inhibitory effects of Dendropanax morbifera on neointima formation and myocardial injury
- Author(s)
- 임리진
- Issued Date
- 2016
- Keyword
- Dendropanax morbifera, Neointima formation, Myocardial injury
- Abstract
- According to the WHO, cardiovascular diseases (CVD) is the number one cause of death globally. Cardiovascular diseases include heart diseases such as, cardiomegaly, heart failure, myocardial infarction, arrhythmia and vascular diseases such as, atherosclerosis and restenosis. The development of materials derived from natural products has recently been actively conducted for the treatment of such cardiovascular diseases. The overall purpose of this study was to determine inhibitory effects of extract from Dendropanax morbifera (D. morbifera) on proliferation and migration of vascular smooth muscle cells (VSMCs) being cause of atherosclerosis and restenosis, furthermore, on cardiomyocyte apoptosis after myocardial injury. Dendropanax morbifera Leveille has been used in traditional medicines for various diseases such as headache, infectious diseases and general debility. However, the effect of extract from D. morbifera on vascular diseases and the mechanisms underlying the effects have not yet been investigated in detail. First of all, to determine the working concentration, MTT assay and BrdU assay were performed. The proliferative activities were significantly decreased by ~40% in RAoSMCs treated 25 g/ml of D. morbifera, which has been determined as the working concentration in further study. In 2-D and 3-D migration assay, the treatment of extracts from D. morbifera significantly decreased the RAoSMCs migration by more than 40% and ~50% compared to control. Treatment of the extracts from D. morbifera significantly reduced the mRNA levels of matrix metalloproteinase (MMP) 2 and 9 whereas the levels of MMP 7 were not altered. Also western blot assay results through both the media and cell lysate showed that D. morbifera significantly reduced the platelet derived growth factor (PDGF)-induced MMP2 and 9 expression. Similar results were observed with gelatin zymographic assay. Also the phosphorylated levels of AKT and ERK 1/2 were increased in PDGF-treated RAoSMCs, which has been selectively decreased in D. morbifera-treated RAoSMCs. These results demonstrate that Akt and ERK are likely a downstream target of D. morbifera-mediated signaling that regulates MMP2 and MMP9 expression and their functions in cell migration in RAoSMCs. Further, neointima formation in balloon-injured rat carotid artery were significantly decreased in the extracts from D. morbifera-treated rats by 50~60% compared to non-treated controls. Also immunohistochemical analysis for balloon-injured vessels of the extracts from D. morbifera-treated rats using ki-67 and PCNA antibodies revealed a significant reduction of the proliferative activity in the neointimal layer. Western blot analyses for tissue lysates showed similar results of 