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록

외선열화상기술을 용한 원 배 감육결함 검출에 한

연구

김 주

지도 교수 :나 만 균

원자력공학과

조선 학교 학원

최근 장기가동으로 노후화된 원 의 수가 증가하고 있고,그에 따라 원 2차계통

설비의 문제로 인한 발 정지 사례가 증가하고 있다.이러한 사례들은 피로,부식,감

육 등에 의해 원 2차계통의 각종 구조물에서 발생한다.그 감육결함은 배 내부

유체의 유동에 의한 부식의 가속화로 인해 발생하며,Cr함량이 낮은 탄소강 배 에서

자주 발생한다.이러한 감육결함은 사 징후 없이 바로 손상으로 진행되고 모재부에

서도 흔히 발생하며 배 의 건 성을 하시키는 주요 원인 하나로 알려져 있다.

감육결함의 체계 인 리를 해서는 주기 인 검사가 필요하며,특히 원 의 가동

을 멈추지 않은 상태에서도 정 검사가 요구된다. 부분의 원 2차계통 설비는 원자

력발 소의 안 성과 직 인 련은 없으나 일부 기기는 고장 발생 시 출력 감소

는 발 정지로 이어져 경제 인 손실을 래한다.특히 원 2차계통은 정상운

운 원 는 작업자들이 쉽게 근하여 작업을 하는 곳으로 상하지 못한 배 의 손

상은 심각한 사회 향을 미치기 때문에 매우 요하다.그로인하여 주요설비에

한 건 성 여부 확인을 해 비 괴검사에 한 심이 고조되고 있고 비교 안 하

면서 빠르고 쉽게 측정할 수 있는 비 괴검사의 요구가 증 되고 있다.

재 원 2차계통에는 음 검사,와 류검사,자기탐상검사 등 여러 가지 비 괴

검사가 수행되고 있다.이러한 비 괴검사는 외선열화상기술을 포함하고 있다. 외

선열화상기술은 결함부와 미결함부의 온도차를 찰하여 결함의 유무를 확인함으로써
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기존의 비 괴검사에 한 제약을 해결할 수 있을 것이고 장에서의 활용도가 높을

것으로 상된다.

따라서 본 연구에서는 원 배 내부의 감육결함을 검출하기 하여 외선열화상

기술을 용하 다. 외선열화상기술을 용하여 정상운 인 원 과 정비기간인

원 의 결함을 검출하기 해서는 실제 원 과 비슷한 조건에서 시험이 수행되어야 한

다.이를 하여 정비기간 인 원 은 배 의 온도가 상온을 유지하므로 가열장치를

이용한 시험을,정상운 인 원 은 배 의 온도가 고온을 유지하므로 냉각장치를

이용한 시험을 수행하 다.가열 냉각장치를 이용한 시험에 앞서 본 연구에 용

가능한 가열 냉각장치를 조사하고 검토하여 최 의 장치를 선정하여 가열 냉각

효과와 시험조건을 알아보기 한 유한요소 해석을 수행하 다.수치 인 기법을 사용

하여 수행된 유한요소 해석을 통하여 각 장치들의 가열 냉각효과를 확인할 수 있었

고,시험조건을 알아볼 수 있었다.유한요소 해석 결과를 용한 가열 냉각시험은

인 으로 결함을 가공한 배 시험편의 결함을 검출하는 결과를 얻을 수 있었다.가

열장치를 이용한 시험에서는 정비기간의 원 에 용하여 결함을 검출할 수 있을 것으

로 측할 수 있었다.반면에,냉각장치를 이용한 시험에서는 결함을 부분 으로 검출

할 수 있었고,정상운 인 원 에 용하기 해서는 냉각장치를 개선 보완하는 것

이 필요하다고 단되었다.

본 연구의 결과를 통하여 외선열화상기술을 이용한 신뢰성 있는 결함 검사 기술을

개발함으로써 2차계통 배 설비에 한 유지보수를 용이하게 할 수 있도록 하여 감육

결함 검사 시 기 자료로 사용할 수 있도록 할 것이다. 한,원 설비의 가동 효율과

가동 단으로 인한 에 지 경제 손실을 최소화할 수 있을 것으로 기 된다.
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Ⅰ.Introduction

The number ofaging nuclear power plants after long-term operation has

increased recently.Accordingly,the number of operational interruptions has

increasedduetomalfunctionsoftheNPPssecondarysystems.Thesecasesoccur

in thesecondary systemsofNPPswith arangeofstructuresduetofatigue,

wall-thinning,corrosionsetc..Oftheseproblems,wall-thinneddefectsoccurinthe

pipesbythediffusionofthecorrosionwiththeflow ofthefluids,andthedefects

frequently takeplacein thecarbon steelpipeswith lower  contents.Such

wall-thinneddefectscanleadtodamagewithoutwarningsignswhiletheycanbe

foundfrequentlyinthebasematerialpart.Therefore,theyareknowntobeoneof

themajorfactorsthatdegradetheintegrityofapipe[1]-[2].

Periodicinspectionsarerequiredforsystematicmanagementofthewall-thinned

defects.Inparticular,theyarealsoneededduring thenormaloperationsofthe

NPPs.MostoftheNPP'ssecondarysystemsarenotrelateddirectlytothesafety

oftheNPPs.However,ifafailureoccursinsomeofthesecondarysystem,itmay

causethepowerrampingorreactorshutdownwhatresultsineconomicloss.In

particular,systematicmanagementrequiresacloseinspectionevenwhentheNPPs

isin operation.Thesecondary system oftheNPPsistheplacetowhichthe

operatororworkersgainaccessfortheirworkfrequently.Unexpecteddamagetoa

pipecanhavesocialimpactsthatcannotbecomparedwiththelossofordamage

to people, which highlights the importance of systematic management of

wall-thinned defects. Consequently, considerable attention has been paid to

non-destructiveinspections(NDI)toexaminetheintegrityofmajorfacilities.In

addition,thereisincreasingdemandfortheNDIthatarerelativelysafeandenable

measurementsinaquickandeasymanner[3].

Currently,arangeofNDIareconductedsuchasultrasonictesting(UT),eddy

currenttesting (ECT)and magnetic particle testing (MT)[4]-[5].Such NDI
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involveinfrared(IR)thermography.IR thermographyisexpectedtohelpresolve

theissuesrelatedtothelimitationsontheexistingNDIbecauseitisusedto

examinedefectsbased on measurementsofthetemperaturedifferencebetween

defectpartandnon-defectparts.IRthermographyisalsoexpectedtobeusefulon

aNPPsite[6].

