CHOSUN

Design and Synthesis of Nanostructured Transition Metal (Co, Mn, Fe, and Ni) Compounds for Electrochemical Water Splitting

Metadata Downloads
Author(s)
이설
Issued Date
2022
Keyword
Electrochemical water splitting, Transition metal compound, Core-shell, Nanowire-nanosheet coexistence, Fe-doping, synergistic effect,
Abstract
온실가스 배출로 인한 기후변화 및 화석연료의 고갈은 효율적이고 지속가능한 대체 에너지원의 개발이 시급해지도록 만들었다. 온실가스 배출을 줄이고 제로-탄소 및 지속 가능한 에너지원을 개발하기위해 많은 연구자들은 엄청난 노력을 기울이고 있다. 그 중에서, 수소(H2)는 가볍고, 높은 에너지 밀도를 가지기 때문에 지속가능한 대체 에너지 물질로 잘 알려져 있다. 수소를 생산하기 위한 방법은 여러가지가 있지만, 그 중 ECWS(Electrochemical water splitting)는 Zero-carbon 및 높은 에너지 수요를 만족시키는 지속가능한 해결책으로 각광받고 있다.
이번 연구에서는, ECWS의 에너지 효율을 개선하기 위해 새로운 전기 촉매를 개발하였고, 산소 발생 반응(OER)과 수소 발생 반응(HER)에 대한 접근 방식을 모두 포함하고 있다. 이를 수행하기 위해 전이금속(Co, Mn, Ni, Fe) 기반의 산화물, 수산화물, 셀렌화물을 포함하는 다양한 물질들을 조사하였고 평가하였다. HT 및ED법과 같은 간단한 접근법을 이용하여 전도성 및 다공성의 Ni 기판(NF)상에 전이금속 화합물을 형성시켰다.
이를 평가하기 위해 과전위, Tafel slope, 전기화학적 활성 표면적(ECSA), 교환전류밀도, 장기 안정성 및 전하이동 저항 등의 전기화학적 성능을 포함하는 다양한 parameter를 자세히 조사하였다.
구체적으로는, HT법을 이용하여 CoMn 코어를 합성하였고, ED법을 이용하여 Ni(OH)2 shell을 합성하였다. 최종적으로는 코어(CoMn)-쉘Ni(OH)2 구조를 갖는 Ni(OH)2가 코팅된 CoMn 이중 수산화물(CoMn-LDH@Ni(OH)2) 나노 와이어를 제조하였다. 제조된 (CoMn-LDH@Ni(OH)2)의 산소발생반응, 수소발생반응 및 overall-water splliting의 성능에 대해 의논하였다.
스피넬 구조를 갖는 철이 도핑된 코발트 망간산화물(CoMnFeO4)은 HT법으로 합성한 후 300°C에서 1시간 동안 하소시켰다. 또한, 철의 농도 및 열처리 조건에 따라 스피넬 구조를 갖는 Co-Mn 산화물의 촉매 성능 변화를 연구하였다. 이에 따라, 준비된 CoMnFeO4의 산소발생반응의 성능이 논의되었다. 이 연구를 통해, CoMn-LDH@Ni(OH)2는 CoMnFeO4보다 더 효율적이라는 결론을 내릴 수 있었다. 특히 CoMn-LDH@Ni(OH)2물질의 경우, core와shell의 독특한 계층적 나노 구조가 만드는 시너지 효과가 있기 때문이다. 또한 이 물질을 합성할 경우 binder가 필요하지 않아 증착이 용이하다는 장점이 있다.

|Depletion of fossil fuels, coupled with the climate change related to greenhouse gas emissions, has decided the significantly urgent need of developing highly efficient and sustainable alternative energy sources. To note, a tremendous effort has been paid to diminish greenhouse gas emissions and generate zero-carbon, green, and sustainable energy sources. It is well known that hydrogen (H2) is a promising energy source because of its unique features (sustainability, lightweight, and high energy density). Electrochemical water splitting (ECWS) is one type of sustainable solution for generating H2 to meet the energy demands without carbon emission.
In this work, the development of novel electrocatalysts is aimed to improve energy efficiency in ECWS, especially involving oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Transition metals (nickel, cobalt, manganese, and iron)-based compounds including hydroxides and oxides have been explored and evaluated as electrochemical catalysts. The transition metal compounds were synthesized on a conductive and porous substrate (Ni foam) by utilizing simplistic approaches like the hydrothermal method (HT) and electrodeposition (ED). Electrocatalyst performance evaluation parameters such as overpotential, Tafel slope, electrochemical active surface area, exchange current density, long-term stability as well as charge transfer resistance were investigated in detail.
In detail, Nickel hydroxide coated cobalt manganese layered double hydroxide (CoMn-LDH@Ni(OH)2) nanowires were prepared by HT followed by the ED method. The OER, HER, and overall water splitting activity of as-prepared CoMn-LDH@Ni(OH)2 were discussed. Iron-doped cobalt manganese spinel-type oxide (CoMnFeO4) was synthesized by HT followed by calcination for 1 hour at 300°C. The influence of iron concentration and annealing conditions on the catalytic activity of Co-Mn oxide was studied. The OER performance of this as-prepared CoMnFeO4 was discussed. It was concluded that the CoMn-LDH@Ni(OH)2 is more efficient than Ni2MnO4, Fe2MnO4, and CoMnFeO4 for OER because the compound incorporates a unique heterogeneous nanostructure, synergistic effect of core & shell, and simple deposition on nickel foam (NF) substrate without using a binder.
Alternative Title
전기화학적 물 분해를 위한 나노 구조 전이금속 (Co, Mn, Fe, Ni) 화합물의 설계 및 합성
Alternative Author(s)
LI XUE
Affiliation
조선대학교 일반대학원
Department
일반대학원 첨단소재공학과
Advisor
유영태
Awarded Date
2022-08
Table Of Contents
ABBREVIATIONS iv
LIST OF TABLES vii
LIST OF FIGURES viii
ABSTRACT (ENGLISH) xii
ABSTRACT (KOREAN) xiv

