CHOSUN

Development of Size-, Surface Chemistry– and Shape-controlled PLGA Nanoparticles

Metadata Downloads
Author(s)
최진석
Issued Date
2014
Abstract
이 연구의 첫 번째 목적은 크기가 정확하게 제어된 paclitaxel이 봉입된 PLGA의 나노와 마이크로 입자의 제조방법을 확립하는 것이다. 두 번째 연구는 PEMA 필름을 이용하여 비 구형입자는 만들어 입자표면을 수식할 수 있도록 만드는 것이다. 다양한 크기의 입자를 에멀젼 프로세스에 의해 만들었다. 다양한 크기의 입자를 가지고 약물 방출, 세포 내 흡수 및 세포 독성을 수행 하였다. 입자의 표면을 수식하기 위해 PVA (하이드록실 사이드 체인) 에서 PEMA (카르복실 사이드 체인) 필름으로 교체하였다. 7 가지 사이즈 (sub-100 nm, 100 nm, 200 nm, 400 nm, 600 nm, 1.0 µm 그리고 2.5 µm) 를 타겟 크기로 설정하고 각 입자를 제조하였다. 좁은 크기 분포를 갖은7가지의 크기의 paclitaxel 이 봉입된 PLGA 입자를 만들었다; 70 nm (77.3 ± 13.3 nm), ~100 nm (103.7 ± 15.9 nm), ~200 nm (204.6 ± 26.1 nm), ~400 nm (430.1 ± 71.5 nm), ~600 nm (608.3 ± 116.5 nm), ~1.0 µm (0.98 ± 0.1 µm) and ~2.5 µm (2.45 ± 0.5 µm). 약물방출실험 결과 입자의 크기가 작아질수록 약물방출은 증가했다.
암세포인 KB 에서 paclitaxel이 봉입된 나노 및 마이크로 입자는 같은 농도에서 독성이 나타났으나 약물자체는 독성이 나타나지 않았다. 세포독성은 입자의 크기에 대한 의존성을 확인했다. 입자의 크기가 작아질수록 높은 독성을 나타냈다. 세포 내 유입실험은 세 가지 크기 (100 nm, 400 nm, 1.0 µm) 의 입자를 가지고 수행되었다. 세포 내 유입 또한 크기와 세포의 종류에 의존적으로 나타났다. 암세포인 KB 에서는 입자의 크기가 작아질수록 세포흡수가 증가 하는 경향을 보여주었으나, 이와는 반대로 대식세포인 Raw 264.7에서는 입자의 크기가 커질수록 세포흡수가 증가하였다.
비구형의 입자표면에 표면수식이 가능한 카르복실 기의 존재를 확인 하기 위해 FITC-Albumin의 결합이 가능하도록 입자의 표면을 카보다이미드 방법에 의해 변형한 후 성공적인 합성을 Confocal 현미경을 이용하여 확인하였다.
본 연구결과는 입자의 크기, 표면수식, 입자의 모양이 모두 제어된 paclitaxel 이 봉입된 PLGA 입자는 암세포 표적지향 PLGA 입자 송달 시스템의 발전에 큰 기여를 할 것으로 기대된다.|The objective of the first study is to establish fabrication methods of precise controlled particle size of PTX-loaded PLGA nano- and microparticles. The second study was carried out to fabricate the nonspherical particles by using the PEMA (poly (ethylene-alt-maleic anhydride)) film to modify the surface of nonspherical particles.
The particles with various ranges of different sizes were obtained by various emulsion process. Drug release, cellular uptake and cytotoxicity studies were conducted on a variety of different particle sizes. To modify surface on PLGA particle, the film was replaced the PVA (with hydroxyl side chains) with PEMA (with carboxylate side chain). The PLGA particle was established seven different sizes (sub-100 nm, 100 nm, 200 nm, 400 nm, 600 nm, 1.0 µm and 2.5 µm). The seven sizes of PTX-loaded PLGA nano- and microparticles with a narrow size distribution were fabricated: 70 nm (77.3 ± 13.3 nm), ~100 nm (103.7 ± 15.9 nm), ~200 nm (204.6 ± 26.1 nm) ~400 nm (430.1 ± 71.5 nm), ~600 nm (608.3 ± 116.5 nm), ~1.0 µm (0.98 ± 0.1 µm) and ~2.5 µm (2.45 ± 0.5 µm), respectively. In vitro drug release, as particle size decreased drug release rate increased. In anti-tumor activity, PTX-loaded PLGA nano- and microparticles showed cytotoxicity on KB cells at the PTX concentration, whereas no cytotoxicity was observed with PTX. Cytotoxicity was confirmed to be size-dependent. In cellular uptake, was investigated with three sizes (100 nm, 400 nm and 1.0 µm). The cellular uptake as well as the cytotoxicity was shown to be size and type of cells dependent. As particle size decreased in KB cells such as tumor cells, however the cellular uptake increased as particle size increased in Raw 264.7 cells such as macrophage.
The nonspherical particles with abundance of carboxylic group were used in conjugation with FITC-Albumin facilitated with carbodiimide as carboxyl group activator then the successful synthesis was confirmed by confocal microscopy.
In conclusion, the controlled size, surface modified and shape of the PTX-loaded PLGA particles to targeted tumor cells are expected to become major contribution in drug delivery system.
Alternative Title
입자크기, 입자표면수식 및 입자모양이 조절된 PLGA 나노입자의 개발
Alternative Author(s)
Choi Jin Seok
Affiliation
식품의약학과
Department
일반대학원 식품의약학과
Advisor
최후균
Awarded Date
2014-02
Table Of Contents
CONTENTS
국문초록 VIII
Literature Review
:PLGA based on nano- and microparticles for drug delivery
1.Introduction 2
2. Tumortargeting 3
3. Pulmonary delivery 6
4. Oral delivery 8
5. Ophthalmic delivery 10
6. Vaginal drug delivery 12
7. Conclusion 14
8. References 15

