텍스트 데이터 감성 분류 개선을 위한 Fine-tuning 방법 제안
- Author(s)
- 박정일
- Issued Date
- 2024
- Abstract
- Research on efficient fine-tuning methods for Korean sentiment analysis Park, Jung Il Advisor : Prof. Kim, Pan Koo Ph.D. Department of Software Convergence Engineering Graduate School of Industrial Technology and Entrepreneurship, Chosun University Modern enterprises are increasingly adopting sentiment analysis as a crucial task, highlighting the accurate understanding of consumer opinions across various domains such as social media, product reviews, and customer feedback as a key challenge for success in competition. Sentiment analysis helps enhance products and services by grasping diverse opinions and sentiments of consumers. The utilization of large-scale text data collection and fine-tuning with pre-trained language models plays a vital role in improving performance. With recent technological advancements, sentiment analysis models demonstrate high performance, and the ELECTRA model, in particular, provides outstanding results through efficient learning methods and fewer computational resources. The purpose of this study is to optimize the performance of the model through efficient fine-tuning on various datasets using the KoELECTRA model that learned Korean in ELECTRA. An AI model to classify human sentiments as positive and negative and predict them. Through this, we expect to be able to achieve higher and faster performance in NLP tasks by efficiently fine-tuning various datasets suitable for the purpose.
- Alternative Title
- Fine-tuning method proposed to improve text data sentiment classification
- Alternative Author(s)
- Park Jung Il
- Affiliation
- 조선대학교 산업기술창업대학원
- Department
- 산업기술창업대학원 소프트웨어융합공학과
- Advisor
- 김판구
- Awarded Date
- 2024-02
- Table Of Contents
- Ⅰ. 서론 1
A. 연구 배경 및 목적 · 1
B. 연구 내용 및 구성 3
Ⅱ. 관련 연구 · 4
A. 감성 분류 4
1. 음성 기반 감성 분류 · 4
2. 얼굴 표정 기반 감성 분류 6
3. 텍스트 기반 감성 분류 7
B. 감성 분류 모델 9
1. 비지도 학습 모델 9
2. 지도 학습 모델 · 10
3. 앙상블 모델 · 13
4. Fine-tuning 모델 · 15
Ⅲ. 텍스트 감성 분류 Fine-tuning 모델 18
A. 연구 구성도 18
B. 데이터 전처리 20
C. 감성 분류 Fine-tuning 모델 · 26
Ⅳ. 실험 및 결과 30
A. 실험 데이터셋 · 30
B. 실험 평가 방법 및 결과 분석 39
1. 실험 평가 방법 · 39
2. 실험 평가 결과 분석 40
Ⅴ. 결론 및 향후 연구 48
참고문헌 49
- Degree
- Master
- Publisher
- 조선대학교 산업기술창업대학원
- Citation
- 박정일. (2024). 텍스트 데이터 감성 분류 개선을 위한 Fine-tuning 방법 제안.
- Type
- Dissertation
- URI
- https://oak.chosun.ac.kr/handle/2020.oak/17913
http://chosun.dcollection.net/common/orgView/200000723447
-
Appears in Collections:
- Engineering > 3. Theses(Master)
- Authorize & License
-
- AuthorizeOpen
- Embargo2024-02-23
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.