IRthermographyisareliabletechniquefordetectingwall-thinneddefectsinthe

innerpipesofNPPsthatareinnormaloperationortheoverhaulperiod,andis

expectedtofacilitatethemaintenanceofplumbing fixturesofNPP’ssecondary

system.Theresultsofthisstudy willbeused asthebasicmaterialforthe

inspectionsofwall-thinneddefects.
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Ⅱ.TheoreticalBackground

A.IRThermography

When an objectis heated orcooled from an outside,thermaldiffusion is

disturbedonthesurfaceofthetargetdependingontheexistenceofthedefects

insidethetarget.Inthiscase,theinsulationeffectbydefectsinsidethetarget

causestemperaturedifferenceonthetargetsurface.IR thermographyisusedto

measurethetemperatureonthesurfaceofthetargetandconvertthemeasurement

resultstoanimageinreal-time.Basedonareal-timeimageobtainedusingan

infrared(IR)camera,itispossibletomeasuretheshapeandlocationofthedefects

insidethetarget.

IRthermographyhasthefollowingfeatures[7]:

-Non-contacttechnique

-Fullfieldimageofstress

-Energymeasurementtechnique

-Easyinterpretationoftheresults by visualeffects

Currently,IR thermography is applied to the military field,stress analysis,

welding monitoring,evaluation oftheheattransfercharacteristics,deterioration

diagnosisofpowerfacilities,defectinspectionincomposites,andmedicaldiagnosis

[8].Fig.1showstheprincipleofIRthermography.
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Fig.1.Diagram ofIRthermography

B.Theory

Alltheobjectshaveatemperaturethatisaboveabsolutezerodegreeandthey

emitradiantenergythatcorrespondstotheirtemperature[9].





  


 

(1)

Plank’sconstant  × ∙ 

Boltzmann’sconstant  × 

Speedoflight  × 

Eq.(1)describesthePlank’stheoryofblackbodyradiation.Accordingtothe

theory,thereisasimplerelationshipbetweencharacteristicsofblackbodyradiation

(energyintensityandwavelength)anditstemperature.Moreover,theamountof

radiationemittedfrom ablackbodyradiatorperunittimeisdeterminedonlyby
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temperature,whichisthecharacteristicofblackbodyradiation.Thecharacteristics

canbeusedtocalculatethetemperatureofblackbody.IR thermographyenables

measuringamountofemittedenergytoprovideatemperatureimagebasedonthe

correlationbetweenamountofthedetectedenergyandtemperature[9].









  

 (2)

Stefan-Boltzmann’sconstant  ×
 ∙ 

Eq.(2)describestheStefan-Boltzmann’slaw.Thistheorystatesthatthetotal

energyradiatedperunitsurfaceareaofablackbodyandperunittimeisdirectly

proportionaltothefourthpoweroftheabsolutetemperature,.Inthiscase,

representstheabsolutetemperatureinKelvinofanobjectand isthereflection

intensity ofablackbody.Based on theEqs.(1)and (2)mentioned above,IR

cameraisusedtomeasurethetemperature.

Anidealblackbodyemitterdoesnotexistinreality.Iftheenergyemittedfrom

arealobjectis andtheenergyemittedfrom ablackbodyis,theemissivity

ofanobjecttoblackbodysurfaceatthesametemperaturecanbeexpressedby

Eq.(3)[9].

  


:Emissivity (3)

Inthiscase,if=1,theobjectiscalledablackbody.Therefore,formetalwith

low emissivity,theemissivitycanbekeptat0.95ifamattecolorspray,whichis

closetoablackbody,isapplied.
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Ⅲ.OptimalHeating/CoolingMethods

A.HeatingMethods

DuringtheshutdownofanNPPsuchasoverhaulperiod,thepipeoftheNPP’s

secondarysystem showsthedistributionofthetemperaturethatisalmostsimilar

tothatoftheroom temperature.Inaddition,whenapipeintheroom temperature

isheateduprapidly,thethermaldiffusionisinterrupteddependingontheexistence

ofthedefectsinsidethepipe.Theinsulationeffectduetosuchdefectscauses

differenceinthetemperaturechangethatappearslocallyinthepipe.A proper

heatingdevicetocausesuchtemperaturedifferenceisaveryimportantfactorto

usetheIRthermography.Thispaperexaminedthevariousheatingmethodsforthe

optimalheatingdeviceandinvestigatedtheapplicabilityofthemethods.

1.HalogenLamp

Asa kind ofincandescentlamp,a halogen lamp isbased on thechemical

reactionofthehalogenmaterialwithinertgasincludinghalogenmaterialintiny

quantityfilledinthelamp.Thehalogenlampshowslinearchangesinspectral

energydistributionwhenalightsourceisvisibleray(380-760nm).Therefore,the

lampishighlystableforlightsourceandshowshighradiantenergyininfrared

light(higherthan760nm)region.Consequently,thehalogenlampcanbeusedas

heatsource.Moreover,thelifespan ofthelamp isgreatly influenced by high

voltagewhileratedvoltageisanimportantfactortoperformanceofthelamp.The

halogenlampshowsasmalldecreaseinluminousfluxatthemomentoflighting

comparedtoothercommonlampsandasmallchangeindistributiontemperature

(colortemperature)duringtheperiodofthelifespan.
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2.InfraredLamp

Asakindofincandescentlamp,theinfraredlampreinforcescharacteristicofthe

infraredradiation.Theinfraredlampemitsvisibleraylessthanincandescentlamp.

Instead,thelampemitsmostofinputenergyintheform oftheinfraredenergy

thathasthermaleffect.Themostsignificantcharacteristicoftheinfraredlampis

highefficiencyoftheheattransferbecausethesurfaceofobjectisdirectlyheated

upduetoradiation.However,thelamphastheweakpointthatithastheshorter

lifespanthanthehalogenlamp.

3.UltravioletLamp

Theultravioletrayhasthewavelengthof100-400nm asashort-wavelengthray

thathasthehighestenergyamongvariousraysthatreachtheearthfrom thesun.

A commonultravioletlampemits70-80% oftheinputenergywhileinoperation.

Duetoaconduction,aradiation and aconvection,such thehigh temperature

increasesthetemperaturesofaglasstube,areflectorandhardeningmaterialsthat

enclosethelamp.Themostsignificantcharacteristicoftheultravioletlampisthat

multi-purposelampcanbeproduceddependingonusageofthelamp.

4.XenonLamp

A xenonlampemitsrayduetoelectricarcdischargethathappensinsidetubeof

thequartzcrystalchargedwithhigh-pressurexenongas.A spectraldistributionof

the xenon lamp consists ofa continuous spectrum thatis uniform from the

ultraviolentregion tovisibleregion and astrong linespectrum in thepartof

near-infrared ray.In regard to naturallighting and performance,the color

temperatureisalmostconstantwhilethebrightnessisveryhigh.Moreover,optical

powerbecomesstableimmediatelyatthemomentofthelighting.Instantstartis
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alsopossibleafterlightsgoout.