Chapter 2
Facile size control of PLGA particles in a nano-to-micron scale
1. Introduction 24
2. Materials and Methods 26
2.1. Materials 26
2.2. Preparation of PLGA nano- and microparticles 26
2.2.1. Target size: sub-100-100 nm 26
2.2.2. Target size: 200 nm 27
2.2.3. Target size: 400 nm 28
2.2.4. Target size: 600 nm 28
2.2.5. Target size: 1.0 µm 29
2.2.6. Target size: 2.5 µm 29
2.3. Scanning electron microscopy (SEM) 29
2.4. DLS 29
3. Results 31
3.1. Determination of size controlled particles 31
3.2. Fabrication method of size controlled particle in seven sizes. 33
4. Discussion 35
5. Conclusion 37
6. References 38

Chapter 3
Precisely controlled particle size of paclitaxel-loaded PLGA nano- and microparticles: Influence of particle size on drug delivery
1. Introduction 58
2. Materials and Methods 61
2.1. Materials 61
2.2. Preparation of PTX-loaded PLGA nano- and microparticles 61
2.3. Scanning electron microscopy (SEM) 63
2.4. Determination of paclitaxel content in the PLGA particles 63
2.5. In vitro drug release 63
2.6. Cell Culture 64
2.7. Evaluation of cell cytotoxicity 64
2.8. Cellular uptake 64
3. Results 66
3.1. Controlled particle size 66
3.2. In vitro drug release 66
3.3. Cell cytotoxicity 66
3.4. Cellular uptake 67
4. Discussion 69
5. Conclusion 71
6. References 72

Chapter 4
Fabrication of surface-modifiable nonspherical PLGA particles
1. Introduction 86
2. Materials and Methods 88
2.1. Materials 88
2.2. Preparation of nonspherical particles 88
2.2.1. Fabrication of nonspherical particles by using PVA and PEMA film 89
2.2.2. Fabrication of nonspherical particles by using the PEMA film 89
2.2.3. Effects a type of films on particle stretching 90
2.2.4. Blended PVA and PEMA 90
2.3. Conjugation of ligands to nonspherical particles 90
2.3.1. Fabrication of PEMA film blended with PVA for conjugated with FITC 90
2.3.2. Fabrication of PVA film for conjugated with FITC 91
2.3.3. Fabrication of FITC conjugated PLGA nanoparticles using the PEMA film blended with PVA 91
2.4. Scanning electron microscopy (SEM) 92
2.5. Microscopy and Confocal microscopy 92
3. Results 93
3.1. Nonspherical particles 93
3.2. Determination of conjugated ligands 94
4. Discussion 96
5. Conclusion 97
6. References 98
Abstract 110
Degree
Doctor
Publisher
조선대학교 대학원
Citation
최진석. (2014). Development of Size-, Surface Chemistry– and Shape-controlled PLGA Nanoparticles.
Type
Dissertation
URI
https://oak.chosun.ac.kr/handle/2020.oak/12161
http://chosun.dcollection.net/common/orgView/200000264141
Appears in Collections:
General Graduate School > 4. Theses(Ph.D)
Authorize & License
  • AuthorizeOpen
  • Embargo2014-02-26
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.