로봇의 자율주행을 위한 칼만필터 위치 추정 방법
- Author(s)
- 한준희
- Issued Date
- 2016
- Keyword
- Robot, Indoor, underwater, Localization, Unscented Kalman Filter, Extended Kalman Filter
- Abstract
- This paper reports Kalman filter methods for localization of robots. The methods are implemented for robots in indoor and underwater environment. They propose a new model of measurement uncertainty which adjusts the error covariance depending on the measured distance. The methods also use non-zero off-diagonal values in error covariance matrices of motion uncertainty and measurement uncertainty. The method is tested through experiments in an indoor environment of 100*40 m working space using a differential drive robot which uses Laser range finder as an exteroceptive sensor. The results compare the localization performance of the proposed method with the conventional method which doesn’t use adaptive measurement uncertainty model. Also, the experiment verifies the improvement due to non-zero off-diagonal elements in covariance matrices. This paper contributes to implementing and evaluating a practical UKF and EKF approach for mobile robot localization.
This paper also includes a simulation method to generate sensor measurements for location estimation of an underwater robot. Field trial of a navigation method of an underwater robot takes much time and expenses and it is difficult to change the environment of the field trial as desired to test the method in various situations. Therefore, test and verification of a navigation method through simulation is inevitable for underwater environment. This paper proposes a method to generate sensor measurements of range, depth, velocity, and attitude taking the uncertainties of measurements into account through simulation. The uncertainties are Gaussian noise, outlier, and correlation between the measurement noises. Also, the method implements uncertainty in sampling time of measurements. The method is tested and verified by comparing the uncertainty parameters calculated statistically from the generated measurements with the designed uncertainty parameters. The practical feasibility of the measurement data is shown by applying the measurement data for location estimation of an underwater robot.
- Alternative Title
- Kalman Filter Localization Methods for Autonomous Navigation of a Robot
- Alternative Author(s)
- Han, Jun Hee
- Affiliation
- 조선대학교 대학원
- Department
- 일반대학원 제어계측공학과
- Advisor
- 고낙용
- Awarded Date
- 2016-02
- Table Of Contents
- 제 1장 서론 1
제 1절 연구 배경 및 목적 1
제 2절 논문의 구성 5
제 2장 로봇 위치추정 방법 7
제 1절 실내 이동로봇 위치추정 7
1. 무향 칼만 필터 알고리즘 7
2. 적응성을 갖는 센서의 불확실성 오차 공분산 설계 11
3. 오차 공분산 행렬의 비 대각 성분 설계 12
제 2절 수중 시뮬레이션 측정 센서 생성 과정 14
1. 표기법 14
2. 센서 측정값 시뮬레이션 15
가. 로봇 이동정보 시뮬레이션 16
나. 동기식/비동기식 센서 출력 시간 시뮬레이션 17
다. 가우시안 잡음을 적용한 센서 측정값 시뮬레이션 20
라. 상관관계와 비정상 측정값 시뮬레이션 22
제 3장 실험 및 고찰 25
제 1절 실내 이동로봇 추정 결과 25
1. 제어변수 26
2. 설계된 센서 불확실성 비교 실험 27
3. 비 대각 성분 비교 실험 32
4. 확장 칼만 필터와 무향 칼만 필터 추정 결과 비교 실험 33
제 2절 수중 환경 시뮬레이션 측정 센서 실험 35
1. 가우시안 잡음 적용 검증 38
2. 상관관계 적용 검증 39
3. 가우시안 잡음과 상관관계 복합적용 검증 40
4. 위치추정 결과에 의한 시뮬레이션 측정값 검증 40
5. 확장 칼만 필터와 무향 칼만 필터 추정 결과 비교 실험 43
제 4장 결론 48
참고문헌 50
- Degree
- Master
- Publisher
- 조선대학교 대학원
- Citation
- 한준희. (2016). 로봇의 자율주행을 위한 칼만필터 위치 추정 방법.
- Type
- Dissertation
- URI
- https://oak.chosun.ac.kr/handle/2020.oak/12673
http://chosun.dcollection.net/common/orgView/200000265309
-
Appears in Collections:
- General Graduate School > 3. Theses(Master)
- Authorize & License
-
- AuthorizeOpen
- Embargo2016-02-25
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.