CHOSUN

The mechanism of cellular senescence and neuronal differentiation in human bone marrow mesenchymal stem cells

Metadata Downloads
Author(s)
정신구
Issued Date
2016
Keyword
stem cell, senescence, neuronal differntiation
Abstract
Adult stem cells have been used for cell therapy in patients with aging related diseases such as degenerative disorder. A sufficient quantity of stem cells is necessary to maximize therapeutic efficacy. For this reason, isolated stem cells must be amplified under in vitro culture conditions. However, stem cells undergo replicative senescence during long-term culture. Cellular senescence causes functional decline of cells due to cumulative damages in DNA, proteins, lipids, and carbohydrates. Thus, stem cell expansions increase the risk of cellular senescence, resulting in reduced therapeutic efficacy or the failure of stem cell therapies.
In this study, first, I examined alteration of intracellular ROS and apoptotic signaling pathway in senescent stem cells. Senescent stem cells resisted oxidative damage induced by hydrogen peroxide, and the expression of the apoptotic molecules (Bax, Bcl-2, cleaved caspase-3 and p53) did less change in response to apoptotic stimulation in senescent stem cells compared to young stem cells. In addition, I detected increasing ROS levels and decreasing antioxidant proteins (SOD1, SOD2, and catalase) in senescent stem cells. These senescence phenotypes were partially recovered by scavenging excess ROS by treatment with the antioxidant reagent ascorbic acid. Thus, control of excessive ROS production during the long-term expansion may yield better quality of cells which may lead to improved therapeutic efficacy in stem cell therapy.
Next, I observed the anti-oxidant and anti-senescent effects through the treatment of trichostatin A (TSA), Undaria pinnatifida extracts (UP-Ex), or Gracilaria vermiculophylla extracts (GV-Ex) to stem cells. When the senescent cells were treated with TSA, UP-Ex, or GV-Ex, the expression of anti-oxidant proteins (SOD1, SOD2, and catalase) was significantly restored, and the excessive ROS was reduced. The expression of senescence related proteins (p53, p21, and p16) were decreased and differentiation potency was restored. This study suggests that stem cell cultures with TSA, UP-Ex, and GV-Ex may improve the efficiency of cell therapy by preventing stem cell senescence.
Mesenchymal stem cells (MSCs) have the potential to differentiate into neuronal cells, and have been used for cell therapy in neurological diseases. Many researchers have tried to improve the efficiency of differentiation through the epigenetic approach and the pattern analysis of the genes during the neuronal differentiation process. This means that genetic and epigenetic regulations are important for the neuronal differentiation. In this study, I investigated the role of histone deacetylase Sirt2 and stress granules (SGs) which