CHOSUN

Improved Belief Propagation Algorithm and its Hardware Architecture for Short Polar Codes

Metadata Downloads
Author(s)
Shajeel Iqbal
Issued Date
2016
Abstract
This thesis has its focus on two topics: 1. Improvement of performance of polar codes using belief propagation (BP) decoding method, and 2. its hardware architecture. Polar codes were first introduced by Arikan [1] and are known for theoretically achieving Shannon’s capacity for discrete memory-less channels. The encoder and decoder for polar codes can be implemented with a complexity of O(NlogN)[1], where N is the code block-length. This complexity can be achieved by using the successive cancellation (SC) decoding algorithm. However, when compared to the other famous coding schemes, like low-density parity-check (LDPC) codes and turbo codes, the performance of polar codes is disappointing in the finite length regime[2], [3].
Thus in the first part of this thesis, we investigate the finite length performance of polar codes, over the additive white Gaussian noise channel (AWGN), while assuming BP decoding as the decoding method. It is suggested to run the BP decoder on the parity check matrix of polar codes. In addition to this, since BP is rather well-studied for LDPC codes, there are many proposed approaches to modify BP in order to obtain better BER performance. Therefore, we proposed a modified version of BP employing damped belief propagation algorithm [4]. Here we show that by modifying this algorithm for polar codes we can achieve significant improvement in BER. The BP algorithm is modified by changing the update equation of the variable nodes. The variable nodes are updated by multiplying them with their previous messages. It is found that the parity-check matrix based tanner graph can be used for the decoding of polar codes, and that the performance of short polar codes can be improved by 1-2 dB using the proposed BP decoder, while keeping the complexity of the original BP decoder. Furthermore, we show that the proposed decoder requires about 10-25 iterations less than the standard BP decoder. The second part of this thesis is devoted to the hardware architecture of polar codes, in which we discuss the various hardware architectures available for polar codes. We also provide the details of the hardware architecture based on the proposed BP decoder.
|이 논문은 두 가지 주제에 관해 초점을 가지고 있다. 1. BP 복호 방법을 이용한 극 부호의 성능 개선, 2. 극 부호의 하드웨어 구조이다. 극 부호는 처음 Arikan에 의해 도입 된 것으로, 개별 메모리 없는 채널에서 Shannon 용량에 이론적으로 근접한다고 알려진다. 극 부호에 대한 부호기와 복호기 복잡도는 O(NlogN)로 구현된다. 여기서, N은 부호의 블록 길이이다. 이러한 복잡도는 연속 소거(SC) 복호 알고리즘을 사용함으로써 구현 될 수 있습니다.
저밀도 패리티-체크(LDPC)코드, 터보 부호와 같이 다른 유명한 코딩 형태와 비교할 때, 극 후보의 성능은 유한한 길이에서 실망스럽다.
그래서, 본 논문의 첫 번째 부분에서는, 백색 가우시안 잡음 채널(AWGN)상에 극 부호의 유한한 길이의 성능을 조사한다. 여기서, 복호 방식으로 BP 복호를 가정한다.
BP코드는 LDPC코드에 비해 잘 연구되어 있고 더 나은 BER성능을 얻기 위해서는 BP를 수정하는 많은 제안들이 있습니다. 따라서 BP 논의 감쇠 신뢰도 전달 알고리즘을 이용하여 수정 한 버전을 제안합니다. 다음은 코드에 대한 극성이 알고리즘을 수정하여 우리가 BER에서 상당한 개선을 있음을 보여 줍니다. BP알고리즘은 변수 노드의 이전 메시지와 함께 그것들을 변수 노드의 갱신 방정식을 변경하여 수정됩니다다. 이 패리티 검사는 행렬을 기반으로 태너 그래프 극 부호의 복호를 위해 사용될 수 있다는 것을 알 수 있고, 복잡성을 유지하면서 짧은 극 부호의 성능이 본 논문에서 제안하고 있는 BP 디코더를 사용함으로써 1-2db 정도 개선 될 수 있다는 것입니다.
