The Role of Autophagy in Plant Defense Response during Phytopathogen Infection
- Author(s)
- 이범기
- Issued Date
- 2018
- Abstract
- Autophagy is essentially required for immune defense against pathogens attack in plants. When a pathogen infects, plants immediately initiate a variety of their defense mechanisms, such as autophagy, apoptosis and necrosis, to block spreading of pathogenic components into cells. But pathogens activate their own survival mechanisms to avoid the plant defense mechanisms. So, many researchers have tried to investigate the interrelation between pathogens and plants.
I tried to investigate the correlation of potato virus Y-O (PVYO) with Nicotiana benthamiana and Colletotrichum gloeosporioides (C. gloeosporioides) with pepper fruits, respectively. To study correlations brtween PVYO and N. benthamiana, I performed morphological and molecular biological analysis after direct virus infection on the plant. For morphological analysis, 4 weeks old N. benthamiana plants inoculated with PVYO, was employed to carry out measurement of leaf length, observation of symptoms, quantification of virus particles according to leaf position using ELISA and observation of virus distribution on diseased leaves using light microscopy and transmission electron microscopy, etc. For molecular biological analysis, RNA or protein expression levels, according to the position of leaves after PVYO infection were examined using RT-PCR and western blot. In tobacco (N. benthamiana), infection of mild strain of PVYO induced stunted growth in young leaves and then mosaic symptom begun to appear on top leaf at 13 dpi. To investigate whether the mild symptom development was associated with defense reaction against virus, general defense reactions were systemically analyzed in infected plants in association with autophagy pathway. Overall, our results indicate that autophagy may play a role in the suppression of virus symptom development in non-host tobacco plants during early response to PVYO infection.
C. gloeosporioides is the causal agent of anthracnose in hot pepper fruits and adopts a hemibiotrophic lifestyle. Its initial biotrophic phase involves a series of infection processes and followed by a necrotrophic stage. To defend against the hemi-biotrophic anthracnose fungus, the plant may need to provoke complex defense reactions to attenuate fungal virulence. In our system, the infected green fruits showed hypersensitive reaction (HR) that resulted in lesion formation during the necrotrophic phase. I observed ROS formation, the accumulation of antioxidant proteins and autophagy-related proteins in association of fungal infection. Autophagy was shown to be induced by the invasion of fungus; autophagy-related protein levels that were accompanied with the induction of defense-related proteins representing differential expression patterns between compatible green fruits and incompatible red fruits. Tentative physiological roles of autophagy was discussed in the pepper fruits during phytopathogen interaction.
In conclusion, PVYO or C. gloeosporioides infection triggered defense mechanisms in their host plants. Among the defensive mechanisms, autophagy was activated in a short time during pathogen infection, preventing pathogens from spreading. Futhermore, endoplasmic reticulum (ER) stress may induce two cell defence pathways, the unfolded protein response (UPR) or programmed cell death (PCD) upon biotic stress. In our experimental systems, promoted up-regulation of UPR genes in N. benthamiana increased resistance to potato virus Y (PVYO) by enhancing autophagy pathway that plays a role in the process of viral infection. On the contrary, the ER stess and autophagy that were activated during fruit development of hot pepper fruits proceeded further a programmed cell death in infected cells upon fungal infection. Thus, autophagy represents a anti-pathogenic mechanism that plays an important role in antiviral immunity in tobacco and in antifungal reaction in red pepper fruits, respectively. |Autophagy는 식물에서 병원체의 침임에 대항하기 위한 면역적 방어기작에 필수적으로 요구된다. 병원체 침입 시, 식물은 즉각적으로 autophagy, apoptosis, necrosis와 같은 면역 기작을 작동시켜 세포내로 병원체의 감염이 이뤄지는 것을 막는다. 그러나 병원체 또한 그들의 생존에 필요한 기작들을 활성화 시켜 식물 방어 체계를 회피하여 살아남는다. 많은 과학자들은 병원체와 식물체 간의 autophagy와 같은 면역적 상호연관관계를 밝히고자 노력해왔다. 그 결과, 많은 부분에 대해서 궁금증을 해결 할 수 있었지만, 아직 일부 병원체와의 연관관계를 밝히지는 못하였다.
