계층적인 구조와 정보입자할당에 근거한 퍼지기반 입자모델의 설계 및 최적화
- Author(s)
- 염찬욱
- Issued Date
- 2022
- Abstract
- In this paper, we propose the design and optimization of a CGK-based granular model (CGK-GM) based on the hierarchical structure and optimal allocation of information granules. In general fuzzy clustering, the Euclidean distance between the center of the cluster and each data is calculated by considering the characteristics of the data in the input space. A circle-shaped cluster is generated using the obtained Euclidean distance. When the data are geometrical features, there is a problem that the performance of fuzzy clustering decreases. To improve this problem, GK(Gustafuson-Kessel) clustering is used to generate clusters that take geometrical features into account. In the existing GK clustering, the distance between the center of the cluster and the data is calculated using the Mahalanobis distance in consideration of the characteristics of the data in the input space. Using the Mahalanobis distance, a geometrical cluster is created based on the center of the cluster. In this paper, we propose context-based GK clustering that considers the output space from the existing GK clustering. Since the existing GK clustering considers only the input space, clusters are created using only the features of the input space. On the other hand, context-based GK clustering can create clusters more efficiently than conventional GK clustering because it considers the characteristics of data in the output space as well as the input space.
The CGK-based granular model designed using the proposed CGK clustering is an explanatory model that can create contextual information granules in the output space and geometric information granules in the input space to automatically generate rules and express them verbally. to design The CGK-based granular model that automatically generates rules has a problem in that the number of rules increases exponentially when processing large-scale data. To solve this problem, the proposed CGK-based granular model and general prediction models are combined in a hierarchical structure to design an aggregated CGK-based granular model. In addition, in order to improve the prediction performance of the hierarchical CGK-based granular model, one of the optimization algorithms, the genetic algorithm, is used to optimize the information granules to generate the optimal information granules, and use this to optimize the CGK-based hierarchical structure. Design the granular model.
To verify the validity of the proposed methods, we compare and analyze the prediction performance with the existing particle model using the prediction-related benchmarking database, the concrete compressive strength database, the water purification plant coagulant dose database, and the Boston housing price database. As a result of the experiment, the proposed CGK-based granular model, the CGK-based granular model with an aggregated structure, the optimized CGK-based granular model, and the CGK-based granular model with the optimized aggregated structure showed better prediction performance than the conventional granular model. confirmed what was visible.
- Alternative Title
- A Design and Optimization of Fuzzy-Based Granular Model Based on Hierarchical Structures and the Allocation of Information Granules
- Alternative Author(s)
- Chan-Uk, Yeom
- Affiliation
- 조선대학교 일반대학원
- Department
- 일반대학원 제어계측공학
- Advisor
- 곽근창
- Awarded Date
- 2022-02
- Table Of Contents
- 제1장 서론 1
제1절 연구 배경 1
제2절 연구 목적 3
제3절 연구 내용 5
제2장 이론적 배경 및 관련 연구 7
제1절 퍼지 클러스터링 7
제2절 출력공간을 고려한 퍼지 클러스터링 9
제3절 GK 클러스터링 14
제3장 정보 입자 생성 및 입자 모델 설계 17
제1절 입자 컴퓨팅 및 정보 입자 17
제2절 합리적인 정보 입자 생성 18
제3절 퍼지 입자 모델 22
제4절 컨텍스트 기반 GK 클러스터링(CGK) 24
제5절 CGK 기반 입자 모델 설계 29
제4장 계층적 구조의 입자 모델 설계 33
제1절 계층적 구조의 CGK 기반 입자 모델 설계 33
제2절 집계형 구조의 CGK 기반 입자 모델 설계 35
제5장 정보 입자 할당을 통한 최적화된 계층적 입자 모델 설계 39
제1절 정보 입자의 최적 할당 39
제2절 최적의 정보 입자를 통한 계층적 구조의 CGK 기반 입자 모델 설계 43
제6장 실험 및 결과분석 46
제1절 데이터베이스 46
제2절 실험 및 결과분석 47
제7장 결론 91
참고문헌 93
- Degree
- Doctor
- Publisher
- 조선대학교 대학원
- Citation
- 염찬욱. (2022). 계층적인 구조와 정보입자할당에 근거한 퍼지기반 입자모델의 설계 및 최적화.
- Type
- Dissertation
- URI
- https://oak.chosun.ac.kr/handle/2020.oak/17198
http://chosun.dcollection.net/common/orgView/200000606456
-
Appears in Collections:
- General Graduate School > 4. Theses(Ph.D)
- Authorize & License
-
- AuthorizeOpen
- Embargo2022-02-25
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.