CHOSUN

적조유발 편모조류 Heterosigma akashiwo에 감염하는 HaRNAV의 바이러스 유사입자 형성

Metadata Downloads
Author(s)
정해광
Issued Date
2014
Abstract
In order to control harmful algal bloom that causes red tide, we made an attempt to express and purify viral capsid protein genes from viruses, which isolated from harmful algae. The recombinantly expressed VLPs of HaRNAV (specifically infect and kill the flagellated H. akashiwo) is considered as algaecide. The HaRNAV is T-pseudo3 icosahedronal shape, which consists of three structural capsid proteins such as vp1, vp2 and vp3.
The structural gene sequences that encoding HaRNAV capsid proteins were obtained from Genebank (NCBI). These sequences was chemically synthesized with E. coli codon preferences, then cloned into pUC57 vector and then expressed in E. coli BL21 (DE3) host. The VLP genes were cloned into various expression vectors such as pET30a, pET30a-intein, pTXB1, pGEX-4T-1, pMAL-c5x, pET-SUMO and pHCE-IA. These expression vectors posses few drawbacks during cloning, expression, purification and cleavage process. To avoid these problems, the VLPs-TEV protease genes were cloned into pCOLD-TF expression vector, which contains the following specialized genes such as 6xHis (Ni-NTA purification), TF chaperone (increase proper folding and increasing the solubility of the VLPs on N-terminal end) and also other protease genes (Thrombin, FactorXa, HRV3C protease). After cloning, the expression vector also containing TEV protease gene, which helps to cleave the desired VLPs from pCOLD-TF VLPs. The maximum HaRNAV capsid production was obtained at 15℃ in 24h incubation. All the VLPs were purified using Ni-NTA affinity column chromatography. From the SDS-PAGE analysis, it was revealed that the expression systems are capable to produce significant level of VLPs. The molecular weight of TF-vp1, TF-vp2 and TF-vp3 was found to be 82, 72 and 77 kDa, respectively.
In addition, TEV protease was produced using recombinant E.coli grown at 37℃ and then 0.3 mM IPTG induction was performed. Then the culture was grown at 16〫℃ for 20h. After incubation, the supernatant was collected and used for TEV protease purification using Ni-NTA column and FPLC. The fractions obtained from FPLC were analyzed using 12% SDS-PAGE and the molecular weight of TEV protease was found to be 27 kDa. Finally, the protease was concentrated to 1 mg/ml and stored at -80℃ until further use.
To obtain the desired VLPs, the fusion protein (1 mg/ml) and TEV protease (1mg/ml) optimum ratio for vp1, vp2 and vp3 was found to be 200:1, 50:1 and 10:1, respectively. This mixture was incubated at 30〫℃ for 2 h. After incubation, the products were analyzed using 12 % SDS-PAGE. From the results, it was confirmed that the pCOLD-TF vp1 was not completely cleaved. However, the latter two was completely cleaved under the optimum condition. In order to further purification, a number purification techniques were used including Ni-NTA affinity, size exclusion and ion exchange chromatography. The eluted samples were analyzed using 12% SDS-PAGE. From the results, it was observed that no significant and complete purification of VLP.
However, the Ni-NTA affinity chromatographically purified pCold-TF vp1, pCold-TF vp2 and pCold-TF vp3 fusion proteins eluted and dialysed to remove imidazole. All three fusion proteins were mixed to induce self-assembly of vp1, vp2 and vp3 under controlled conditions (fusion protein:TEV protease - 10:1). The formed fusion protein complex was treated with TEV protease at aforementioned conditions. Then the cleaved products were separated by FPLC using sephacryl S-500 packing column. The high molecular weight fractions were collected and analysed using 12% SDS-PAGE. These induced self-assembled VLPs morphology was found to be amorphous structures under TEM analysis.
To find out the host specificity binding efficiency of VLPs with host recognition site with the individual vp-FITC and self assembled VPLs-FITC were tested against various host species such as Heterosigma akashiwo (NEPCC 102), Heterosigma akashiwo (NEPCC 522), Chattonella marina (KMMCC579) and Gyrodinium aurelum (KMMCC 978). The host specificity of FITC fluorescence labeled HaRNAV VLPs were analysed under fluorescence microscopy. From the individual vp-FITC host specificity analysis, there is no significant host binding efficiency was found. In addition, the induced and self-assembled VLPs-FITC also not found host specific binding with the aforementioned algal cells.
Alternative Title
Formation of virus-like particles of HaRNAV infecting Heterosigma akashiwo, a flagellate causing harmful algal blooming
Alternative Author(s)
Jeong, Hae Gwang
Affiliation
조선대학교 대학원 신재생에너지융합학과
Department
일반대학원 신재생에너지융합학과
Advisor
김시욱
Table Of Contents
TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES
Abstract