본 연구는 potato virus Y-O(PVYO)와 Nicotiana benthamiana, Colletotrichum gloeosporioides (C. gloeosporioides)와 고추 열매와의 상호연관관계를 입증했다. PVYO와 N. benthamiana와의 상호연관관계를 밝히기 위해서 N. benthamiana에 직접 PVYO를 감염시켜 형태학적 분자생물학적 분석을 진행하였다. 형태학적 분석을 위해서 4 주차의 식물에 PVYO를 감염을 시킨 후 시간 별 사진을 비롯하여 잎의 길이 측정, 병징 관찰, ELISA를 이용한 virus 입자의 생성 관찰, transmission electron microscope(TEM)와 light microscope(LM)를 이용하여 병징이 나타난 잎에서의 virus 분포도 관찰을 시행하였다. 분자생물학적 분석은 PVYO 감염 후에 잎의 위치에 따라 RT-PCR과 western blot을 통하여 RNA와 protein level에서의 변화를 관찰하였다.
C. gloeosporioides는 appressorium이라 불리는 자신의 미세기관을 이용하여 고추 열매에 부착하고 침입한다. 고추에 부착 후 침입이 이루어질 때, 고추는 병원체의 침입과 확산을 막기 위해 autophagy과 같은 다양한 방어기작을 일으킨다. 본 연구에서는 C. gloeosporioides를 감염 시켰을 때 fungi와 고추열매를 염색하여 C. gloeosporioides의 appressorium 형태와 부착, 침입을 관찰하였다. 또한, wetern blot을 이용하여 C. gloeosporioides의 침입에 따른 분자생물학적 변화를 관찰하였다. 그 결과 C. gloeosporioides 감염 후에 시간이 지남에 따라 autophagy 관련 protein들의 level이 증가하였고 이와 연관된 방어 protein들의 level 또한 증가함을 확인 할 수 있었다.
결론적으로, PVYO또는 C. gloeosporioides가 식물에 감염이 되면 식물체의 방어기작을 유도한다. 여러 가지 방어기작 중, 병원체가 감염되었을 때 빠른 시간 내에 autophagy가 작동하여 식물체 내로 병원체가 확산되는 것을 방어한다. 이 실험에서는 autophagosome을 형성하는데 기여하는 ATG4, ATG8을 확인하였고, 병원체 침입 시 발생하는 ROS 제거를 위해 발생하는 여러가지 antioxidant enzyme의 발현을 확인하였다. 또한 pathogen 침입 시 발현되는 pathogen related protein을 확인하였다. Virus의 경우 virus genomic RNA를 silencing 시키기 위하여 small interfering RNA (siRNA)를 만든다. 이 과정에 있는 dicer like protein (DCL)과 argonaute (AGO)의 발현량을 확인하였다. 그 결과 virus의 감염시 시간이 지남에 따라 DCL과 AGO의 전사 level이 감소됨을 확인하였다. 이는 virus의 구성 요성 중 RNA silencing을 방해하는 요소가 있음을 암시한다.
- Alternative Title
- 식물 방어 반응에서 autophagy의 주요 역할
- Alternative Author(s)
- Beomgi Lee
- Affiliation
- 조선대학교 일반대학원 생명과학과
- Department
- 일반대학원 생명과학
- Advisor
- 정현숙
- Awarded Date
- 2019-02
- Table Of Contents
- CONTENTS
CONTENTS Ⅰ
LIST OF TABLES AND FIGURES Ⅲ
ABBREVIATIONS Ⅸ
ABSTRACT IN KOREAN Ⅺ
GENERAL ABSTRACT ⅩⅣ
CHAPTER 1.