were involved with post-transcriptional modification in neuronal differentiation process. I observed that acetylation of α-tubulin expression levels gradually decreased from 2 to 6 h and then returned to baseline at 12 h during neuronal differentiation, while the expression of Sirt2 was significantly increased. Sirt2 regulates the expression of neural specific proteins NF-M and MAP-2 via ERK-CREB pathway activation. I observed that the SGs were significantly increased between 1 and 2 h during neuronal differentiation and then gradually decreased after 2 h, whereas neural specific protein NF-M expression was begun to increase after 6 h. Taken together, it was concluded that Sirt2 and SGs may play an important role in the neuronal differentiation. Therefore, specific roles of Sirt2 and SGs in neuronal differentiation need to be further investigated.
|성체 줄기세포는 퇴행성 질환과 같은 노화 관련 질환의 세포치료제로서 사용되어왔다. 줄기세포의 충분한 양의 확보는 치료 효율성의 증가를 위해 필수적이다. 이러한 이유로, 분리된 줄기세포는 기내 배양을 통해 충분한 세포의 양을 확보해야 한다. 그러나 장기간의 배양 동안 줄기 세포는 복제 노화를 겪는다. 세포 노화는 DNA, 단백질, 지질, 그리고 탄수화물의 누적된 손상으로 인해 세포의 기능적 감소를 유발한다. 이와 같이, 줄기세포의 장기간 배양은 세포 노화를 증가시키고 이로 인해 세포 치료의 실패 또는 효율성의 감소를 야기시킨다.
본 연구는 첫째로 노화된 줄기 세포에서 세포 사멸 경로의 변화와 활성 산소를 관찰하였다. 노화된 줄기 세포는 과산화수소에 의해 유도된 손상에 저항하였고, 세포 사멸 단백질 (Bax, Bcl-2, cleaved caspase-3와 p53)의 발현이 젊은 줄기 세포에 비해 노화된 줄기 세포에서 스트레스 반응에서 발현이 적은 변화를 보였다. 또한 노화된 줄기 세포에서 세포 내 활성 산소 수준의 증가를 관찰하였고, 항-산화 단백질인 SOD1, SOD2, catalase의 발현의 감소를 관찰하였다. 항-산화 물질인 아스코르브산을 처리한 결과, 항-산화 단백질의 유의한 회복을 통해 축적된 활성 산소가 감소하는 것을 관찰하였다. 이는 활성 산소의 제어가 세포 노화의 제어와 세포 치료의 효율성을 높이기 위해 중요한 요인인 것을 의미한다.
다음으로 활성산소의 제어를 위해 항-산화 효능을 갖는 물질을 찾고자 연구를 진행하였다. 본 연구에서는, 노화된 줄기 세포에서 trichostatin A (TSA)와 참미역 추출물 그리고 꼬물꼬시래기 추출물의 처리를 통하여 항-산화 및 항-노화 효과를 관찰하였다. TSA, 참미역 추출물 그리고 꼬물꼬시래기 추출물을 노화된 세포에 처리 하였을 때, 노화로 인해 감소되었던 항-산화 단백질의 발현이 유의하게 회복됨을 관찰하였고, 세포 내 축적되었던 활성 산소의 양이 유의하게 감소됨을 관찰하였다. 또한 노화 표지 단백질인 p53, p21 그리고 p16의 발현이 감소하는 것을 관찰하였고, 분화-능 역시 회복됨을 관찰하였다. 이 연구는 줄기세포 배양액과 함께 TSA, 참미역 추출물 그리고 꼬물꼬시래기 추출물을 처리 하였을 때 줄기세포의 노화를 억제하여 세포 치료의 효율성을 증가시킬 수 있음을 의미한다.
중간엽 줄기세포는 신경세포로 분화 할 수 있는 능력이 있고, 신경계 질환의 치료제로 사용 되어왔다. 많은 연구자들은 신경 분화 과정 동안 후생 유전적 접근과 분화 과정 동안의 유전자 패턴의 분석을 통해 분화 효율성을 높이고자 하였다. 이는 유전적 및 후생유전적 조절이 신경세포의 분화에 중요하게 작용하는 것을 의미한다. 본 연구는 히스톤 탈아세틸화 효소인 Sirt2와 전사 후 변형에 관여하는 스트레스 그래뉼의 신경 분화 과정 동안의 역할을 연구하였다. 신경 분화 과정동안 α-tubulin의 아세틸화가 2시간에서 6시간에 감소하였다가 회복되는 것을 관찰하였고, 이를 조절하는 Sirt2의 발현이 유의하게 증가하는 것을 관찰하였다. Sirt2를 억제하였을 때 분화 과정 동안 신경 특이적 단백질인 NF-M과 MAP-2의 발현은 유의하게 감소하였고 이는 Sirt2가 ERK와 CREB의 인산화를 통해 신경분화를 조절하는 것을 나타낸다. 스트레스 그래뉼의 형성은 신경 분화 동안 1시간에서 2시간 사이에 유의하게 증가되었고 2시간 이후부터 점진적으로 감소하는 것을 관찰하였다. 반면에 신경 특이적 단백질인 NF-M의 발현은 6시간부터 증가되는 것을 관찰하였다. 종합적으로, Sirt2와 스트레스 그래뉼은 신경 세포로의 분화 기전에 있어서 중요한 역할을 할 수 있다. 그러므로 신경분화에 있어서 Sirt2와 스트레스 그래뉼의 정확한 역할에 대한 연구는 진행 되어야 한다.
Alternative Title
인간 유래 골수 줄기세포의 노화 및 신경 분화 기전 연구
Alternative Author(s)
Sin-Gu Jeong
Affiliation
조선대학교 대학원 생명과학과
Department
일반대학원 생명과학
Advisor
조광원
Awarded Date
2017-02
Table Of Contents
CONTENTS

