딥러닝 기반 문장 중요도를 고려한 중심 문장 추출 방법
- Author(s)
- 김은희
- Issued Date
- 2021
- Abstract
- As data increases exponentially in the era of the 4th industrial revolution, it is becoming more important to efficiently acquire important information from among a number of data. In particular, in the case of text data, since the length of the text data is long and important sentences and non-critical sentences are mixed in the document, it is difficult to grasp the topic. Therefore, a method of efficiently extracting only sentences of high importance in the document is required.
Methods of extracting sentences with high importance include a method of extracting important words and important sentences by calculating the frequency of words in a sentence, and a method of calculating a sentence score by calculating the similarity between sentences based on a graph to determine a ranking. Recently, various studies are being conducted to summarize documents using deep learning models.
In this paper, we propose a method of extracting the central sentence by defining the sentence with high importance as a topic sentence. The proposed method is to calculate the probability of the central sentence by using the pre-learned language models ELMo, BERT, and the LSTM model that can classify sentences by learning the flow of context. We propose a method of extracting the central sentence by combining the probability of the central sentence and the other features that affect the importance of the sentence.
- Alternative Title
- Method of Extracting the Topic Sentence Considering Sentence Importance based on Deep Learning
- Alternative Author(s)
- Kim EunHee
- Department
- 산업기술창업대학원 소프트웨어융합공학과
- Advisor
- 신주현
- Awarded Date
- 2021-02
- Table Of Contents
- ABSTRACT
Ⅰ. 서론 1
A. 연구 배경 및 목적 1
B. 연구 내용 및 구성 3
Ⅱ. 관련 연구 4
A. 중심 문장의 개념 4
B. 임베딩 모델 5
1. ELMo 5
2. BERT 6
C. 추출 요약 연구 8
1. TextRank 알고리즘을 이용한 한국어 중심 문장 추출 8
2. 추출 요약 네트워크 10
3. 딥러닝 기반의 2단계 한국어 문서 요약 11
Ⅲ. 딥러닝 기반 중심 문장 추출 방법 12
A. 시스템 구성도 12
B. 데이터 수집 및 전처리 14
1. 데이터 수집 14
2. 전처리 17
C. 문장 중요도 특성 추출 21
1. ELMo 워드 임베딩을 활용한 문장 유사도 21
2. 문장 위치별 가중치 24
D. 중심 문장 추출 방법 26
1. 딥러닝을 활용한 중심 문장 판별 26
2. 문장별 중요도 계산 및 중심 문장 추출 30
Ⅳ. 실험 및 결과 33
A. 데이터 수집 33
B. 데이터 셋 35
C. 실험 평가 및 분석 37
1. 실험 평가 방법 37
2. 실험 결과 분석 39
Ⅴ. 결론 및 향후 연구 44
참고문헌 45
- Degree
- Master
- Publisher
- 조선대학교 산업기술창업대학원
- Citation
- 김은희. (2021). 딥러닝 기반 문장 중요도를 고려한 중심 문장 추출 방법.
- Type
- Dissertation
- URI
- https://oak.chosun.ac.kr/handle/2020.oak/16765
http://chosun.dcollection.net/common/orgView/200000362628
-
Appears in Collections:
- Engineering > 3. Theses(Master)
- Authorize & License
-
- AuthorizeOpen
- Embargo2021-02-25
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.