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1. Introduction

The shape reconstruction problem is one of basic inverse problems in scat-

tering theory. The inverse problem considered in this thesis is to reconstruct

the shape of a scatterer from the scattered field and its far field pattern. It

is known that the problem is nonlinear and severely ill-posed[1]. The method

of lines is a widely applicable numerical method in which the given partial

differential equation is replaced by a system of coupled ordinary differential

equations obtained by discretizing all but one of independent variables[4]. Be-

cause of advances in the solution of ordinary differential equations, this method

seems to be an attractive method for such approximations. Ma et al.[5] have

developed an approximation method for solving scattering problems for cylin-

ders using the Method of Lines. Instead of using the original Method of Lines

in Cartesian coordinates, a modified Method of Lines in the cylindrical coor-

dinates is used to solve the scattering from conduction cylinders. We followed

the modified Method of Lines introduced by Ma et al.[5] to solve the scattering

problem for the two-dimensional Helmholtz equation.

The method presented by M.A.Hooshyar[6] is a direct method using near

field data. In this thesis, we consider the direct method using far field pattern

and an iterative method based on the near field as well as the far field pattern.

The synthetic near field and far field data were obtained from the integral rep-

resentation of the Helmholtz equation to avoid an inverse crime[1]. Compared

with those by M.A.Hooshyar our results can be extended to the inverse problem

with higher approximation dimension as well as noise level up to 5%.

The forward problem for the scattering problem and the far field pattern by

the modified Method of Lines are explained in Section 2 for the two-dimensional
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Helmholtz equation. In Section 3, a direct method and an iterative method for

solving the shape reconstruction problem are explained. Several simulations

are presented in Section 4.
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2. Forward Problem

2.1. Scattered Field

The direct obstacle scattering problem considered is to find the total field

u(x) = uinc(x) + us(x) (2.1)

such that u satisfies the Helmholtz equation

△u(x) + k2u(x) = 0 in R2\D̄, (2.2)

the Dirichlet boundary condition

u(x) = 0 on ∂D, (2.3)

and the Sommerfeld radiation condition

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0, r = |x|, (2.4)

uniformly in all directions, where D is a sound-soft obstacle represented by

a bounded simply connected domain with C2 boundary ∂D in R2, k > 0 is

the wave number such that k2 is not a Dirichlet eigenvalue for the negative

Laplacian in the interior of D , △ is the Laplace operator, uinc is the incoming

time-harmonic plane wave and us is the scattered field produced by the obstacle

D due to the incident wave. The radiation condition (2.4) ensures uniqueness

of the solution to the scattering problem and guarantees that the scattered

wave is outgoing. By the smooth assumption on ∂D, there exists a unique

solution u ∈ C2(R2/D̄) ∩ C(R2/D), where D̄ is the closure of D[1].

The equations (2.1)-(2.4) can be represented in polar coordinates, i.e.,

u(r, θ) = uinc(r, θ) + us(r, θ),
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u(r, θ) = 0 on ∂D,

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0.

The following theorem is well-known[5, 6]. For the completeness of our

presentation, we derive the Helmholtz equation in polar coordinates.

Theorem 2.1[5, 6]. The Helmholtz equation (2.2) can be written in polar

coordinates (r, θ) as

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
+ k2u = 0 in R2\D̄. (2.5)

