CHOSUN

Preparation, Physicochemical Characterization and Applications of Titanium Dioxide Nanoparticles

Metadata Downloads
Author(s)
VU PHUONG DONG
Issued Date
2021
Abstract
The work aimed to prepare, characterize and apply titanium dioxide (TiO2) nanoparticles (NPs). TiO2 NPs were prepared by thermal hydrolysis from titanium tetrachloride (TiCl4), precipitated by NH4OH and then calcined at 400 and 900 ᵒC to get anatase and rutile phase. The prepared NPs were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Ultraviolet spectroscopy (UV-Vis). NPs in anatase had a size range ca. 10-19 nm while rutile phase was about 59 to 108 nm. The obtained NPs were cyto-compatible with oral cancer cells. The TiO2 NPs in anatase was able to adsorb dexamethasone phosphate (DexP) in aqueous solution while rutile was not. The adsorption of DexP on anatase was maximized at pH 2 and dependent on ionic strength of the solution. At optimum condition, the DexP adsorption was completed within 10 minutes and followed Langmuir isotherm model. The DexP-absorbed TiO2 NPs was desorbed at pH 11 and reusable for the subsequent process without declining the adsorption efficiency. TiO2 NPs in anatase was also used for the immobilization of tannase by the reaction with 3-aminopropyltriethoxysilane (APTES) and glutaraldehyde (GLA). The immobilization was confirmed by the changes in FT-IR spectrum, zeta potential value and sedimentation behavior. The activity of immobilized tannase was maximum at pH 5, at 40 °C, retained 43 % of tannase activity at 70 °C for 60 min and 60 % activity even after 20 cycles of reuse. TiO2 NPs in rutile were reduced by using a simple and fast in situ reduction method in which NPs were reacted with Birch reagent (contains lithium, ethylene diamine and ter-butanol) in one pot suspension at room temperature for 3 days. The reduced TiO2 showed characteristic biophysical properties as confirmed by microscopic and spectroscopic analysis. Finally, the reduced TiO2 showed photoexcited cytotoxicity on YD-38 oral cancer cells, inhibiting more than 60 % of cell growth and proliferation after 1 h irradiation with visible light. In summary, we synthesized and characterized of TiO2 NPs in anatase and rutile phases. We demonstrated the efficiencies of TiO2 NPs in anatase in adsorption of DexP and immobilization of tannase. We also confirmed the reduction of TiO2 NPs in rutile by the modified Birch reagent and the photocatalytic activity of reduced rutile to kill cancer cells under visible light. |본 연구는 이산화 티타늄 (TiO2) 나노 입자 (NP)를 제조, 결정 특성을 분석하여 생명 과학 분야에 TiO2 NP를 응용하고자 진행하였다. TiO2 NP는 사염화 티타늄 (TiCl4)을 이용하여 열 가수 분해에 의해 제조되었고 NH4OH를 이용하여 침착 시킨 후 400 및 900 °C에서 하소시켜 아나타제 (anatase) 및 루틸 (rutile) 결정상의 TiO2 NP를 얻었다. 준비된 TiO2 NP는 X- 선 회절 (XRD), 푸리에 변환 적외선 분광법 (FTIR), 주사 전자 현미경 (SEM), 투과 전자 현미경 (TEM), 라만 및 자외선 분광법 (UV-Vis) 등을 이용하여 결정상의 특성을 분석하였다. 준비한 anatase NP은 입자 크기가 약 10-19 nm, rutile상은 약 59 ~ 108 nm이었으며 두 결정상의 TiO2 NP는 구강암 세포에 대해 세포독성을 나타내지 않았다. 한편 anatase TiO2 NP은 수용액에서 dexamethasone phosphate (DexP)에 강한 흡착력을 보였다. 아나타제에 대한 DexP의 흡착은 pH 2에서 최대였으며 Langmuir 흡착 등온선 모델과 유사하게 10 분 이내에 완료되었다. 또한 흡착은 용액의 pH 또는 이온 강도 조건에 영향을 받았다. DexP에 흡수된 TiO2 나노 입자는 pH 11 조건에서 탈착되었으며 재사용이 가능했다. 또 다른 응용으로 아나타제 TiO2 NP에 3-aminopropyltriethoxysilane (APTES)과 glutaraldehyde (GLA)를 사용하여 탄닌산 가수분해효소 인 tannase (Ta)를 나노입자의 표면에 고정화하였다. 고정화 반응은 FT-IR 스펙트럼과 제타 전위값 및 침강(sedimentation)의 차이로 확인하였다. 고정화된 tannase는 pH 5, 40 °C에서 효소 활성도가 최대였고 70 °C에서 60 분 이후에도 43 %의 활성을 유지하였으며, 20 회나 재사용 후에도 60 %의 효소 활성을 유지하였다. Rutile 상TiO2 NP은 Birch 시약 (리튬, 에틸렌 디아민 및 tert-부탄올)과 실온에서 3 일 동안 현탁반응을 시켜 환원된 rutile TiO2 NP을 제조하였다. 환원된 rutile TiO2는 현미경 및 분광 분석에서 특징적인 생물 물리적 특성을 나타냈으며 가시 광성 (visible light) 주사 조건 하에서 YD-38 구강암 세포의 성장과 증식을 억제하였다.
Alternative Title
티타늄 디옥사이드 나노 입자의 제조, 물리 화학적 특성 및 응용성 연구
Alternative Author(s)
부 뿌엉동
Affiliation
조선대학교 일반대학원
Department
일반대학원 치의생명공학과
Advisor
유훈
Awarded Date
2021-08
Table Of Contents
TABLE OF CONTENTS i
LIST OF FIGURES iv
LIST OF TABLES vi
ABSTRACT vii
국문초록 ix