제 1 장 서 론
제 1 절 연구배경
1. 적조현상
2. 국외 적조 발생 및 피해 현황
3. 국내 적조 발생 및 피해 현황
제 2 절 연구목적

제 2 장 실험 재료 및 방법
제 1 절 HaRNAV VLP 유전자 클로닝
1. HaRNAV VLP 유전자 합성
2. 플라스미드 및 제한효소
3. 사용 배지 및 균주 배양 조건
4. Competent cell 제조
5. HaRNAV VLP 유전자 클로닝
가. 시약 및 기기
나. HaRNAV VLP 유전자 증폭
다. 유전자 단편 TA 클로닝
라. 플라스미드 정제 및 염기서열 확인
마. 제한효소 처리와 DNA 단편의 분리
바. Ligation 및 형질전환
사. 형질 전환된 균체로부터 플라스미드 확인
아. 균주의 보관
제 2 절 HaRNAV VLP 단백질 발현
1. HaRNAV VLP 단백질의 발현 및 정제를 위한 최적 벡터 선정
2. 배양온도에 따른 단백질 발현 조건 탐색
3. IPTG 농도에 따른 단백질 발현 조건 탐색
4. 최적화 조건에서의 단백질 발현 유도 및 cell free extract 제조
5. SDS-PAGE를 이용한 단백질 발현 확인
제 3 절 HaRNAV VLP 단백질 분리/정제
1. TEV protease 정제
2. Affinity chromatography을 이용한 HaRNAV VLP 단백질 정제
가. 재조합 pCold-TF HaRNAV VLP 단백질 정제
나. TEV protease를 이용한 VLP 단백질의 정제
(1) TEV protease를 이용한 융합 단백질의 최적 Cleavage 조건 탐색
(2) TEV protease 처리 후 Ni-NTA을 이용한 VLP 단백질의 정제
3. Gel filtration을 이용한 HaRNAV VLP 단백질 정제
제 4 절 HaRNAV VLP의 자가조립
1. Dialysis를 통한 자가조립 유도
2. TEM 분석을 통한 HaRNAV VLP의 구조 확인
제 5 절 HaRNAV capsid protein 숙주 특이성
1. HaRNAV vp1, vp2, vp3 의 FITC 표지
가. HaRNAV vp1, vp2 그리고 vp3 각각에 FITC 표지
나. HaRNAV vp1, vp2 그리고 vp3의 자가 조립 유도 후 FITC 표지
2. 형광 현미경을 통한 FITC가 표지된 HaRNAV VLP의 숙주 특이성 관찰
가. HaRNAV vp1, vp2 그리고 vp3 각각의 숙주 특이성 관찰
나. HaRNAV vp1, vp2 그리고 vp3의 자가 조립 유도 후 숙주 특이성 관찰

제 3 장 결과 및 고찰
제 1 절 HaRNAV VLP 유전자 합성
제 2 절 재조합 HaRNAV VLP 유전자 클로닝
제 3 절 재조합 HaRNAV VLP 단백질 발현
1. HaRNAV VLP 단백질의 발현 및 정제를 위한 최적 벡터 선정
2. 배양온도에 따른 최적의 단백질 발현 조건 확립
3. IPTG 농도에 따른 최적의 단백질 발현 조건 확립
제 4 절 HaRNAV VLP 단백질 분리/정제
1. TEV protease 정제
2. Affinity chromatography을 이용한 HaRNAV VLP 단백질 정제
가. 재조합 pCold-TF HaRNAV VLP 단백질 정제
나. TEV protease를 이용한 VLP 단백질의 정제
(1) TEV protease를 이용한 융합 단백질의 최적 Cleavage 조건 탐색
(2) TEV protease 처리 후 Ni-NTA을 이용한 VLP 단백질의 정제
3. Gel filtration을 이용한 HaRNAV VLP 단백질 정제
제 5 절 자가 조립 유도를 통한 HaRNAV VLP의 구조 관찰
1. Dialysis를 통한 자가 조립 유도
2. TEM 분석을 통한 HaRNAV VLP 구조 확인
제 6 절 HaRNAV VLP의 숙주 특이성
1. HaRNAV vp1, vp2, vp3 의 FITC 표지
가. HaRNAV vp1, vp2 그리고 vp3 각각에 FITC 표지
나. HaRNAV vp1, vp2 그리고 vp3의 자가 조립 유도 후 FITC 표지
2. 형광 현미경을 통한 FITC가 표지된 HaRNAV VLP의 숙주 특이성 관찰
가. HaRNAV vp1, vp2 그리고 vp3 각각의 숙주 특이성 관찰
나. HaRNAV vp1, vp2 그리고 vp3의 자가 조립 유도 후 숙주 특이성 관찰

제 4 장 결 론

참고문헌
Degree
Master
Publisher
조선대학교
Citation
정해광. (2014). 적조유발 편모조류 Heterosigma akashiwo에 감염하는 HaRNAV의 바이러스 유사입자 형성.
Type
Dissertation
URI
https://oak.chosun.ac.kr/handle/2020.oak/12127
http://chosun.dcollection.net/common/orgView/200000264800
Appears in Collections:
General Graduate School > 3. Theses(Master)
Authorize & License
  • AuthorizeOpen
  • Embargo2015-02-25
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.