CHOSUN

하수슬러지의 마이크로웨이브 가열 가스화 및 바이오가스 개질 특성

Metadata Downloads
Author(s)
임문섭
Issued Date
2017
Abstract
Due to the development of industrial development, the properties of wastewater and wastewater are diversified at high concentration, and the amount of waste sludge generated by solid waste is also increasing rapidly. Energy The reduction of energy consumption and the reduction of waste sludge in the current wastewater treatment facilities, which are living in an era of climate change, are now becoming very important issues.
It is a study to utilize sewage sludge and biogas, which are waste generated in sewage treatment plant, as a renewable energy source. It is the technology of recycling sewage sludge through pyrolysis / gasification process. Both pyrolysis and gasification produced gas, char, and tar. The gas produced for the gasification contained mainly hydrogen and carbon monoxide with a small amount of methane and hydrocarbons (C2H4, C2H6, C3H8). The microwave gasification generated higher heavy tar, compared to other processes. The sludge char showed a vitreous-like texture for the microwave process, and a deep crack shape for the conventional heating process. Through the results, the produced gas from the microwave processes of wet sewage sludge might be possible as a fuel energy. But the produced gas has to be removed the condensable PAH tars. And the sludge char produced can be used as a solid fuel or adsorbent.
It is a pyrolysis / gasification gas microwave reforming device. Methane(CH4) and carbondioxide(CO2) are the components of a produced gas from biomass pyrolysis gasification and a biogas from bioreactor. The both gases are known main greenhouse gas affected world climate change.
This study tried to investigate the characteristics of a microwave heating reforming to convert the produced gas to the valuable fuel energy. Through the microwave reforming, a carbon receptor was used as two types of sludge char and commercial activated carbon.
For the case of CH4 reforming, H2 was produced by a thermal decomposition with generating a carbon(C) which adsorbs on the active catalytic plate and reduces activate catalytic reaction. For the case of CO2 reforming, CO was produced by reacting with the carbon on the surface of the carbon receptor. This can solve the problem by removing the adsorbed carbon on the carbon receptor.
The sludge char as the carbon receptor showed higher gas yields of H2 and CO than the commercial activated carbon receptor, while giving comparatively higher heating value for the sludge char receptor. And for the cases of lower temperature and residence time in the carbon captor, the CH4 and CO2 conversions and the reforming gas yield had lower values.
The pyrolysis and gasification technology uses diverse waste resources, including biomass, urban solid waste, and sewage sludge, to produce synthetic gases for industrial use. The tar in the thermal decomposition gas from the pyrolysis and/or gasification process, however, damages synthetic gas facilities and causes operation trouble. Comparing tar conversion over for each case of tar cracking decomposition and carbon dioxide, carbon dioxide-steam, and steam reforming conversion. In order to obtain the tar conversion and the high-quality product gas, it was advantageous to modify the carbon dioxide-water vapor simultaneously, but the carbon dioxide reforming conversion was excellent in terms of the continuous use of the carbon acceptor.
It is hydrogen production technology through biogas reforming. First is a super-adiabatic compression spark ignition reformer. When the oxygen enrichment rate and input gas temperature increased, hydrogen and carbon monoxide were increased. But the biogas CO2 ratio and engine revolution increased, the syngas were reduced. For the reforming of methane 100 % only, generation of hydrogen and carbon monoxide was 58 % and 17 %, respectively. However when the biogas CO2 ratio was 40%, hydrogen and carbon monoxide concentration were about 20 % each.
The second reformer is a 3D-IR Matrix burner reformer. The nickel catalyst was used inside a reformer. Parametric screening studies were achieved as Steam/Carbon ratio, biogas component ratio, Space velocity and Reformer temperature. When the condition of Steam/Carbon ratio, CH4/CO2 ratio, Space velocity and Refomer temperature were 3.25, 60%:40%, 19.32 L/g・hr and 700℃ respectively, the hydrogen concentration and methane conversion rate were showed maximum values. Under the condition mentioned above, H2 concentration was 73.9% and methane conversion rate was 98.9%.
The third reformer is the plasma dump reforming. A plasma dump reformer was proposed to produce H2-rich synthesis gas by a model biogas. The three-phase gliding arc plasma and dump combustor were combined. Screening studies were carried out with the parameter of a dump injector flow rate, water feeding flow
rate, air ratio, biogas component ratio and input power. As the results, methane conversion rate, carbon dioxide conversion rate, hydrogen selectivity, carbon monoxide yield at the optimum conditions were achieved to 98%, 69%, 42%, 24.7%, respectively.
Sewage sludge and biogas are identified as energy sources, and a distributed generation system can be constructed in connection with fuel cells such as SOFC.
Alternative Title
Characteristics of Microwave Heating Gasification of Sewage Sludge and Reforming of Biogas
Alternative Author(s)
Lim Mun Sup
Affiliation
조선대학교
Department
일반대학원 환경공학과
Advisor
전영남
Awarded Date
2017-08
Table Of Contents
List of Tables V
List of Figures VI
Abstract IX