5.InductionHeatingDevice

Theinductionheatingdeviceheatsupobjectbyconvertingelectricenergyto

thermalenergy in the electromagnetic induction.The induction heating device

enablesintensiveheatinginashortperiodofthetime.Furthermore,thedevicecan

beusedsemi-permanentlywithoutthemaintenance,whichprovidestheeconomical

strongpoints.However,thedevicehastheweakpointsthatitcanbeusedonly

formetalandrequiresthehighinitialcostoftheproduction.

6.AirHeater

AnairheatergenerateshotairinthehightemperatureandhasNi-Crhotwire

thatiscoiledinthecenteroftheceramicinsidequartztubeandthestainlesspipe.

Theairheaterabsorbsambientairandatthesametime,sendsheatinhotwire

to nozzle,which heats up surface of the object.The air heater can be

manufacturedinasmallsizewhileitcangeneratehightemperature.Inaddition,

theheatingrateishighwithuseofthediversenozzles.Therefore,itispossibleto

heatupaspecificpartoftheobjectintensively.However,theairheaterhasthe

weakpointsthatitcauseshighnoiseandalsoheatsupambientairtogether.

7.SelectionofaHeatingMethod

Thispaperintendedtoderivetheoptimalheatingmethodinordertoobtainthe

thermalimageofthegeometricshapeofthedefectssuchasasizeofthedefects

andadepthfrom thesurfaceinaneasierandquickerway.Theheatingmethods

examinedtobeappliedtothisstudyincludedthemethodtoheatuppipeusingthe

lampssuchasahalogenlamp,aninfraredlampandaxenonlampandthemethod
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Heatingmethod Applicability

Halogenlamp

Ahalogenlampcanbemanufacturedinasmallsizeandlight

weight.Thelampitselfgeneratesheatalotandisrelatively

strong againstthermalshock compared to otherlamps.In

addition,thebrightnessandtemperatureareconstantuntilthe

endoflifespanwhilelifespanofthelampislongthanksto

halogenregenerativecycle.

Infraredlamp

A heatisnotabsorbedbyairwhileitgoesstraightthrough

space forheating.As surface ofthe objectis heated up

directly,thethermalefficiencyishigh.Ontheotherhand,the

emissionoftheinfraredraydecreasesperformanceofanIR

camerabecausetheemissioninterfereswithacquisitionofthe

thermalimagebyanIRcamera.

Xenonlamp

Thexenonlamphasexcellentproductivityofthelightand

showsthelongdistanceandlargeareaofthelightemission.

In addition,the lamp can be used withoutstabilizerand

manufacturedinlightweight.Ontheotherhand,thelamp

hasthelargeareaofthelightemissionsothatitmayheat

TABLE1.Applicabilityoftheheatingmethods

toheatuppipeusinganinductionheatingdeviceandanairheater.Amongthe

aforementionedheatingmethods,weexaminedthecharacteristicsofvariousheating

methodstoinvestigateapplicabilityofsuchmethodstothisstudy.Table1shows

theexaminationresultsofapplicability.

AsshowninTable1,ahalogenlampwasevaluatedtobethemostexcellent

amongtheheatingmethodstousetheIRthermographyanddetectthedefectsin

the pipe ofthe NPPs.In addition,the halogen lamp is currently used by

universitiesandresearchinstitutesasaheatingdevicetoinvestigatethedefects

usingtheIR thermography.Therefore,performanceofthehalogenlamphasbeen

provedinmanystudies.Inthispaper,theIRthermographywasusedasaheating

devicewiththehalogenlamptodetectthewall-thinneddefectsinsidethepipe.
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upairinthesurroundings.Thelampisexpensivecompared

tootherlamps.

Ultravioletlamp

TheUV lampcanbeproducedindiversekindsaccordingto

usage.Thelampcanbeusedforthickmaterialbecauseit

has the high penetrating power. On the other hand,

high-temperatureheatinlampitselfhasanadverseeffecton

qualityofthelamp.

Inductionheating

device

Theinductionheatingdeviceenablesrapidheatingandlocal

heating. It can be used semi-permanently without

maintenance.Moreover,thedevicecanbecontrolledasithas

diverse outputs and enables selecting frequencies in wide

range.Ontheotherhand,itisrequiredtodesigncoilinthe

pipe.Thedeviceislargeinvolumesothatitisnoteasyto

movethedevice.

Airheater

Anairheaterissmallinsizewithhighheatingrate.The

nozzlecanbemanufacturedin variousformssothatitis

possibletoprovideheattothestraightpipeandbendpipe

properly.On theotherhand,theheaterheatsupnotonly

objectbutalsoambientair.Therefore,itisdifficulttoobtain

thethermalimagewithuseofanIRcamera.
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B.CoolingMethods

InanNPPthatisinnormaloperation,thepipesarecoveredwithinsulatorsand

areathightemperature,transferringheatuptothesurfaceoftheinsulators.When

acoolingdeviceisusedtocoolthepipesathightemperatures,thermaldiffusionis

disturbeddepending ontheexistenceofdefectsinsidethepipes.Theinsulation

effectsby defectscauselocaldifferencesin temperatureon thesurfaceofthe

pipes.WhenanIRcameraisusedtoobtainathermalimageofthepipes,where

suchatemperaturedifferenceoccurrs,defectsinthepipesareshownintheimage

dependingontheexistenceofdefects.Therefore,afterexaminingvariouscooling

methodsand investigating applicability ofsuch methods,wefound outon an

optimalcooling method to detectdefects in the NPP’s pipes using the IR

thermography.

1.TubeAirCooler

A tubeaircoolerisacoolingdevicewherepathwayofaircurrentisnarrowed

toincreasefluidvelocityascompressedairrotatesinhighspeed,whichaimsat

separating hotair currentfrom coolair current.The tube air cooler uses

compressedairinageneralcompressortocoolairreadily.Inaddition,thecooleris

fundamentallysafebecauserefrigerant,electricityoranychemicalsarenotusedfor

thecooler.Thecooleriseffectivespeciallyforlocalcoolingeventhoughithaslow

capacity.However,thecoolerhassomedrawbacksbecauseitrequiresanadditional

equipmenttousecompressedairandneedstobeinstalledwithequipmentthat

producescompressedairinordertobeusedportably.

2.Water-cooledAircoolerandAir-cooledAirCooler

A cooleris a device thatconverts high-temperature high-pressure gaseous
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refrigerantto low-temperature liquid refrigerant.Gaseous refrigerantcontaining

heatthatis taken away from evaporator gets cooled as itpasses through

condenser.Therefore,heatisreleasedtotheoutsideasthegaseousrefrigerantis

turnedtotheliquidrefrigerant.Coolercanbeclassifiedtowater-cooledaircooler

and air-cooled aircooler.The air-cooled aircoolerhas the excellentcooling

capability asitpreventsdegradation ofcooling function thatisattributableto

increaseinroom temperature.Moreover,theair-cooledaircoolerenableskeeping

temperatureconstantpreciselyandcanbeadjustedinthewiderangeofuse.The

water-cooled air cooler uses water from a cooling tower to work in the

condensation cooling method.Itminimizes indoornoise and shows the higher

coolingefficiencythantheair-cooledaircooler.