제안하는 복호는 표준 약 10~25번의 반복을 덜어 줍니다. 이 논문의 두번째 부분은 극 부호에 사용할 수 있는 다양한 하드웨어 구조를 다루며. 저희가 제안한 BP디코더를 기반으로 하드웨어 구조의 세부사항을 제공합니다.
Alternative Title
짧은 극 부호의 개선된 BP 알고리즘 및 하드웨어 구조
Alternative Author(s)
샤질 이크발
Affiliation
Department of Information and Communication Engineering
Department
일반대학원 정보통신공학과
Advisor
Prof. GoangSeog Choi
Awarded Date
2016-02
Table Of Contents
TABLE OF CONTENT i
LIST OF FIGURES iv
LIST OF TABLES vii
한 글 요 약 x
1. INTRODUCTION 1
1.1 Motivation 1
1.1.1 Desired Decoder 4
1.1.2 Desired Encoder 5
1.2 Contributions 6
1.2.1 Improved BP Decoding of Polar Codes 6
1.2.2 Hardware Architecture of Polar Codes 7
1.3 Outline 7
2. THEORETICAL BACKGROUND 8
2.1 Coding Theory: A brief history 8
2.2 Fundamentals of Channel Coding 11
2.2.1 Channel Model 12
2.2.1.1 Binary Discrete Memory-less Symmetric Channels (BDMS) 13
2.2.1.2 Binary Erasure Channel (BEC) 15
2.2.1.3 Binary Additive White Gaussian Noise Channel (BAWGNC)16
2.3 An Introduction to Block Codes 17
2.3.1 Single Parity-Check Codes18
2.3.2 Repetition Codes 22
2.4 An Introduction to Polar Codes24
2.4.1 Factor Graph of Polar Codes 29
2.4.2 Construction of Polar Codes 30
2.4.2.1 Construction for the BEC 31
2.4.2.2 Construction for the AWGN Channel 31
2.4.3 Successive-Cancellation Decoding 32
2.5 More Powerful Decoding Algorithms 34
2.5.1 Improved SC Decoding 34
2.5.1.1 SCL and SCS35
2.5.1.2 Hybrid Decoding 37
2.5.1.3 CRC-Aided Decoding 38
2.5.2 Belief Propagation Decoding38
2.5.3 ML or MAP Decoding 39
3. IMPROVED BELIEF PROPAGATION DECODING OF POLAR CODES 41
3.1 Belief Propagation Algorithm 41
3.1.1 Belief Propagation Algorithm and Node Operations 44
3.1.2 Example of Node Operations 46
3.2 Belief Propagation Decoder for Polar Codes 47
3.3 Proposed BP Decoding of Polar Codes 49
3.3.1 Parity-Check Matrix-Based BP Decoding of Polar Codes 53
3.3.2 Proposed Method 54
3.4 Simulation Results59
3.4.1 Complexity Analysis59
3.4.2 Performance 60
3.5 Summary 62
4. HARDWARE ARCHITECTURES OF POLAR CODES 63
4.1 Successive-Cancellation Decoder Implementation 63
4.1.1 Processing Elements 63
4.1.2 Partial-Sum Update Logic64
4.1.3 Memory 65
4.2 Simplified Successive-Cancellation Decoding 65
4.2.1 Two-Phase Successive-Cancellation Decoding 67
4.3 Overall Decoder Architecture 68
4.3.1 Processing Unit Architecture 69
4.4 Belief Propagation Decoder Implementation 71
4.5 Implementation Comparison 71
4.6 Hardware Architecture of Polar Decoder Based on the Proposed BP algorithm 72
5. CONCLUSIONS 80
5.1 Summary 80
5.2 Future Work 81
REFERENCES 82
ACKNOWLEDGEMENTS 86
Degree
Master
Publisher
Chosun University, Department of Information and Communication Engineering
Citation
Shajeel Iqbal. (2016). Improved Belief Propagation Algorithm and its Hardware Architecture for Short Polar Codes.
Type
Dissertation
URI
https://oak.chosun.ac.kr/handle/2020.oak/12604
http://chosun.dcollection.net/common/orgView/200000265191
Appears in Collections:
General Graduate School > 3. Theses(Master)
Authorize & License
  • AuthorizeOpen
  • Embargo2016-02-25
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.