The Role of autophagy during phytopathogen interaction between N. benthamiana and potato virus Y (PVYO)
1.1 ABSTRACT 1
1.2 INTRODUCTION 3
1.3 MATERIALS AND METHODS 7
1.3.1 Plant materials and growth conditions 7
1.3.2 PVYO inoculation and sample collection 7
1.3.3 Measurement of leaf length 7
1.3.4 Enzyme-linked immunosorbent assay (ELISA) 8
1.3.5 RNA extraction, cDNA synthesis and reverse transcript-
ase PCR (RT-PCR) 8
1.3.6 Immunoblot analysis 9
1.3.7 Light microscopy (LM) and transmission electron
microscopy (TEM) 10
1.3.7.1 Leaf collection for LM and TEM 10
1.3.7.2 Light microscopy (LM) analysis for immunohisto
chemistry 10
1.3.7.3 Transmission electron microscopy (TEM) analysis
11
1.3.8 Constructions of autophagy related genes and
production of transgenic plants 12
1.3.9 Statistical analysis 13
1.4 RESULTS 17
1.4.1 Developmented stage-dependent symptom changes
of spreaded virus particles 17
1.4.2 Detection of PVY coat protein using western blot
and immunolocalization 23
1.4.3 Morphological changes observed in top leaves after
PVYO infection through semi-thin section 25
1.4.4 Observation and localization of micro-organelle
and PVYO in upper leaves using TEM 27
1.4.5 ROS production in tobacco plants after viral infection
32
1.4.6 Induction of antioxidant enzymes in the leaves of
tobacco after virus infection 34
1.4.7 Change in hydrogen peroxide scavenging enzymes
activities in response to virus infection 37
1.4.8 Expression of autophagy-related proteins in virus
infected plants 39
1.4.9 Localization of autophagy-related protein 4 through
cross-section of stem after virus infection 41
1.4.10 Expression pattern of RNA suppression-related genes
43
1.4.11 Expression levels of pathogen-related protein 3
and chlorophyll binding protein in infected plants 45
1.4.12 Constructions for transgenic N. benthamiana
including autophagy-related genes 47
1.5 DISCUSSION 51
1.6 REFERENCES 56
CHAPTER 2.
Functional implication of autophagy in pepper fruits infected with anthracnose fungus
2.1 ABSTRACT 62
2.2 INTRODUCTION 64
2.3 MATERIALS AND METHODS 68
2.3.1 Plant materials 68
2.3.2 Colletotrichum gloeosporioides culture and inoculation
68
2.3.3 Immunoblot analysis 68
2.3.4 Light microscopy (LM) 69
2.3.4.1 Fruit collection for LM 69
2.3.4.2 Light microscopy (LM) analysis for immunohisto-
chemistry (IHC) 70
2.3.5 RNA extraction, cDNA synthesis and qPCR 70
2.4 RESULTS 73
2.4.1 Cultivation of C. gloeosporioides for inoculation
of pepper fruit 73
2.4.2 C. gloeosporioides invasion into the fruits and res-
ponse the cell according to accumulate of ROS
generation 76
2.4.3 Identification of ROS in C. gloeosporioides infection
by NBT and DAB staining 78
2.4.4 SDS-PAGE and western blot analysis for defense me-
chanisms of green and red pepper after C. gloeospor-
ioides infection 80
2.4.5 Monitoring ER stress-related and Autophagy related
genes in infected fruits 82
2.4.6 Localization of ER stress marker and ATG4 protein
in infected fruits 86
2.4.7 Expression of pathogen-related proteins in infected
fruits 89
2.5 DISCUSSION 92
2.6 REFERENCES 95
- Degree
- Doctor
- Publisher
- 조선대학교 일반대학원
- Citation
- 이범기. (2018). The Role of Autophagy in Plant Defense Response during Phytopathogen Infection.
- Type
- Dissertation
- URI
- https://oak.chosun.ac.kr/handle/2020.oak/13724
http://chosun.dcollection.net/common/orgView/200000267085
-
Appears in Collections:
- General Graduate School > 4. Theses(Ph.D)
- Authorize & License
-
- AuthorizeOpen
- Embargo2019-02-08
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.