CHOSUN

키넥트 센서 데이터를 이용한 K-pop 포인트 안무 분석에 관한 연구

Metadata Downloads
Author(s)
김동현
Issued Date
2017
Abstract
In this paper, we suggests a method of classifying Korean pop (K-pop) dances. In order to accomplish this, we construct a K-pop dance database, including 200 dance movements produced by four professional dancers and forty amateur dancers from skeletal joint data obtained by a Kinect sensor. First, we obtain thirteen core angles representing important motion features from 25 markers in each frame. The calculated angles are normalized with a min-max normalization technique and four statistical values (minimum value, average value, maximum value, variance) are calculated every 30 frames. The 13 statistical angles calculated through the above procedure are used as feature vectors by connecting them. Then, a dimensionality reduction is performed with a combination of principal component analysis and Fisher’s linear discriminant analysis. Finally, we design a Regularized-Extreme Learning Machine (R-ELM) classifier using ridge regression analysis. Experimental results show that classification performance is better than existing methods such as k-NN (K-Nearest Neighbor), SVM (Support Vector Machine) and ELM (Extreme Learning Machine).
Alternative Title
K-pop Point Dance Analysis Based on Using Kinect Sensor Data
Alternative Author(s)
Kim, Dong Hyeon
Department
일반대학원 제어계측공학과
Advisor
곽근창
Awarded Date
2017-08
Table Of Contents
목 차
제1장 서론 1
제2장 ELM(Extreme Learning Machine) 5
제1절 ELM의 구조 5
제2절 ELM 분류기 6
제3절 R-ELM 분류기 10
제3장 K-pop 포인트 댄스 분류 방법 13
제1절 K-pop 포인트 댄스 특징 추출 13
제2절 PCA + LDA 차원축소 알고리즘 19
제3절 K-pop 포인트 댄스 분류 23
제4장 실험 및 결과 26
제1절 K-POP 포인트 댄스 DB 구축 26
제2절 실험결과 34
제5장 결론 42
참고문헌 44
Degree
Master
Publisher
조선대학교
Citation
김동현. (2017). 키넥트 센서 데이터를 이용한 K-pop 포인트 안무 분석에 관한 연구.
Type
Dissertation
URI
https://oak.chosun.ac.kr/handle/2020.oak/13334
http://chosun.dcollection.net/common/orgView/200000266444
Appears in Collections:
General Graduate School > 3. Theses(Master)
Authorize & License
  • AuthorizeOpen
  • Embargo2017-08-25
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.