3.HeatPipe-TypeCooler

A heatpipe-typecoolerisacoolingdevicethattransfersheatinlargequantity

tocondenserpriortousingthepininstalledinthecondenserforcoolingthrough

naturalconvectionorforcedconvection.Theheatpipe-typecoolerusesworking

fluidofFC-27inthemaximum thermalloadof1.5kW.Inaddition,ithasthe

operatingtemperatureof-30∼120℃ withthehighcoolingefficiency.Sincewater

quantity in heat pipe can be adjusted,the heat pipe-type cooler can be

manufacturedinvariousforms.However,theheatpipe-typecoolerhasdrawbacks

thatittakeslongertimeforcoolingthanothercoolersandrequirestheinstallation

ofadditionalfantoincreasecoolingefficiency.

4.Fan

A fan isadevicethatstirsupthewindaswingsinstalledontheaxisof

electricmotorrotate.Thefancanbeclassifiedtodeskfan,ventilatingfanand

standfandependingonshapeandpurposeofuse.Majorpartsofthefaninclude
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stand,pillar,motor,andwing.Itcanbeadjustedquitefreelyaccordingtoangle

anddirectionofmovement(upanddownorrightandleft).Thepillarofthefan

alsocanbeadjustedupwardlyordownwardly.Thefanhasthefront-sidecontrol

panelthatenablesaneasycontrolasallofthedevicesareinstalledonthefront

sideofstand.Thefancanbealsoclassifiedtoturbofan,limitfanandsiroccofan

dependingonshapeofwing.Theturbofanhasthewingthatitstipisbenttothe

backwardofrotationdirection,whichincludestheonewithcurvedwingandthe

onewith straightwing.Theturbofan showsthehigh efficiency and can be

operatedrelatively quietlyevenatahigh speed.Thelimitfan isanupgraded

versionoftheturbofanandthesiroccofan.Ithasthestreamlinedwingthatis

manufacturedbyfoldingathinplate.Therefore,thelimitfancanberotatedina

highspeedwithlow noise.Thesiroccofanhasabentshapeasthetipofwingis

benttowardtherotationdirection.Comparedtoothertypesoffansinthesame

capacity,thesiroccofanfeaturesthesignificantlylow numberofrotation.

5.SelectionofaCoolingMethod

Inthisstudy,anoptimalcoolingmethodwasselectedtoobtaintheIRimageof

defectsinageometricshapeinaneasierandquickerwaywithaview toexamine

thedefectsizeanddepthfrom thesurface.Previouscoolingmethodsincludea

methodforcoolingapipeusing awater-cooledaircooleroranair-cooledair

cooler,atubeaircooler,aheatpipe-typecooler,andafan.Table2liststhe

characteristicsoftheirrespectivecoolingmethods.

AsshowninTable2,thecoolingmethodusingafanwasevaluatedtobethe

bestamongthevariouscoolingmethods.Thefancoolingmethodcanbecombined

with othercooling methods orcan be used independently.Therefore,the fan

coolingmethodwasusedinthisstudytodetectwall-thinneddefectsinsidethe

pipebasedonIRthermography.
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Coolingmethod Applicability

Tubeaircooler

Ascompressedairisusedforcooling,thecoolerischeapand

portable.Thecoolerhaslow capacity,whichiseffectivefor

cooling locally.On the other hand,it requires additional

equipment to use compressed air. Some limitations are

expectedwhenacoolerisusedonthesiteoftheNPPs.

Air-cooledair

coolerand

Water-cooledair

cooler

Thecoolersenablethemaintenanceofaconstanttemperature

andcanbeadjustedoverawiderangeofuse.Theyshow

excellentcoolingcapabilitywithhighefficiency.Ontheother

hand,theinitialcostofmanufacturingishigh.Theyareheavy

andunsuitableforportableuse.

Heatpipe-type

cooler

The cooler has high cooling efficiency while the water

quantity in a heat pipe can be adjusted,which enables

manufactureinarangeofforms.Inaddition,theintervalof

theheatpipeitselfcanbeadjusted.Ontheotherhand,the

cooler shows high cooling efficiency when itis installed

directlyonthetarget.A fanalsoneedstobeinstalled.

Fancooler

A fanisreadilyavailable,anditswingcanbemanufactured

inavarietyofforms.Theangleofthecoolercanbeadjusted

while the rotation speed of the fan can be adjusted

continuously and freely. In addition, the cooler can be

manufacturedtobelightweight.Therefore,itisbelievedthat

thecoolerwillbeeasytouseandportable.

TABLE2.Applicabilityofthecoolingmethods
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Ⅳ.SimulationandExperiment

Inthisstudy,thehalogenlampheatingdeviceandthefan-typecoolingdevice

wereselectedastheequipmentforheatingandcoolingthepipespecimen.Before

the experiments,finite element analysis (FEA) simulation was conducted to

examinetheheatingandcoolingeffectoftheselectedheatingandcoolingdevice

aswellastheoptimalexperimentconditions.FEA simulationwasperformedusing

ANSYS FLUENT 13.0,and theGAMBIT program was used to generatethe

meshesthatweremodeledtoconductFEA simulation[10]-[11].Inaddition,based

onthesimulationresults,theheatingandcoolingexperimentswereperformedto

detectdefectsinsidethepipespecimen.

A.SpecimenandEquipment

1.Specimen

Thepipespecimenusedinthisstudyhasdefectsinsidefortheheatingand

coolingexperiments.Fortheexperiments,thepipespecimen,4inchesindiameter,

wasmanufacturedwiththematerialofShc.80ASTM A106Gr.B,whichissimilar

totheactualpipeusedintheNPPs.AsshowninFig.2,thepipespecimenhasa

totallengthof500mm,thicknessof7.5mm,andexternaldiameterof113mm.On

theinnersurface,fourdefectswerecreatedinaconstantlength.Thefourdefects

hadadepthof50% and75%,respectively,ofthethicknessofthepipespecimen.