Proof. Let x1 = r cos θ, x2 = r sin θ, tan θ = x2

x1
. Then

r =
√
x2
1 + x2

2, θ = tan−1

(
x2

x1

)
,

(
−π

2
< θ <

π

2

)
,

∂r

∂x1

=
2x1

2
√
x2
1 + x2

2

=
x1

r
,

∂2r

∂x2
1

=
r − x1

∂r
∂x1

r2
=

r − x2
1

r

r2
=

x2
2

r3
,

∂r

∂x2

=
2x2

2
√
x2
1 + x2

2

=
x2

r
,

∂2r

∂x2
2

=
r − x2

∂r
∂x2

r2
=

r − x2
2

r

r2
=

x2
1

r3
,

∂θ

∂x1

=
−x2

x2
1

1 + (x2

x1
)2

= − x2

x2
1 + x2

2

= −x2

r2
,

∂2θ

∂x2
1

= −x2

−2r ∂r
∂x1

r4
=

2x1x2

r4
,

∂θ

∂x2

=
1
x1

1 + (x2

x1
)2

=
x1

x2
1 + x2

2

=
x1

r2
,

∂2θ

∂x2
2

= x1

−2r ∂r
∂x2

r4
= −2x1x2

r4
,

∂u

∂x1

=
∂u

∂r

∂r

∂x1

+
∂u

∂θ

∂θ

∂x1

,
∂u

∂x2

=
∂u

∂r

∂r

∂x2

+
∂u

∂θ

∂θ

∂x2

,

∂2u

∂x2
1

=
∂

∂x1

(
∂u

∂x1

)
=

∂

∂x1

(
∂u

∂r

∂r

∂x1

+
∂u

∂θ

∂θ

∂x1

)
=

∂

∂x1

(
∂u

∂r

)
∂r

∂x1

+
∂u

∂r

∂

∂x1

(
∂r

∂x1

)
+

∂

∂x1

(
∂u

∂θ

)
∂θ

∂x1

+
∂u

∂θ

∂

∂x1

(
∂θ

∂x1

)
=

{
∂

∂r

(
∂u

∂r

)
∂r

∂x1

+
∂

∂θ

(
∂u

∂r

)
∂θ

∂x1

}
∂r

∂x1

+
x2
2

r3
∂u

∂r
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+

{
∂

∂r

(
∂u

∂θ

)
∂r

∂x1

+
∂

∂θ

(
∂u

∂θ

)
∂θ

∂x1

}
∂θ

∂x1

+
2x1x2

r4
∂u

∂θ

=
x2
1

r2
∂2u

∂r2
+

x2
2

r3
∂u

∂r
+

x2
2

r4
∂2u

∂θ2

−x1x2

r3

{
∂

∂θ

(
∂u

∂r

)
+

∂

∂r

(
∂u

∂θ

)}
+

2x1x2

r4
∂u

∂θ
,

∂2u

∂x2
2

=
∂

∂x2

(
∂u

∂x2

)
=

∂

∂x2

(
∂u

∂r

∂r

∂x2

+
∂u

∂θ

∂θ

∂x2

)
=

∂

∂x2

(
∂u

∂r

)
∂r

∂x2

+
∂u

∂r

∂

∂y

(
∂r

∂x2

)
+

∂

∂x2

(
∂u

∂θ

)
∂θ

∂x2

+
∂u

∂θ

∂

∂x2

(
∂θ

∂x2

)
=

{
∂

∂r

(
∂u

∂r

)
∂r

∂x2

+
∂

∂θ

(
∂u

∂r

)
∂θ

∂x2

}
∂r

∂x2

+
x2
1

r3
∂u

∂r

+

{
∂

∂r

(
∂u

∂θ

)
∂r

∂x2

+
∂

∂θ

(
∂u

∂θ

)
∂θ

∂x2

}
∂θ

∂x2

− 2x1x2

r4
∂u

∂θ

=
x2
2

r2
∂2u

∂r2
+

x2
1

r3
∂u

∂r
+

x2
1

r4
∂2u

∂θ2

+
x1x2

r3

{
∂

∂θ

(
∂u

∂r

)
+

∂

∂r

(
∂u

∂θ

)}
− 2x1x2

r4
∂u

∂θ
,

△u(x1, x2) =
∂2u

∂x2
1

+
∂2u

∂x2
2

=

(
x2
1

r2
+

x2
2

r2

)
∂2u

∂r2
+

(
x2
2

r3
+

x2
1

r3

)
∂u

∂r
+

(
x2
2

r4
+

x2
1

r4

)
∂2u

∂θ2

=
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
.

This completes the proof.

In order to simplify the problem and arrive at a set of ordinary differential

equations, we apply the Method of Lines[2] to (2.5), and replace ∂2u
∂θ2

by the

central difference,

∂2un

∂θ2
=

u(r, θn+1)− 2u(r, θn) + u(r, θn−1)

(∆θ)2
, u(r, θ) = u(r, θ + 2π).
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Then (2.5) is approximated by the following set of coupled ordinary differential

equations:
∂2[u]

∂r2
+

1

r

∂[u]

∂r
+ k2[u]− [L]

(r∆θ)2
[u] = 0, (2.6)

where [u] = [u1 u2 · · · uN ]
T ,

un = u(r, θn) , θn = (n− 1)∆θ, ∆θ =
2π

N
, for n = 1, 2, 3, · · · , N,

and

[L] =



2 −1 0 . . . 0 0 −1

−1 2 −1 . . . 0 0 0

0 −1 2 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 2 −1 0

0 0 0 . . . −1 2 −1

−1 0 0 . . . 0 −1 2


N×N

.

Here, AT denotes the transpose of a vector or matrix A.

The set of all eigenvectors of a matrix A, each paired with its corresponding

eigenvalue, is called the eigensystem of A. Then we can find an eigensystem [P ]

of [L] such that

[Λ] = [P ]−1[L][P ] with [P ]T = [P ]−1,

where [Λ] is a diagonal matrix whose elements are the eigenvalues of [L]. The

following theorem characterizes the eigensystem of [L]. The derivation of the

eigensystem is based on the idea in [6].

Theorem 2.2. For the N ×N matrix [L], the eigenvalues of [L] are

λm = 4 sin2 mπ

N
, m = 1, 2, · · · , N,
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and the eigensystem [P ] of [L] becomes, for n = 1, 2, · · · , N ,

when N is even,

Pnm =



√
2
N
cos 2nm

N
π , m = 1, 2, · · · , N

2
− 1,

1√
N
cosnπ , m = N

2
,

−
√

2
N
sin 2nm

N
π , m = N

2
+ 1, · · · , N − 1,

1√
N

, m = N,

when N is odd,

Pnm =


√

2
N
cos 2nm

N
π , m = 1, 2, · · · , N−1

2
,

−
√

2
N
sin 2nm

N
π , m = N+1

2
, · · · , N − 1,

1√
N

, m = N,

where Pnm is an (n,m) element of [P ].