List of Tables i

List of Figures ii

Abbreviations v

Abstract vii

국문초록 x



l. Introduction 1
1. Stem cells as a biomedicine 1
2. Cellular senescence in stem cells 1
3. Reactive oxygen species (ROS) 2
4. Microtubules (MTs) 3
5. Stress granules (SGs) 3


II. Materials and Methods 5
1. Human BM-MSCs and culture conditions 5
2. Senescence-associated β-galactosidase (SA-β-gal) staining 5
3. Detection of intracellular ROS 6
4. Quantitative PCR (real-time PCR) 7
5. MTT assay 9
6. Osteocyte and adipocyte differentiation 9
7. Immunoblot analysis 10
8. Preparation of Gracilaria vermiculophylla extract and Undaria
pinnatifida extract 14
9. Immunocytochemical staining 15
10. Neuronal differentiation 16
11. Evaluation of apoptotic cells and senescent cells 16
12. Activity analysis of caspase-3, caspase-8, and caspase-9 17
13. Statistical analysis 17



lll. The Main Subject 18

Part I. Cellular senescence and Reactive oxygen species 18

Chapter 1. Accumulation of apoptosis-insensitive human bone marrow-mesenchymal stem cells after long-term expansion 18
1. Introduction 18
2. Results 21
(1) Long-term expansion of hMSCs results in cellular senescence phenotypes 21
(2).. Resistance to oxidative damage in long-term cultured MSCs 24
(3)…Apoptosis-resistant cells accumulated in long-term cultured MSCs 27
(4). Early-passage MSCs respond to oxidative stress, but not late MSCs 30
3. Discussion 33


Chapter 2. Elevation of endogenous ROS levels in replicative senescence-human bone marrow mesenchymal stem cells 36
1. Introduction 36
2. Results 39
(1).. Endogenous ROS increased in long term cultured MSCs 39
(2) Treatment with the antioxidant ascorbic acid restores signaling molecules in MSCs 42
(3).. Restoration of potency in MSCs by treatment with ascorbic acid 45
3. Discussion 48


Chapter 3. Trichostatin A modulates intracellular reactive oxygen species through SOD2 and FOXO1 in human bone marrow-mesenchymal stem cells 51
1. Introduction 51
2. Results 54
(1). Significant decrease in intracellular ROS in TSA-treated MSCs 54
(2).. TSA up-regulates antioxidant protein SOD2 in MSCs 58
(3)... Protective effects of TSA against oxidative injury in MSCs 60
(4). TSA modulates FOXO1 and SOD2 in oxidative stress-induced MSCs 63
3. Discussion 65



Chapter 4. Extracts from the red algae Gracilaria vermiculophylla prevent cellular senescence and improve differentiation potential in replicatively senescent human bone marrow mesenchymal stem cells 69
1. Introduction 69
2. Results and Discussion 72
(1) Protective effects of G. vermiculophylla extracts against oxidative stress in MSCs 72
(2) GV-Ex moderates iROS levels through the regulation of antioxidant enzymes 76
(3) Restoration of the levels of antioxidant enzymes and senescence proteins by GV-Ex treatment in replicatively senescent MSCs 79
(4) GV-extract treatment reverses the functional decline in replicatively senescent MSCs 82


Chapter 5. Functional restoration of replicative senescent mesenchymal stem cells by the brown alga Undaria pinnatifida extracts 85
1. Introduction 85
2. Results 87
(1). Protective effects of UP-Ex against oxidative stress in MSCs 87
(2). Restriction of excessive ROS by UP-Ex in MSCs 90
(3) Recovery of antioxidant enzymes by UP-Ex in replicative senescent MSCs 93
(4). Restoration of differentiation capacity by UP-Ex treatment 96
3. Discussion 98



Part II. Regulatory mechanism on neuronal differentiation 101

Chapter 1. The tubulin deacetylase sirtuin-2 regulates neuronal differentiation through the ERK/CREB signaling pathway 101
1. Introduction 101
2. Results and Discussion 105
(1)...Alteration of acetylated α-tubulin during neuronal differentiation 105
(2). The activity of tubulin deacetylases HDAC6 and Sirt2 is involved with neuronal morphology 108
(3).. Sirt2 regulates the expression of neural-specific proteins during neuronal differentiation 111
(4).. Sirt2 inhibition impairs the ERK-CREP signaling pathway in neuronal differentiation 114



Chapter 2. The assembly of stress granules during neuronal differentiation 118
1. Introduction 118
2. Results and Discussion 122
(1). .SGs assembled during the neuronal differentiation 122
(2). SG assembly is not appeared in neural specific marker expressing cells 127
(3).. Inhibition of eIF2α dephosphorylation impede the process of neuronal differentiation 131


IV. Conclusion 136


V. References 138


VI. Acknowledgements 165
Degree
Doctor
Publisher
조선대학교 대학원
Citation
정신구. (2016). The mechanism of cellular senescence and neuronal differentiation in human bone marrow mesenchymal stem cells.
Type
Dissertation
URI
https://oak.chosun.ac.kr/handle/2020.oak/13036
http://chosun.dcollection.net/common/orgView/200000265916
Appears in Collections:
General Graduate School > 4. Theses(Ph.D)
Authorize & License
  • AuthorizeOpen
  • Embargo2017-02-21
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.