1. Introduction 1
1.1 Background 1
1.2 Fundamentals of ECWS 3
1.2.1 The Media of ECWS 4
1.2.2 Critical Parameters of ECWS 5
1.2.3 Mechanisms for ECWS 7
1.3 Catalysts Based on Transition Metal Compounds (TMC) 8
1.3.1 Literature Review for TMC 9
1.3.2 Strategies to Boost Electrocatalytic Performance of TMC 11
1.3.3 TMC Investigated for ECWS in This Research Work 12
1.4 Methodologies Used for Deposition of TMC 13
1.5 Objectives of This Thesis 13
1.6 Flow Chart of This Research Work 16

2. Synthesis and Characterization Techniques 17
2.1 Synthesis of TMC 17
2.1.1 HT Method 18
2.1.2 ED method 18
2.1.3 CBD Method 19
2.2 Advanced Characterization Techniques 20
2.2.1 XPS 20
2.2.2 XRD 21
2.2.3 FE-SEM 22
2.2.4 TEM 23
2.2.5 Raman Spectroscopy 23
2.2.6 FTIR 24
2.3 Electrochemical Characterization 24
2.3.1 Linear Sweep Voltammetry (LSV) Measurement 24
2.3.2 CV Measurement 25
2.3.3 EIS Measurement 26

3. Synthesis and Characterization of Electrocatalysts 28
3.1 Substrate Cleaning 28
3.2 Core-shell Nanowires of CoMn-LDH@Ni(OH)2 Catalysts 28
3.2.1 HT Synthesis of CoMn-LDH 28
3.2.2 ED Synthesis of Ni(OH)2 28
3.2.3 Formation Mechanism 29
3.2.4 Structural Analysis 31
3.2.5 Morphological and Compositional Analysis 32
3.2.6 XPS Analysis 35
3.3 Nanowire-Nanosheet-like Dual Structured CoMnFeO4 39
3.3.1 HT Synthesis of MxMnyO4 (M = Co, Fe, and Ni) 39
3.3.2 HT Synthesis of CoMnFeO4 40
3.3.3 Formation Mechanism of CoMnFeO4 41
3.3.4 Morphological Analysis of MxMnyO4 (M = Co, Fe, and Ni) 42
3.3.5 Structural Analysis of CoMnFeO4 43
3.3.6 Morphological Analysis of CoMnFeO4 45
3.3.7 XPS Analysis of CoMnFeO4 48
3.4 Summary 50

4. Investigation of Electrochemical Performance of Catalysts and Their Application in Overall Water splitting 51
4.1 Electrochemical Measurements 51
4.2 Core-Shell CoMn-LDH@Ni(OH)2 for Overall Water Splitting 52
4.2.1 Optimization of CoMn-LDH@Ni(OH)2 via OER Studies 52
4.2.2 Electrochemical Activity for OER and HER 54
4.2.3 Origin of Superior Performance 59
4.2.4 CoMn-LDH@Ni(OH)2 for Overall Water Splitting 62
4.2.5 Mechanism Discussion 63
4.3 Heteroatomic Doping of CoMnFeO4 for Water Oxidation 65
4.3.1 Performance Optimization of CoMnFeO4 via OER studies 65
4.3.2 Influence of Fe Concentration and Annealing Conditions on OER 69
4.3.3 Electrocatalytic Activity for OER 71
4.3.4 Origin of Superior OER activity 75

5. Conclusion and Future Scope of Research 80
5.1 Conclusions 80
5.2 Future Scope of Research 83

ACKNOWLEDGEMENT 84

PUBLICATIONS 85

BIBLIOGRAPHY 87

APPENDICES 108
Appendix “A” Main Reagents and Materials 108
Appendix “B” Synthesis and Characterization Tools 109
Appendix “C” Electrolyte Preparation and Microscopy Sample Preparation 110
Degree
Doctor
Publisher
조선대학교 대학원
Citation
이설. (2022). Design and Synthesis of Nanostructured Transition Metal (Co, Mn, Fe, and Ni) Compounds for Electrochemical Water Splitting.
Type
Dissertation
URI
https://oak.chosun.ac.kr/handle/2020.oak/17406
http://chosun.dcollection.net/common/orgView/200000631343
Appears in Collections:
General Graduate School > 4. Theses(Ph.D)
Authorize & License
  • AuthorizeOpen
  • Embargo2022-08-26
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.