1. Introduction 1
1.1. Nanoparticles 1
1.2. Titanium dioxide nanoparticles 3
1.3. Anatase and Rutile 4
1.4. Preparation of TiO2 nanoparticles 6
1.5. Organic adsorption by TiO2 nanoparticles 8
1.6. Enzyme immobilization onto TiO2 nanoparticles 10
1.7. Photocatalytic anticancer activity of reduced TiO2 nanoparticles 12

2. Materials and Methods 13
2.1. Materials 13
2.2. Preparation of TiO2 NPs 13
2.3. Characterization methods 15
2.3.1. X-ray Diffraction 15
2.3.2. Scanning electron microscopy and energy dispersive X-ray spectroscopy 15
2.3.3. Transmission electron microscopy 15
2.3.4. Fourier-transform infrared spectroscopy 16
2.3.5. Dynamic light scattering and Zeta potential 16
2.3.6. Raman spectroscopy 16
2.4. Cellular cytotoxicity 17
2.5. Photocatalytic dye degradation 17
2.6. Evaluation of the dexamethasone phosphate adsorption 18
2.6.1. Adsorption test 18
2.6.2. The calculation of adsorption kinetic 18
2.6.3. Reusability 19
2.7. Immobilization of tannase onto TiO2 NPs 20
2.7.1. Preparation of APTES functionalized TiO2 NPs 20
2.7.2. Characterization of APTES functionalized TiO2 NPs 20
2.7.3. Tannase immobilization on APTES functionalized TiO2 NPs 20
2.7.4. Tannase activity assay 21
2.7.5. Effects of temperature and pH 21
2.7.6. Thermal stability 22
2.7.7. Reusability 22
2.8. Cytotoxic effects of reduced TiO2 NPs under the visible light 22
2.8.1. Reduction of TiO2 NPs 22
2.8.2. Cell culture 23
2.8.3. Cell viability assay 23

3. Results 24
3.1. Preparation and Characterization of TiO2 NPs 24
3.1.1. Preparation 24
3.1.2. Characterization 25
3.1.2.1. XRD 25
3.1.2.2. XRD data analysis 27
3.1.2.3. FTIR 31
3.1.2.4. Scanning electron microscopy and energy dispersive spectroscopy 33
3.1.2.5. Dynamic light scattering and zeta potential 36
3.1.3. Photocatalytic activity 40
3.1.4. Cytotoxicity test 42
3.2. Adsorption of dexamethasone phosphate onto TiO2 NPs 45
3.2.1. Effect of TiO2 NPs composition on the adsorption of dexamethasone phosphate 45
3.2.2. FTIR analysis 47
3.2.3. Effect of ionic strength and coexisting anions 49
3.2.4. Effect of pH 51
3.2.5. Effect of initial DexP concentration 53
3.2.6. Adsorption isotherms 54
3.2.7. Reusability 57
3.3. Immobilization of Tannase onto TiO2 NPs 59
3.3.1. Preparation 59
3.3.2. Silane grafting TiO2 NPs 61
3.3.2.1. Effect of TiO2 NPs composition on silane grafting 61
3.3.2.2. FT-IR analysis 63
3.3.3. Evaluation of immobilized tannase activity 65
3.3.3.1. Effect of temperature 65
3.3.3.2. Effect of pH 67
3.3.3.3. Thermal stability 69
3.3.3.4. Reusability 71
3.4. Photocatalytic activity of reduced TiO2 NPs under Visible Light Irradiation 73
3.4.1. XRD patterns of TiO2 NPs after reduction 73
3.4.2. DLS and Zeta potential of TiO2 NPs after reduction 75
3.4.3. FTIR of TiO2 NPs after reduction 77
3.4.4. Raman analysis of TiO2 NPs after reduction 79
3.4.5. High resolution TEM 81
3.4.6. Cytotoxic effects of reduced TiO2 under visible light irradiation on YD-38 cells 83

4. Discussion 85

5. Reference 89
Degree
Doctor
Publisher
조선대학교 대학원
Citation
VU PHUONG DONG. (2021). Preparation, Physicochemical Characterization and Applications of Titanium Dioxide Nanoparticles.
Type
Dissertation
URI
https://oak.chosun.ac.kr/handle/2020.oak/17007
http://chosun.dcollection.net/common/orgView/200000501858
Appears in Collections:
General Graduate School > 4. Theses(Ph.D)
Authorize & License
  • AuthorizeOpen
  • Embargo2021-08-27
Files in This Item:
  • There are no files associated with this item.

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.