50~70% decrease compared to controls. In addition, immunohistochemistry of balloon-injured vessels in the extracts from D. morbifera-treated to rats with antibody to MMP2, 9 revealed with a reduction of the migratory activity in the neointimal layer. Furthermore, the expression level of MMP2 were significantly reduced in the extracts from D. morbifera-treated to rats by 60~75% compared to controls. These results suggest that the extracts from D. morbifera inhibit proliferation and migration in RAoSMCs also reduce neointima formation after balloon injury in rats. In this study, the effects of the extracts of D. morbifera on hypoxia/reoxygenation (H/R) injured cardiomyocytes (CMC) were investigated. The condition of cardiomyocytes with H (30min)/R (1hr) decreased the cell number, but the treatment of D. morbifera inhibited CMC death induced apoptosis. These results suggested that the progress of apoptosis in CMC are regulated by D. morbifera after H/R. D. morbifera treated CMC reduced ROS generation and intracellular calcium concentration (Ca2+i) compared with positive control (the condition of H/R). Also DM attenuated abnormal changes of RyR2 and SERCA2a genes in hypoxic cardiomyocytes by western blot. These results suggest that DM ameliorates ROS generation and Ca2+i homeostasis as preventing dysregulation of calcium regulatory proteins in the heart, thereby producing the cardioprotective effect and reduction in hypoxic cardiomyocytes damage. In order to screen the natural products having activities for cardiovascular diseases, 31 more extracts besides D. morbifera were tested. Then, each extracts were tested whether they have anti-proliferative and anti-migratory activities on RAoSMCs. As these results, indicated that the activity of Plantago asiatica is specific on anti-proliferation and those of Pinus densiflora is specific on anti-migration in RAoSMCs. Further studies will be needed to reveal the mechanisms underlying the effects of the extracts on the regulation of RAoSMCs. Because MMP13 is associated with tumor cells migration, hypothesized that MMP 13 participates in VSMC migration induced by certain stimuli such as PDGF and angiotensin II (Ang II). This study found that the mRNA level of MMP13 in RAoSMCs was increased by both PDGF and Ang II. Also observed the significant decrease of migration in PDGF- or Ang II-treated RAoSMCs by MMP13 specific inhibitor treatment. Silencing of MMP13 by a specific small interfering RNA (siRNA) significantly decreased expression of the active form of MMP13, which is followed by the decreased migration of PDGF-or Ang II-treated RAoSMCs. Interestingly, the study observed synergistic inhibitory effects on migration by treatment with MMP2 and 13 or MMP9 and 13 inhibitors compared with that in single treatments. Moreover, found that cordycepin, a known inhibitor of VSMC migration, caused significant downregulation of MMP2, 9, and 13 expression in PDGF-treated RAoSMCs. To understand the mechanism by which stimuli regulate MMP13 expression in VSMCs, analyzed the effects of signal mediator inhibitors on MMP13 expression and found that an Akt or ERK-specific inhibitors, but not PI3K inhibitor, significantly decreased MMP13 expression levels. Together, these study strongly suggest that MMP13 involves VSMCs migration via an Akt and ERK-dependent regulation.