Table3showsthedimensionsofthecreateddefectsinthepipespecimen.A matte

colorspraywasalsoappliedtothesurfaceofthepipespecimentomaintaina

surfaceemissivityof0.95andminimizethereflectionoflight.Fig.3showsthe

pipespecimenthatwasmanufacturedinthisstudy.
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Fig.2.Designofapipespecimen

Fig.3.Pipespecimen
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Size

Circ.Angle,θ/π 0.25

Depth,d/t 0.5,0.75

length,L/D0 0.5

TABLE3.Dimensionsofthedefectsinthepipespecimen

2.HeatingandCoolingDevices

Inthisstudy,weinvestigatedandexaminedthedevicesthatcouldbeusedto

heatupandcooloffpipespecimenbeforeselectingeachdevice.Asforheating

device,two1kW halogenlampswereusedalongwithpowersupplytoadjustthe

power.The1kW halogen lampwasPAR64CP61EXD NSP ofPhilips,which

features20cm ofthediameter,3,200K ofthecolortemperatureand300hoursof

theaveragelifespan.

A blowerfanwasusedasacooling devicetocoolthepipespecimen.The

blowerfanhad6wingswithamaximum windspeedof16.5m/s.Thesizeofits

wingwas27cm.Theblowerfanallowsuniform coolingofthepipespecimen.
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(a)heatingdevice

(b)coolingdevice

Fig.4.Heatingandcoolingdevices
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B.SimulationMethod

In regard to experiments for wall-thinned defects inside the pipe,thermal

analysiscanbedeterminedbasedontheFEA simulationthatusesthenumerical

techniquepriortoexperiment.TheFEA simulationprovidesthedatatopredict

problemsinthethermaldistributionofthepipespecimenbasedonananalysisof

thesimulation results,toconfiguretheheating andcooling devicethatcanbe

appliedtoanactualenvironment,andinvestigatetheoptimalexperimentconditions.

1.PipeSpecimenModelingandBoundaryCondition

Inthisstudy,thepipespecimenusedfortheexperimentwasASTM A106Gr.B,

whichisfrequentlyusedforanactualpipeoftheNPP’ssecondarysystem that

wasmanufacturedfrom carbonsteel.Therefore,pipespecimenmodelingforFEA

simulationwasperformedunderthesameconditionsasthoseforthepipespecimen

thatwasusedforexperimentontheheatingandcoolingdevices.

The basic boundary conditions forthe FEA simulation were established as

follows.Tosimplifytheanalysis,symmetricconditionsweresettoconsiderhalfof

thepipespecimenmodel.Inaddition,thetemperature(25℃)fortheentirespace

werekeptconstant,excludingthoseforthepipespecimenmodelandheatingand

coolingdevicemodel.

2.HeatingMethod

Inthisstudy,ahalogenlampwasusedastheheatingdevice.Thecharacteristics

ofthehalogenlampwereusedtomakeaFEA simulationtoexaminetheheating

effects ofthe heating device and the optimalexperimentconditions.ANSYS

FLUENT wasusedtoperform theexperimentaccordingtodistancebetweenthe

1kW halogenlampmodelandthepipespecimenmodelandwithpowerofthe
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halogen lamp adjusted [10]-[11].Asforthesimulation conditions,thedistance

betweenthepipespecimenmodelandhalogenlampmodelwasadjustedto1m,2m

and3m,whereaspowerofthehalogenlampmodelwassetto50%,60% and80%

accordingly.Inaddition,asurfacetemperature,asurfaceemissivity,ashape,anda

surfaceareaofthehalogenlampmodelweretakenintoconsideration.Thepipe

specimenmodelandthehalogenlampmodelinrectangularcoordinateweresetas

thebasicmodelingtomakeaFEA simulationfortheheatingdevice.Fig.5(a)

showsdiagram ofpipespecimenmodelandhalogenlampmodelwhileFig.5(b)

showsthatmeshwascreatedtoimproveprecisionofaFEA simulation.
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(a)diagram ofthepipespecimenmodelandhalogenlampmodel

(b)creationofmeshes

Fig.5.Configurationofmodelledhalogenlampandpipespecimenmodel
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3.CoolingMethod

Thisstudy usedthecooling devicewasbased on theprinciplesofthefan.

Therefore,toconductFEA simulationofthecoolingdevice,theprinciplesofafan

wereappliedtocoolthepipespecimenmodelthroughforcedconvectioncausedby

thepressuredifferencebetweensurfacesofthefanmodelandthepipespecimen

model.Inaddition,waterwasdesignedtoflow insidethepipemodeltodescribea

hotpipeintheNPPsinnormaloperation.Themassflow rateofwaterwassetto

1kg/sec.Fig.6(a)showsdiagramsofthepipespecimenmodelandfanmodel.Fig.

6(b)showsthemeshesthatwerecreated to improvetheanalysisaccuracy.

ANSYSFLUENT wasusedtoperform asimulationoftheFEA simulationfora

coolingdevice[10]-[11].Thedistancebetweenthefanmodelandpipespecimen

modelandthepressuredifferenceinthefanmodelwereadjusted.Forsimulation

conditions,thedistancebetweenthepipespecimenmodelandthefanmodelwas

adjustedto1m,2m and3m,whereasthepressuredifferenceinthefanmodelwas

setto100Paand150Pa.Thetemperatureofwaterflowinginsidethepipespecimen

modelwasadjustedto100℃ and200℃.Here,thepressuredifferenceof100Pacan

berepresentedby12.4m/sandthepressuredifferenceof150Pacanberepresented

by15.2m/s.
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(a)diagram ofthepipespecimenmodelandfanmodel

(b)creationofmeshes

Fig.6.Configurationofmodelledfanandpipespecimenmodel
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C.SimulationResults

1.HeatingSimulationResults

AFEA simulationfortheheatingdevicewasconductedasmodelingoftwo1kW

halogenlampswithopticalpowerwasperformedwithpoweranddistanceadjusted.

Table4showstheconditionsoftheFEA simulation.Fig.7showsthesimulation

resultsfor60secondsrespectivelyaspowerofhalogenlampmodelwaskeptat

50% anddistancebetweenthepipespecimenmodelandhalogenlampmodelwas

adjustedto1m,2m and3m.Regardlessofthedistancebetweenthepipespecimen

modeland halogen lamp model,thetemperaturedifference in defectsite was

observedwiththenakedeyeunderalloftheexperimentconditions.However,the

sharpnessofthetemperaturevariationindefectsitewaslowerwhendepthofthe

defectswas50% ofthepipespecimenmodelthicknessthanwhendepthwas75%.

Moreover,sharpnesswasthehighestwhenthedistancewas1m.Itwasconfirmed

thatshapeofthedefectslookedbrokenwhenthedistancewas3m.

Fig.8 shows the simulation results that was performed for 60 seconds

respectivelyaspowerofthehalogenlampmodelwaskeptat60% anddistance

betweenthepipespecimenmodelandthehalogenlampmodelwasadjustedto1m,

2m and 3m.Regardlessofdistancebetween thepipespecimen modeland the

halogenlampmodel,thetemperaturedifferenceindefectsitewasobservedtobe

conspicuousunderalloftheexperimentconditionswhileashapeofthedefects

wasmoredistinctthanthecasewherepowerofthehalogenlampmodelwas50%.

