CHOSUN

XAI 기반 생성 모델 데이터 분석 및 평가

Metadata Downloads
Author(s)
이하늘
Issued Date
2024
Abstract
When performing guided pilot simulations or flight test simulations required for var- ious purposes, the quality of dynamic and synthetic sensor images generated from the sensor models in the given simulation environment is highly important for target recog- nition, tracking, and behavior for various reconnaissance missions. So this thesis uses artificial intelligence to generate realistic infra-red (IR) images used in flight simulations, and analyzes and evaluates the data through explainable artificial intelligence (XAI). We construct an IR dataset and a synthetic dataset to generate realistic IR images. Among the Generative Adversarial Network (GAN) models, CycleGAN, which is trained under unpaired dataset, is trained using the constructed dataset. CycleGAN produces high-quality images even though it does not have a correct answer label. However, it is not well-trained on the IR dataset. Therefore, we improved the model’s performance based on the structural similarity index measure (SSIM). At this time, we compared the weights of each loss function to find an appropriate value, and analyzed how window sizes of SSIM would affect the synthetic IR image constructed by CycleGAN is analyzed. Although techniques such as IS and FID have been introduced to evaluate the per- formance of GAN, it is still difficult to distinguish between synthetic data. Additionally, distinguishing synthetic data generated by artificial intelligence is a big topic because the level of data generation using GAN is improving. Therefore, we introduce XAI for synthetic IR image analysis. Out of various XAI techniques, LRP was used, which detects the model in reverse order through decomposition and relevance propagation, providing a basis for judgment on prediction. Thus, we build a classification network for IR images and synthetic IR images and then perform LRP analysis. When analyz- ing LRP, we simulate various transformations of LRP and analyze how LRP draws a heatmap when some transformation is applied to the data, allowing us to distinguish between IR images and synthetic IR images.
Alternative Title
Data Analysis and Evaluation of Generative Models Based on XAI
Alternative Author(s)
Haneul Lee
Affiliation
조선대학교 일반대학원
Department
일반대학원 항공우주공학과
Advisor
이현재
Awarded Date
2024-02
Table Of Contents
I. 서론 1
II. 설명 가능한 인공지능 4
1.설명 가능한 인공지능 4
2.모델 시각화 설명 기법 5
III.데이터셋 구축 8
1.학습 데이터셋 구성 8
1) 적외선 영상 데이터셋 8
2) 합성 영상 데이터셋 9
2.생성 모델 학습 11
1) CycleGAN 12
(1)생성자 및 판별자 구조 13
(2)손실 함수 15
2) 손실 함수 재구성 16
(1)구조적 유사도 지수 측정 16
(2)재구성된 손실 함수 18
3.시뮬레이션 결과 20
1) cyc-MSSIM 가중치 비교 20
2) MSSIM 윈도우 가중치 비교 22
IV.데이터 평가 및 분석 기법 24
1.LRP 기반 분석 26
1) 픽셀 단위 분해 26
2) 관련성 전파 27
2.설명 향상을 위한 개선된 LRP 29
1) 관련성 필터 29
2) 관련성 점수 및 이미지 정규화 29
3.네트워크 구성 30
V. 생성 모델 데이터 분석 34
1.시뮬레이션 결과 34
1) 패턴-전환 데이터셋 34
2) ImageNet 데이터셋 35
3) 합성-실제 적외선 데이터셋 38
(1)LRP 변형에 따른 결과 분석 38
(2)데이터에 따른 결과 분석 38
VI.결론 42
[참고문헌] 44
Degree
Master
Publisher
조선대학교 대학원
Citation
이하늘. (2024). XAI 기반 생성 모델 데이터 분석 및 평가.
Type
Dissertation
URI
https://oak.chosun.ac.kr/handle/2020.oak/17980
http://chosun.dcollection.net/common/orgView/200000719693
Appears in Collections:
General Graduate School > 3. Theses(Master)
Authorize & License
  • AuthorizeOpen
  • Embargo2024-02-23
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.