머신러닝을 이용한 Al/Cu 레이저 용접부의 강도예측 모델링
- Author(s)
- 권순일
- Issued Date
- 2023
- Keyword
- Laser welding, Al-Cu welding, Wobbling mode
- Abstract
- In these days, the importance of EV battery stability has increased due to strict environmental regulations. Al and Cu, which have high reflectivity and low absorption during welding, are applied to the battery cell of an electric vehicle. In addition, it is difficult to obtain a high-quality joint due to the intermetallic compounds (IMCs) generated in the Al/Cu welding joint. It is necessary to derive a process variable road map through strength prediction modeling using machine learning.
In this study, machine learning models and shallow neural network models were developed by using 135 experimental welding data which were constructed for fiber laser with a maximum output of 2.5 kW for Al1050H and Cu1020-HO materials with a thickness of 0.5 mm. The machine learning model Gaussian process regression (GPR) could be accurately predicted tensile-share load and penetration depth with the decision factor R2 of 0.97, 0.95, respectively. The shallow neural network model improved the accuracy to R2 of 0.99, 0.98. It was confirmed that accurate prediction was possible as a result of comparison and evaluation with decision factor of optimized machine learning and shallow neural network model.
- Alternative Title
- Strength Prediction Modeling of Al/Cu Laser Welded Joints Using Machine Learning
- Alternative Author(s)
- Kwon Soon ll
- Affiliation
- 조선대학교 일반대학원
- Department
- 일반대학원 용접·접학과학공학과
- Advisor
- 방희선
- Awarded Date
- 2023-02
- Table Of Contents
- List of Figures Ⅲ
List of Tables Ⅴ
Abstract Ⅵ
1장. 서론 1
1.1 연구 배경 및 목적 1
1.2 국내외 기술 동향 3
1.3 연구내용 6
2장. 이론적 배경 8
2.1 레이저 용접공정 8
2.1.1 레이저 용접의 원리 8
2.1.2 파이버 레이저 용접공정 특성 11
2.2 레이저 빔 우블링 기법 13
2.2.1. 우블링 원리 13
2.2.2. 우블링 특징 14
3장. 연구 방법 16
3.1 실험재료 및 실험장비 16
3.1.1. 실험재료 및 용접법 16
3.1.2. 실험장비 및 조건 18
3.2 용접비드 특성평가 22
3.3 기계적·금속학적 특성평가 23
3.3.1. 인장-전단강도 23
3.3.2. SEM-EDS 분석 23
3.4 인공지능 24
3.4.1. 머신러닝 24
3.4.2. 인공신경망 25
4장. 연구결과 및 고찰 26
4.1 용접 비드 외관 및 단면 특성 26
4.2 기계적·금속학적 특성 31
4.2.1 인장-전단강도 31
4.2.2 금속간화합물 35
4.3 회귀분석을 이용한 용접강도 예측 모델링 40
4.4 인공신경망을 이용한 용접강도 예측 모델링 42
5장. 결론 46
참고문헌 48
- Degree
- Master
- Publisher
- 조선대학교 대학원
- Citation
- 권순일. (2023). 머신러닝을 이용한 Al/Cu 레이저 용접부의 강도예측 모델링.
- Type
- Dissertation
- URI
- https://oak.chosun.ac.kr/handle/2020.oak/18580
http://chosun.dcollection.net/common/orgView/200000651619
-
Appears in Collections:
- General Graduate School > 3. Theses(Master)
- Authorize & License
-
- AuthorizeOpen
- Embargo2023-02-24
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.