However,asharpnessofthedefectswaslowerwhenadepthofthedefectswas

50% ofthepipespecimenmodelthicknessthanwhendepthwas75%,whichwas

thesameasthecasewherepowerofthehalogen lamp modelwas50%.In

addition,whenthedistancebetweenthepipespecimenmodelandthehalogenlamp

modelwas1m,thedefectswereclearwhileashapeofthedefectswasthemost

similartoactualshapeofthedefects.
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Fig.9showsthesimulationresultsthatwasperformedaspowerofthehalogen

lampmodelwaskeptat80% anddistancebetweenthepipespecimenmodeland

thehalogenlampmodelwasadjustedto1m,2m and3m.A shapeofthedefects

wassimilartotheactualshapeofthedefects.

AccordingtotheFEA simulationresults,thetemperatureonsurfaceofthepipe

specimenmodelwasthehighestwhenpowerofthehalogenlampmodelwas80%

anddistancebetweenthepipespecimenmodelandthehalogenlampmodelwas

1m.Moreover,thedefectswereclearwhileshapeofthedefectswasthemost

similartoactualshapeofthedefects.However,asharpnessofthedefectsvaried

accordingtodepthofthedefects.Asdistancebetweenthepipespecimenmodel

and the halogen lamp modelincreased,heattransferto surface ofthe pipe

specimenmodelwasdecreaseddramatically.Therefore,theFEA simulationresults

confirmed the heating effects ofthe heating device thatused halogen lamp.

Consequently,itcouldbepredictedthatdefectscouldbewelldetectedunderthe

optimalexperimentconditions thatpowerofthe halogen lamp was 80% and

distancebetweenthepipespecimenandthehalogenlampwas2m orless.

Heatingsource

Powerof

halogenlamp

model

Heatingtime

Distancebetweenpipe

specimenandhalogen

lampmodel

1kW halogenlamp

50%

60sec

1m,2m,and3m

respectively

60%
1m,2m,and3m

respectively

80%
1m,2m,and3m

respectively

TABLE4.Conditionsoftheheatingsimulation
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(a)distanceofthehalogenlampmodelfrom pipespecimenmodel-1m

(b)distanceofthehalogenlampmodelfrom pipespecimenmodel-2m

(c)distanceofthehalogenlampmodelfrom pipespecimenmodel-3m

Fig.7.50% powerof1kW halogenlampmodel
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(a)distanceofthehalogenlampmodelfrom pipespecimenmodel-1m

(b)distanceofthehalogenlampmodelfrom pipespecimenmodel-2m

(c)distanceofthehalogenlampmodelfrom pipespecimenmodel-3m

Fig.8.60% powerof1kW halogenlampmodel
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(a)distanceofthehalogenlampmodelfrom pipespecimenmodel-1m

(b)distanceofthehalogenlampmodelfrom pipespecimenmodel-2m

(c)distanceofthehalogenlampmodelfrom pipespecimenmodel-3m

Fig.9.80% powerof1kW halogenlampmodel
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2.CoolingSimulationResults

A FEA simulation to confirm thecooling effectsofthecooling deviceand

investigatetheoptimalexperimentconditionswasperformedaspressuredifference

ofthefanmodelwasadjustedto100Paand150Paanddistancewasadjustedto

1m,2m and3m accordingly.Inaddition,astemperatureofthewaterthatflowed

insidethepipespecimenmodelwassetat100℃ and200℃,ananalysiswasmade

for60seconds.Table5showstheconditionsoftheFEA simulation.

Thesimulationresultwereobtainedbasedontheimageat30seconds,which

showedthedefectsthemostclearlycomparedtotheresultsofsimulationthatwas

conductedfor60seconds.Fig.10showsthesimulationresultsthatwereperformed

whenthepressuredifferenceofthefanmodelwas100Pa,thetemperatureofthe

pipespecimen modelwas100℃ and 200℃,andthedistancebetween thepipe

specimenmodelandfanmodelwasadjustedto1m,2m and3m.Thedeviationof

thetemperatureinthedefectpartwasconspicuousunderallsimulationconditions

regardlessofthedistancebetweenthepipespecimenmodelandfanmodel.

Inaddition,Fig.11showsthesimulationresultsthatwereperformedwhenthe

pressuredifference ofthe fan modelwas 150Pa,the temperature ofthe pipe

specimenmodelwas100℃ and200℃,andthedistancebetweenthepipespecimen

modelandfanmodelwasadjustedto1m,2m and3m.Theshapeofthedefects

wasobservedwiththenakedeye.Thedefectsappearedclearerasthepressure

difference in the fan modelincreased regardless ofthe depth ofthe defects.

Moreover,thedefectsbecamemoredistinctwhenthedistancebetweenthepipe

specimenmodelandfanmodelwasshorter(1m and2m).

Consequently,theFEA simulationcouldconfirm thecoolingeffectsofthefan

coolingdevice.Theoptimalexperimentconditionsincludeapressuredifferenceof

150Pain thefan andaclosedistance,such as1m and2m between thepipe

specimenandfancoolingdevice.
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Coolingsource

Pressure

differenceof

fanmodel

Temperatureof

pipespecimen

model

Distancebetweenpipe

specimenandfanmodel

Fan

100Pa

100℃
1m,2m,3m

respectively

200℃
1m,2m,3m

respectively

150Pa

100℃
1m,2m,3m

respectively

200℃
1m,2m,3m

respectively

TABLE5.Conditionsofthecoolingsimulation
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(a)distanceofthefanmodelfrom pipespecimenmodel-1m (100℃)

(b)distanceofthefanmodelfrom pipespecimenmodel-2m (100℃)

(c)distanceofthefanmodelfrom pipespecimenmodel-3m (100℃)

Fig.10.Differentialpressureof100Paonfanmodel
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(d)distanceofthefanmodelfrom pipespecimenmodel-1m (200℃)

(e)distanceofthefanmodelfrom pipespecimenmodel-2m (200℃)

(f)distanceofthefanmodelfrom pipespecimenmodel-3m (200℃)

Fig.10.Differentialpressureof100Paonfanmodel(continued)
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(a)distanceofthefanmodelfrom pipespecimenmodel-1m (100℃)

(b)distanceofthefanmodelfrom pipespecimenmodel-2m (100℃)

(c)distanceofthefanmodelfrom pipespecimenmodel-3m (100℃)

Fig.11.Differentialpressureof150Paonfanmodel
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(d)distanceofthefanmodelfrom pipespecimenmodel-1m (200℃)

(e)distanceofthefanmodelfrom pipespecimenmodel-2m (200℃)

(f)distanceofthefanmodelfrom pipespecimenmodel-3m (200℃)

Fig.11.Differentialpressureof150Paonthefanmodel(continued)
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D.ExperimentMethod

FEA simulationthatwasconductedbasedonthenumericaltechniquebeforethe

experimentcouldconfirm theheatingandcoolingeffectsoftheheatingandcooling

device.In thisstudy,an IR cameraand theheating and cooling devicewere

configuredaccordingtotheexperimentconditionsestablishedbasedontheFEA

simulationofdetectwall-thinneddefectsinsideamanufacturedpipespecimen.

