CHOSUN

수학교육에서의 반성의 의미와 역할에 대한 고찰

Metadata Downloads
Author(s)
김수진
Issued Date
2006
Abstract
The history of mathematics education in late of the 19th century is represented for the New Math from the late 1950s to the late 1960s, Back to the Basics in the 1970s, and Problem Solving and Meta-cognition in the 1980s considering the unit of a decade. Especially meta-cognition became the centered interest as a main subject of the mathematics education studies together with problem solving education in the 1980s. And lots of researches concerned with it have been even progressed recently with activity.
But, despite the advance in studies like this, there is a problem that cognition regarding the concept of the meta-cognition is not necessarily positive. In fact, the notion of meta-cognition has been pointed out continually because of the ambiguity and uncertainty from the initial stage up to recently.
However, though these questions aren't raised lately, the school of mathematics education has just dived in studies applying to the concept of meta-cognition. There is almost no researches intended to reveal the concept itself.
Although the status of the meta-cognition in mathematics education lies in the application stage equivalent to the final stage, it can be said that it is placed in contradictory situation which fundamental problems are unsolved.
Therefore, it is essential at this point in time that the work of examining the concept of meta-cognition closely. This study has an intention to find out the nature of the concept of meta-cognition in aspects of mathematics education having a critical mind.
Alternative Title
A Study on the Role and Meaning of Reflection in Mathematics Education
Alternative Author(s)
Kim, Soo-Jin
Affiliation
조선대학교 교육대학원
Department
교육대학원 수학교육
Advisor
黃惠貞
Awarded Date
2006. 2
Table Of Contents
표목차 = ⅲ
ABSTRACT = ⅳ
Ⅰ. 서론 = 1
1. 연구의 필요성 및 목적 = 1
2. 연구의 내용 = 3
3. 연구의 제한점 = 3
Ⅱ. 반성에 관한 문헌 연구 = 4
1. 교육학 입장에서의 반성의 의미 = 4
1) Dewey = 4
2) Schön = 7
2. 수학과 교수 학습 이론에서의 반성의 의미 = 9
1) Piaget의 반영적 추상화 = 9
2) Freudenthal의 수학화 현상 = 11
3) Van hieles의 수학학습수준이론 = 13
4) Skemp의 반영적 지능과 델타 2 지휘체계 = 16
Ⅲ. 수학교육에서의 반성의 의미와 역할 = 19
1. 수학교육에서의 반성 개념의 공통적 이해 = 19
2. 반성과 메타인지의 이해 = 24
1) 메타인지 개념의 유래 = 24
2) 메타인지의 역할 = 29
3) 반성과 메타인지의 역할 비교 = 34
Ⅳ. 요약 및 제언 = 41
1. 요약 = 41
2. 반성과 메타인지가 교육에 미치는 영향에 관한 제언 = 41
참고문헌 = 43
Degree
Master
Publisher
조선대학교 교육대학원
Citation
김수진. (2006). 수학교육에서의 반성의 의미와 역할에 대한 고찰
Type
Dissertation
URI
https://oak.chosun.ac.kr/handle/2020.oak/4465
http://chosun.dcollection.net/common/orgView/200000232988
Appears in Collections:
Education > Theses(Master)(교육대학원)
Authorize & License
  • AuthorizeOpen
Files in This Item:

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.