|최근 WHO 통계에 따르면, 심혈관계 질환은 전 세계적으로 사망원인 1위인 질환이다. 심혈관계 질환은 심비대증, 심부전, 심근경색, 부정맥 등과 같은 심장질환과 동맥경화나 재협착과 같은 혈관질환을 포함한다. 이러한 심혈관계 질환을 치료하기 위한 천연물 유래의 소재 개발이 최근 활발히 진행되고 있다. 본 연구에서는 황칠나무의 추출물이 동맥경화와 재협착의 원인이 되는 혈관평활근세포의 이동과 증식을 억제할 수 있는 지와 심근경색의 원인이 되는 심근세포 사멸을 억제할 수 있는 지를 확인하였다. 황칠나무는 두통, 염증성 질환, 신경쇠약 등과 같은 다양한 질환을 위한 전통 의약으로 사용되어 왔으나 심혈관질환에 대한 황칠추출물의 효과 및 그 기전은 밝혀진 바가 없다. 본 연구에서는 먼저 MTT assay와 BrdU assay를 시행하여, 25g/ml의 황칠추출물이 혈관평활근세포의 유의적인 증식억제 효과를 보여주는 것으로 확인한 바, 이 후 이 농도를 실험에 사용하였다. 황칠추출물의 처리시 2D와 3D 이동성 분석에서 공통적으로 혈관평활근세포의 유의적인 이동억제효과를 확인하였으며, 황칠추출물을 처리한 실험군에서 세포이동의 지표인 MMP2, 9의 발현변화를 q-PCR, western blot, zymographic analysis를 통해 확인한 바, MMP2와 9 모두 황칠 처리군에서 유의적인 감소를 보여줌으로서 이는 황칠추출물의 혈관평활근세포 이동 억제효과가 MMP2, 9에 특이적이라는 것을 확인할 수 있었다. 또한 세포의 증식과 이동에 중요한 신호전달 물질로 알려진 AKT와 ERK의 인산화정도를 western blot을 통해 분석한 결과, 인산화된 AKT와 ERK의 양이 황칠추출물을 처리한 실험군에서 대조군과 비교시 현저하게 감소한 것으로 나타났으며, 이러한 연구결과들을 통해서, 황칠추출물이 MMP2와 9에 특이적으로 AKT와 ERK의 신호전달체계를 통해 PDGF에 의해 유도된 혈관평활근세포의 이동과 증식을 억제하는 효과를 가진다고 제안한다. 더 나아가 동물모델의 H&E staining 결과에서, 4주간 황칠추출물을 전혀 먹이지 않은 대조군은 풍선확장술 시행 후 현저한 혈관내막형성이 진행되었으나 풍선확장술 전 2주간 황칠추출물을 먹인 실험군은 대조군과 비교시 약 60%의 혈관내막형성 억제율을 나타내었으며 N/M ratio 역시 대조군과 비교시 54%로 현저히 감소됨을 확인하였다. 면역조직화학법을 통해 황칠추출물의 혈관평활근세포 증식과 이동억제효과를 확인한 바, 세포증식의 지표인 PCNA와 Ki-67의 증식활성의 감소를 확인하였으며, 수축성 혈관평활근세포의 지표인 α-SMA의 유의적인 증가를 확인하였고, 세포이동의 중요한 지표인 MMP2, 9 활성의 유의적 감소를 확인하였다. 조직 표본에서 시행한 western blot과 q-PCR 결과에서도 MMP2와 PCNA의 발현이 현저하게 감소한 것으로 확인되어, 황칠추출물의 증식과 이동억제효과를 다시 확인할 수 있었다. 심근세포의 허혈손상에 대한 황칠추출물의 효과를 확인하기 위하여, 먼저 저산소 30분/재산소 1시간씩 처리된 심근세포에 결정된 농도의 황칠추출물을 처리하였는데, 대조군에 비해 유의적인 사멸억제효과를 보여주었다. 심근세포의 허혈/재관류 손상에 따른 ROS양을 측정한 결과, 황칠추출물을 처리했을 때 발생하는 ROS의 양이 현저히 감소하여 약 50%이상의 ROS 감소효과를 보여주었으며, 허혈/재관류 손상으로 세포질내에 증가된 칼슘이온농도가 황칠추출물을 처리했을 때 세포질내 칼슘농도가 감소하는 것을 확인할 수 있었다. 또한 칼슘항상성을 유지하는 가장 중요한 채널인 SERCA2a와 RYR2의 경우, 허혈/재관류손상으로 인해 감소되었던 SERCA2a와 증가되었던 RYR2가 황칠추출물이 처리된 세포에서 정상적인 수준으로 회복되는 것을 확인하였다. 이러한 결과들을 통해 황칠추출물이 심근세포에서 허혈/재관류 손상에 의한 칼슘채널의 변화를 통해 칼슘항상성을 유지하고, ROS 발생억제효과를 통해 심장보호 효과를 가진다고 제안한다. 황칠추출물에 추가로 심혈관계 질환에 효과가 있는 천연소재를 탐색한 결과, 질경이의 뿌리가 혈관평활근세포의 증식억제효과를 보이며, 소나무 껍질이 혈관평활근세포의 이동억제효과를 보이는 것으로 확인되어 각각의 좀 더 자세한 작용기전을 밝히기 위한 추가연구를 진행 중이다. 또한, 최근 유방암이나 피부편평상피세포암의 이동과 전이에 MMP13이 중요한 매개인자로 밝혀지면서 혈관평활근세포의 이동에서 MMP13의 역할을 밝히기 위한 실험을 진행하였다. MMP 특이적 억제제를 처리하였을 때, 2D와 3D 이동 실험 모두에서 MMP2와 9과 마찬가지로 MMP13도 이동억제효과를 보여주었으며, siRNA로 MMP13 발현을 억제한 세포의 이동이 억제됨을 확인하였다. 이동억제제로서 기존논문에서 입증된 cordycepin을 처리하여 세포이동을 억제한 후 MMP13의 발현을 확인한 western blot과 q-PCR 결과에서, MMP2, 9뿐만이 아니라 MMP13도 감소되는 결과를 얻을 수 있었다. 추가적으로 AKT와 ERK가 MMP13의 신호전달체계임 확인하여, 이 같은 결과들을 통해, MMP2, 9에 이어 MMP13도 AKT와 ERK의 인산화를 통해 혈관평활근세포의 이동에 관여함을 확인하였다.