1.HeatingMethod

DuringtheoverhaulperiodoftheNPPs,thetemperatureofthepipesystem is

keptatroom temperature.Therefore,theheatingdevicewasusedtoconductthe

experimenttodetectwall-thinneddefectsinsidethepipeafteritwasconfirmed

thattemperatureofthepipespecimenwasroom temperature.Basedontheresults

ofaFEA simulation,theexperimentequipmentincludedanIR camera,halogen

lamps,apipespecimen,alamppowersupply,andaPC.Theexperimentwas

conducted in an enclosed space.An airconditionerwas used to ensure that

temperatureinexperimentroom werekeptconstantlyat25℃.

TheexperimentwithuseoftheheatingdevicebasedonsimulationoftheNPP’s

overhaulperiodwasconductedastemperatureofapipespecimenwassetatroom

temperatureand distancebetween apipespecimen and halogen lampsandthe

intensityofthehalogenlampweresetasvariables.Thedistancebetweenapipe

specimenandanIR camerawassetat1m whilethedistancebetweenapipe

specimenandthehalogenlampwasadjustedto1m and2m.Inaddition,intensity

of1kW halogenlampwasadjustedto60% and80% whileeachexperimentwas

conducted for120seconds.Fig.12showstheconfiguration oftheexperiment

equipmenttodetectthewall-thinneddefects.
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Fig.12.Configurationofexperimentalequipmentusingheatingdevice

2.CoolingMethod

Thetemperatureofthepipeshouldbekepthighbecauseitisassumedthat

inspectionsareconductedforthewall-thinneddefectsinsidethepipesoftheNPPs

thatisinnormaloperation.Therefore,theexperimentforthisstudywasconducted

whenthetemperatureofthepipespecimenwaskepthigh.Tothisend,aheating

deviceinthepipewasmanufacturedbeforeitwouldbeinsertedinsidethepipe

specimen.Theinnerheatingdevicewasmanufacturedtoensurethatthesupport

wasclosetotheinnerwallofthepipespecimenandthesupportcouldbewrapped

upwithtwoheatingtapesthatcouldbeheatedupto400℃.Fig.13showsthe

innerheatingdeviceusedtoimplementahotpipe.

Toverifytheheatingperformanceoftheinnerheatingdevice,thedevicewas
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installedinsidethepipespecimenbeforebeingheatedup.AnIRcamerawasused

tomeasurethetemperaturedistribution.Themeasurementresultsshowedthatthe

surface temperature ofthe 4-inch pipe specimen was keptat142∼150.35℃

dependingonthelocationwhenthetemperatureofthetwoheatingtapeswasset

at320℃ each.Fig.14showsthesurfacetemperatureofthepipespecimenthat

wasmeasuredusinganIRcamerawhenthemaximum surfacetemperatureofthe

pipe specimen was 150℃.According to the measurementresults,the highest

temperaturewasobservedinthecenterofthepipespecimen.Thetemperature

tendedtodecreasewithincreasingdistancefrom thecenter.Thelow temperature

ofbothedgeswasexpectedfrom theheatlosscausedbytheflangeparts.

(a)designoftheinnerheatingdevice

(b)innerheatingdevice

Fig.13.Innerheatingdeviceofpipespecimen
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Fig.14.Temperaturedistributionofinnerheatingdevice

AsshowninFig.15,weconfiguredtheexperimentalequipmentforthedetection

ofwall-thinneddefectsinsidethepipethatincludedanIR camera,fans,apipe

specimen,heatingtape,aheatingtapecontroller,andaPC.Theexperimentwas

conducted in aclosed spacewhilethetemperaturein thelaboratory waskept

constantat25℃ usinganairconditioner.

TodescribethepipeoftheNPPsthatwasundernormaloperation,theinner

heatingdevicewasusedtomaintainthetemperatureofthepipespecimenat150℃,

whereasthedistancebetweenthepipespecimenandfanandthenumberoffans

changed.ThedistancebetweenthepipespecimenandtheIRcamerawasfixedat

1m,whilethedistancebetweenthepipespecimenandthefanwasadjustedto1m

and 2m.In addition,thenumberoffanswasadjusted to1 and 2and each

experimentwasconductedfor120seconds.
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Fig.15.Configurationofexperimentalequipmentusingcoolingdevice

E.ExperimentResults

1.HeatingExperimentalResults

Theexperimentusing theheating devicebased on simulation oftheNPP’s

overhaulperiodwasconductedasdistancebetweenapipespecimenandhalogen

lampwassetto1m and2m becausetheresultsofaFEA simulationthatwhen

thedistancewasshorter,defectslookedmoredistinct.Table6showsthecondition

oftheexperiment.Fig.16showstheexperimentresultswhendistancebetweena

pipespecimenandhalogenlampwasadjustedto1m and2m andintensityofthe

halogenlampwassetto60%.Accordingtotheexperimentresults,asharpness

waslowerinthesitewheredepthofthedefectswas50% ofthethicknessthanin
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thesitewheredepthofthedefectswas75% ofthethickness.However,itwas

possibletoconfirm thedefectswiththenakedeyethatlookedconspicuously.

Fig.17showstheexperimentresultswhendistancebetweenapipespecimen

andhalogenlampwasadjustedto1m and2m andintensityofthehalogenlamp

wassetto80%.Accordingtotheexperimentresults,itwaspossibletoconfirm

thedefectswiththenakedeyeunderalloftheexperimentconditions.Itwasalso

possibletoclearlydistinguishthedefectsinthesitewheredepthofthedefects

was50% ofthethicknessand wheresharpnesswaslow asintensity ofthe

halogenlampwasupto60%.Inaddition,ashapeofdefectswasthemostsimilar

toactualshapeofthedefects.

According to the experimentresults,the halogen lamp was able to detect

wall-thinneddefectsinsidethepipe.Furthermore,itwasconsideredthatthepower

ofthehalogenlampshouldbe60% orhigherandthedistancebetweenthepipe

andthehalogenlampshouldbeshortsuchas2m inordertodetectwall-thinned

defectsinsidethepipeduringtheoverhaulperiodoftheNPPs.

