networks. A convolutional neural network is an artificial neural network that performs an image operation called convolution. It is also used in materials engineering. Studies were conducted with the expectation that it would be possible to measure the grain size of the microstructure. The goal of this study was to evaluate the performance of convolutional neural networks applied to materials engineering and to understand how convolutional neural networks recognize the characteristics of microstructure.
Alternative Title
Machine learning for grain size measurement from microstructure images
Alternative Author(s)
Junho Jung
Affiliation
조선대학교 일반대학원
Department
일반대학원 신소재공학과
Advisor
김희수
Awarded Date
2024-02
Table Of Contents
LIST OF TABLES ⅳ
LIST OF FIGURES ⅳ
ABSTRACT ⅶ
제 1 장 서 론 1
제 2 장 이론적 배경 3
제 1 절 미세조직 3
1. 미세조직의 결정립 3
2. 미세조직의 측정 5
제 2 절 인공 지능 7
제 3 절 기계학습 8
1. 지도학습 8
2. 비지도학습 8
3. 강화학습 9
제 4 절 퍼셉트론 10
제 5 절 인공신경망 12
1. 활성화 함수 13
제 6 절 합성곱 신경망 14
1. 합성곱 레이어 · 15
2. 풀링 레이어 15
3. 완전연결 레이어 17
4. 손실 함수와 옵티마이저 17
5. 합성곱 신경망 예시 18
6. 재료공학에 기계학습을 적용한 사례 22
제 3 장 실험방법 24
제 1 절 미세조직 이미지데이터 준비 24
1. 훈련용, 테스트용 데이터 구축 24
2. 테스트용 전용 데이터 구축· 25
제 2 절 최적 합성곱 신경망 모델 구축· 26
제 4 장 결과 및 고찰 30
제 1 절 합성곱 신경망 성능 30
제 2 절 합성곱 신경망의 추가 테스트 32
제 3 절 중간층 이미지 분석 35
제 5 장 결 론 47
참 고 문 헌 48
Degree
Master
Publisher
조선대학교 대학원
Citation
정준호. (2024). 미세조직 결정립 크기 측정에 대한 기계학습.
Type
Dissertation
URI
https://oak.chosun.ac.kr/handle/2020.oak/18656
http://chosun.dcollection.net/common/orgView/200000719863
Appears in Collections:
General Graduate School > 3. Theses(Master)
Authorize & License
  • AuthorizeOpen
  • Embargo2024-02-23
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.