CHOSUN

이차 베지에 곡선의 합성곡선과 근사 곡선에 관한 연구

Metadata Downloads
Author(s)
이령
Issued Date
2012
Abstract
In this thesis we study the geometric properties of the convolution curve of two quadratic Bezier curves. We present the necessary and sufficient condition for the existence of cusp on the convolution curve and the formular of the cusp point. Also, we characterize the behavior of convolution curve and quadratic approximation near . An unusual result was discovered that the one case does not occur among four cases of theorem. We present the necessary and sufficient conditions of that. Finally we approximate the convolution curve by the quadratic Bezier curve, and estimate the error bound between convolution curve and quadratic approximation. We also present method of reduce the error which apply the subdivision to convolution curve.
Alternative Title
A study on convolution of compatible quadratic Bezier curves and quadratic approximation
Alternative Author(s)
Lee, Ryeong
Affiliation
조선대학교 교육대학원 수학교육
Department
교육대학원 수학교육
Advisor
안영준
Awarded Date
2013-02
Table Of Contents
ABSTRACT

제1장 소개

제2장 예비 지식
제1절 합성곡선(Convolution curve)
제2절 민코스키 합(Minkowski sum)
제3절 하우스도르프 거리(Hausdorff distance)

제3장 합성곡선의 성질

제4장 적용
-이차 베지어 곡선을 이용한 합성곡선 근사

제5장 결론

부록

참고문헌
Degree
Master
Publisher
조선대학교 대학원
Citation
이령. (2012). 이차 베지에 곡선의 합성곡선과 근사 곡선에 관한 연구.
Type
Dissertation
URI
https://oak.chosun.ac.kr/handle/2020.oak/15589
http://chosun.dcollection.net/common/orgView/200000263760
Appears in Collections:
Education > 3. Theses(Master)
Authorize & License
  • AuthorizeOpen
  • Embargo2013-01-02
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.