Heatingsource
Powerofhalogen

lamp

Heating

time

Distancebetweenpipe

specimenandhalogen

lamp

1kW

halogenlamp

60%

60sec

1m,2m respectively

80% 1m,2m respectively

TABLE6.Conditionsoftheexperimentusingaheatingdevice



- 41 -

(a)distanceofthehalogenlampfrom pipespecimen-1m

(b)distanceofthehalogenlampfrom pipespecimen-2m

Fig.16.60% powerof1kW halogenlamp
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(a)distanceofthehalogenlampfrom pipespecimen-1m

(b)distanceofthehalogenlampfrom pipespecimen-2m

Fig.17.80% powerof1kW halogenlamp
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2.CoolingExperimentalResults

Thecoolingexperimentsforthedetectionofwall-thinneddefectsinsidethehot

pipeoftheNPPsthatwerein normaloperation wasconducted at150℃.An

heatingdevicewasinsertedinsidethepipespecimen,whichaimedatimplementing

ahightemperatureofthepipespecimen.

Fig.18 showstheexperimentresults when a singlefan wasused with a

distancebetweenthepipespecimenandfanadjustedto1m and2m.Thedefects

createduptoa75% depthinsidethepipespecimenweredetectedatadistanceof

2m.Thedefectsweredetected moreclearly asthedistancebetween thepipe

specimenandfanbecameshorter.

Fig.19showstheexperimentresultswhentwofanswereusedtocoolthepipe

specimenatadistanceof1m and2m.Thedefectsartificiallycreatedwitha75%

depthand50% depthinsidethepipespecimencouldbedetected.Thedefectswere

detectedmoreconspicuouslyasthedistancebetweenthepipespecimenandcooling

devicebecameshorter.

Accordingtotheexperimentresults,thefancoolingdevicewasabletodetect

defectsinsideapipespecimenpartially.Furthermore,itwasconsideredthatwind

speedandairvolumeofthefanshouldbeincreasedanddistancebetweenapipe

specimenandthefanshouldbeshortsuchas1m inordertodetectwall-thinned

defectsinsidethepipeoftheNPPsthatwasinnormaloperation.

Coolingsource Fan
Temperatureof

pipespecimen

Distancebetweenpipe

specimenandfan

Fan
1

150℃
1m,2m respectively

2 1m,2m respectively

TABLE7.Conditionsoftheexperimentusingacoolingdevice



- 44 -

(a)distanceofthefanfrom pipespecimen-1m

(b)distanceofthefanfrom pipespecimen-2m

Fig.18.Coolingexperimentusing1fan
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(a)distanceofthefanfrom pipespecimen-1m

(b)distanceofthefanfrom pipespecimen-2m

Fig.19.Coolingexperimentusing2fan
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Ⅴ.Conclusions

Inthisstudy,IR thermographywasusedtodetectwall-thinneddefectsinside

thepipesofNPPsthatwereintheoverhaulperiodandnormaloperation.Thepipe

modelandpipespecimenthathadthesamephysicalpropertiesasthoseforthe

actualpipeoftheNPPswereusedfortheFEA simulationsandtheexperiments.

Moreover,thesizeofthedefectsappliedtothepipespecimenwasequaltothatof

thedefectsappliedtothepipemodelfortheFEA simulation.

Basedon theFEA simulationresultsthataimedatinvestigating theheating

effects ofthe heating device and the optimalexperimentconditions,itwas

predictedthatcapabilitytodetectdefectsincreasedasdistancebetweenthepipe

andthehalogenlampwasshorterandintensityofthehalogenlampwashigher.

FEA simulationwasconductedtoexaminethecoolingeffectsofacoolingdevice

and theoptimalexperimentconditions.Theresultspredicted thatthedetection

abilityofdefectsincreasedwithdecreasingdistancebetweenthepipeandfanand

increasing wind speed of the fan.The results were applied to subsequent

experiments.

IntheexperimentusingtheheatingdevicebasedontheFEA simulationresults,

defectslookedmoreconspicuousasdistancebetweenapipespecimenandhalogen

lampwas2m andthepowerofhalogenlampwashigher.Theoptimalexperiment

conditionsforinvestigationofthewall-thinneddefectsintheNPP’spipeusingthe

halogenlampincludedthedistancebetweenthepipeandtheheatingdeviceof2m

andthehalogenlamppowerof60% orhigher.

Thedefectscouldbedetectedpartiallyintheexperimentthatwasconducted

using the cooling deviceoffans based on FEA simulations.UnliketheFEA

simulationresults,thedefectswiththe75% depthofthepipethicknesscouldbe

detectedclearlywhenthedistancebetweenthepipespecimenandfanwas1m.To

detectthewall-thinneddefectsintheNPPsthatisinnormaloperationbasedon
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suchresults,thedistancebetweenthepipeandfanshouldbeshort(e.g.1m),

whereasthewindspeedandairflow ofthefanshouldbehigh.

Inconclusion,IRthermographyenabledthedetectionofthewall-thinneddefects

insidethepipeanditwasexpectedtobequiteusefulontheNPPssitecompared

totheexistingNDI.Moreover,becauseIRthermographyfacilitatesthemaintenance

offacilitiesoftheNPPsthatareinnormaloperationorNPPsthatareinoverhaul

period,itisexpectedtomaximizetheoperationefficiencyoftheNPPsfacilities

andminimizetheenergylossandeconomiclosscanbeattributedtotheoperation

stop.
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들 항상 잘 따라줘서 고맙다.이 외에도 미처 이름을 언 하지 않은 선·후배,동기들에

게도 고마운 마음을 합니다.

항상 친구라는 행복감을 안겨주고 함께 울고 웃으며 10년이 넘는 시간을 함께해

친구들 낙훈,지훈,태 ,경수,용진,진희,유 ,낙 , 우,승연, 민, 훈,설아 등

등 정말 고맙고 앞으로 남은 평생 동안 서로 의지하고 잘 지내보자.

바로 이 분들과의 ‘인연의 실’이 를 이끌었고,그리스로마 신화의 테세우스처럼 어

둔 미래라는 미궁으로 나아갈 수 있는 힘이었습니다.때로는 마음처럼 되지 않는 일들
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과 보이지 않는 앞날에 지칠 때도 있었습니다.그때마다 이 ‘인연의 실’이 앞으로도

를 이끌어 주리란 것을 는 믿어 의심치 않습니다.언제나 감사합니다.

한,지 의 를 있게 해 주신 의 원한 버 목이자 의 모든 것인 아버지,어

머니, 나에게 머리 숙여 감사의 말 을 합니다.물질 인 후원이 아닌 정신 이 후

원이야 말로 근간의 를 지탱할 수 있었던 힘의 원천이라 확신할 수 있습니다.쑥스

러움에 직 말하지 못했지만 사랑합니다. 구에게나 자랑스러운 아들이자 제자,동

생,후배,동기,선배가 될 수 있도록 앞으로도 항상 과거를 잊지 않고 앞으로 나아가

기 해 노력하는 사람이 되겠습니다.

2013년 6월
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