제 1장 서론
제1절 연구배경 및 필요성 1

제 2장 이론적 고찰
제1절 슬러지 열분해 및 가스화 6
1. 열분해/가스화 6
2. 마이크로웨이브 가열 7
제2절 바이오가스 개질 10
1. 수증기 개질 11
2. 부분산화 개질 12
3. 자열 개질 13
4. 이산화탄소 개질 13
5. 플라즈마 개질 14

제 3장 하수슬러지 열분해/가스화
제1절 하수슬러지 열분해 및 가스화 16
1. 연구내용 16
2. 실험장치 및 방법 17
가. 하수슬러지 특성 17
나. 실험장치 20
나. 실험방법 23
3. 결과 및 고찰 25
가. 열분해/가스화 생성물 25
나. 생성가스 특성 27
다. 경질타르와 중질타르 특성 29
라. 슬러지 촤 특성 31
마. NOx 전구물질 특성 34
4. 소결론 36
제2절 마이크로웨이브 열분해/가스화 가스 개질 37
1. 연구내용 37
2. 실험장치 및 방법 38
가. 실험장치 38
나. 실험방법 40
3. 결과 및 고찰 41
가. 가스성상에 대한 영향 42
(1) 이산화탄소 개질 특성 42
(2) 메탄 개질 특성 44
(3) 이산화탄소와 메탄 혼합가스 개질 특성 46
나. 개질 수용체 영향 50
다. 개질 온도 영향 51
라. 수용체 체류시간 영향 51
마. 이산화탄소/메탄 비 영향 54
바. 이산화탄소/수증기 비 영향 57
사. 촉매 영향 59
4. 소결론 63
제3절 마이크로웨이브 타르 개질 64
1. 연구내용 64
2. 실험장치 및 방법 65
가. 실험장치 65
나. 실험방법 67
3. 결과 및 고찰 69
가. 타르 크래킹 69
나. 타르 개질 71
(1) 타르 이산화탄소 개질 71
(2) 타르 이산화탄소/수증기 개질 74
다. 타르 크래킹과 개질 비교 77
라. 탄소 수용체 촉매 적용 80
4. 소결론 82

제 4장 바이오가스 개질
제1절 초단열 압축스파크 점화 개질 84
1. 연구내용 84
2. 실험장치 및 방법 86
가. 실험장치 74
나. 실험방법 88
3. 결과 및 고찰 91
가. 산소부화율 영향 91
나. 바이오가스 이산화탄소 비 영향 93
다. 흡기온도 영향 95
라. 엔진회전속도 영향 95
4. 소결론 98
제2절 3D-IR Matrix 버너 개질 99
1. 연구내용 99
2. 실험장치 및 방법 100
가. 실험장치 100
나. 실험방법 102
3. 결과 및 고찰 105
가. Ni 촉매 특성 105
(1) 반응기 안정화 105
(2) 수증기/탄소 비 영향 106
(3) 모사 바이오가스 성분비 영향 108
(4) 공간속도 영향 110
(5) 개질 반응기 온도 영향 112
나. Ru 촉매 특성 114
(1) 반응기 안정화 114
(2) 수증기/탄소 비 영향 114
(3) 모사 바이오가스 성분비 영향 116
(4) 개질 반응기 온도 영향 118
(5) 공간속도 영향 120
(6) 촉매 비교 120
4. 소결론 123
제3절 플라즈마 덤프 개질 125
1. 연구내용 125
2. 실험장치 및 방법 125
가. 실험장치 125
나. 실험방법 127
3. 결과 및 고찰 129
가. 덤프 공급가스 유량 영향 129
나. 물 공급 유량 영향 131
다. 공기비 영향 133
라. 바이오가스 성분비 영향 135
마. 공급 전력 영향 136
4. 소결론 138

제 5장 결론 139

참고문헌 141
Degree
Doctor
Publisher
조선대학교
Citation
임문섭. (2017). 하수슬러지의 마이크로웨이브 가열 가스화 및 바이오가스 개질 특성.
Type
Dissertation
URI
https://oak.chosun.ac.kr/handle/2020.oak/13341
http://chosun.dcollection.net/common/orgView/200000266455
Appears in Collections:
General Graduate School > 4. Theses(Ph.D)
Authorize & License
  • AuthorizeOpen
  • Embargo2017-08-25
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.