- Alternative Title
- 황칠추출물의 신생내막 형성 및 심근 손상에 대한 억제 효과
- Alternative Author(s)
- Lim, Leejin
- Affiliation
- 조선대학교 대학원
- Department
- 일반대학원 의과학과
- Advisor
- 송희상
- Awarded Date
- 2016-02
- Table Of Contents
- Contents
Contents ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ i
List of Tables ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ v
List of Figures ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ vi
Abstract ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙viii
Abstract in Korean ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ xii
1. Introduction ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 1
2. Materials and Methods ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 8
2.1. Preparation of the extracts of natural plants including D. morbifera ∙∙∙∙∙∙∙∙∙∙∙ 8
2.2. Primary culture of rat aortic smooth muscle cells ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 8
2.3. Primary culture of neonatal rat cardiomyocytes ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 11
2.4. Cell viability assay ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 12
2.5. Cell proliferation assay ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 12
2.6. Cell migration assay ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 13
2.7. Gelatin zymography ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 13
2.8. Immunoblot analysis ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 14
2.9. Real-time quantitative PCR (qPCR) ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 15
2.10. Measurement of intracellular reactive oxygen species (ROS) ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 15
2.11. Measurement of intracellular Ca2+ alteration ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 17
2.12. Balloon injury animal model ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 18
2.13. Morphometric analysis ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 19
2.14. Immunohistochemistry ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 19
2.15. Statistical analysis ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 20
3. Results ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 21
3.1. Effects of Dendropanax morbifera on cardiovascular diseases ∙∙∙∙∙∙∙∙∙∙∙∙∙ 21
3.1.1. Inhibitory effects on neointima formation ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 21
3.1.1.1. Anti-proliferative activities on RAoSMCs ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 21
3.1.1.2. Inhibitory effects of the extracts from D.morbifera on RAoSMCs
migration ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 23
3.1.1.3. Altered mRNA levels of MMP2 and 9 by the extracts from
D. morbifera in RAoSMCs ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 25
3.1.1.4. Altered expression of MMPs by the extracts from D. morbifera in
RAoSMCs ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 27
3.1.1.5. Altered enzymatic activity of MMPs by the extracts from
D. morbifera in RAoSMCs ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 29
3.1.1.6. Altered phosphorylation of signal mediators by the extracts from
D. morbifera in RAoSMCs ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 31
3.1.1.7. Inhibitory effects of the extract from D. morbifera on neointima
formation of balloon injury rat model ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 33
3.1.1.8. Inhibitory effects of the extract from D. morbifera on intimal cell
proliferation and migration ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 35
3.1.1.9. Altered expression of proteins associated with neointima
formation ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 38
3.1.2. Protective effects on myocardial injury ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 40
3.1.2.1. Anti-apoptotic effects in hypoxia-reoxygenated
cardiomyocytes ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 40
3.1.2.2. Altered generation of intracellular ROS by the extracts from
D. morbifera in cardiomyocytes ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 42
3.1.2.3. Intracellular calcium handling by the extracts from D. morbifera
in cardiomyocytes ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 45
3.1.2.4. Altered expression levels of calcium homeostasis-related proteins by the extracts from D. morbifera in cardiomyocytes ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 48
3.2. Additional natural products on cardiovascular diseases ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 50
3.2.1. Anti-proliferative effects of the extracts ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 50
3.2.2. Altered protein levels of Ki-67, PCNA and MMP2 by the extracts from
Plantago asiatica and Pinus densiflora ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 52
3.3. MMP13 is an additional regulator of VSMCs migration ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 55
3.3.1. Inhibition of MMP13 activity results in a reduction of PDGF- or Ang II-
induced RAoSMCs migration ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 55
3.3.2. MMP13 silencing decreases PDGF- and Ang II-induced RAoSMCs
migration ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 59
3.3.3. MMP13 is downregulated by a known RAoSMCs migration inhibitor,
cordycepin ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 64
3.3.4. Akt and ERK are potential mediators of MMP13 expression ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 66
4. Discussion ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 68
5. References ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 73
6. Acknowledgements ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 82
- Degree
- Doctor
- Publisher
- 조선대학교 대학원
- Citation
- 임리진. (2016). inhibitory effects of Dendropanax morbifera on neointima formation and myocardial injury.
- Type
- Dissertation
- URI
- https://oak.chosun.ac.kr/handle/2020.oak/12605
http://chosun.dcollection.net/common/orgView/200000265192
-
Appears in Collections:
- General Graduate School > 4. Theses(Ph.D)
- Authorize & License
-
- AuthorizeOpen
- Embargo2016-02-25
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.