Proof. Let the column vector p with an element pn be an eigenvector of [L]

corresponding the eigenvalue λ. It follows that

pn−1 − 2pn + pn+1 = −λpn, 1 ≤ n ≤ N, (2.7)

with p0 = pN and p1 = pN+1. The periodicity condition pi = pN+i, i =

0, 1, 2, · · · , is satisfied. In order to solve (2.7), we assume that the components

of the eigenvector p take the form[6]

pn = aα−n + bαn, (2.8)

where a and b are the constants. From the periodicity condition, we have

pn = pN+n = aα−(N+n) + bαN+n.

Multiply αN and α−N to the above equation,

αNpn = αNpN+n = aαNα−N−n + bαNαN+n

= aα−n + bα2N+n,

α−Npn = α−NpN+n = aα−Nα−N−n + bα−NαN+n

= aα−2N−n + bαn.
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From the above two equations,(
αN + α−N

)
pn = (aα−n + bαn) +

(
aα−(2N+n) + bα(2N+n)

)
= pn + p2N+n = 2pn,

αN + α−N = 2, αN = 1 = ei2π.

Substitution of (2.8) into (2.7) leads to

aα−n+1 + bαn−1 − 2pn + aα−n−1 + bαn+1 = −λpn,

α
(
aα−n + bαn

)
+ α−1

(
aα−n + bαn

)
− 2pn = −λpn,

αpn + α−1pn − 2pn = −λpn,

λ = 2− α− α−1.

To generalize, let

[P ] = [P1 P2 · · · Pm · · · PN ], Pm = [P1m P2m · · · Pnm · · · PNm]
T ,

where the column vector Pm with an element Pnm is the eigenvector corre-

sponding to the eigenvalue λm. Then (2.8) becomes,

Pnm = amα
−n
m + bmα

n
m,

and we have

αN
m = 1 = ei2mπ, m = 1, 2, · · · , N.

Thus the eigenvalues of [L] are

λm = 2− α−1
m − αm = 2− ei(−

2mπ
N ) − ei(

2mπ
N )

= 2−
{
cos

(
−2mπ

N

)
+ i sin

(
−2mπ

N

)}
−

{
cos

2mπ

N
+ i sin

2mπ

N

}
= 2

(
1− cos

2mπ

N

)
= 4 sin2 mπ

N
,
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and the components Pnm of [P ] become,

Pnm = ame
−i( 2mnπ

N
) + bme

i( 2mnπ
N

), n,m = 1, 2, 3, · · · , N,

where am and bm are constants. Since the number of repeated eigenvalues for

even N and odd N are different, we choose the constants as for even N,
am = 1√

2N
, bm = am , m = 1, 2, · · · , N

2
− 1,

am = − i√
2N

, bm = −am , m = N
2
+ 1, · · · , N − 1,

am = 1
2
√
N
, bm = am , m = N

2
, N,

(2.9)

and for odd N,
am = 1√

2N
, bm = am , m = 1, 2, · · · , N−1

2
,

am = − i√
2N

, bm = −am , m = N+1
2

, · · · , N − 1,

am = 1
2
√
N
, bm = am , m = N.

(2.10)

Lemma 2.3. Let the constants am and bm be (2.9) or (2.10), then [P ] is an

orthogonal matrix.

Proof. There is a proof in [6] for odd N, we prove in the case of even N.

([P ][P ]T )nm =
N∑
k=1

PnkPmk

=

N
2
−1∑

k=1

PnkPmk + PnN
2
PmN

2
+

N−1∑
k=N

2
+1

PnkPmk + PnNPmN

=
2

N

N
2
−1∑

k=1

cos
2nk

N
π cos

2mk

N
π +

1

N
cosnπ cosmπ

+
2

N

N−1∑
k=N

2
+1

sin
2nk

N
π sin

2mk

N
π +

1

N

9



=
1

N

N
2
−1∑

k=1

{
cos

2(n+m)k

N
π + cos

2(n−m)k

N
π

}
+

cosnπ cosmπ

N

− 1

N

N−1∑
k=N

2
+1

{
cos

2(n+m)k

N
π − cos

2(n−m)k

N
π

}
+

1

N

=
1

N

N−1∑
k=0

cos
2(n−m)k

N
π − 1

N
cos (n−m)π +

1

N
cosnπ cosmπ

+
1

N

N
2
−1∑

k=1

cos
2(n+m)k

N
π − 1

N

N−1∑
k=N

2
+1

cos
2(n+m)k

N
π

=
1

N

N−1∑
k=0

cos
2(n−m)k

N
π

+
1

N

N
2
−1∑

k=1

{
cos

2(n+m)k

N
π − cos

2(n+m)(N − k)

N
π

}

=
1

N

N−1∑
k=0

cos
2(n−m)k

N
π =

1

N
Re

{
N−1∑
k=0

ei
2(n−m)k

N
π

}
= δnm

where δnm is the Kronecker delta. Thus, [P ]−1 = [P ]T , that is, [P ] is orthogonal.

Let

[f ] = [P ]T [u]. (2.11)

Then (2.6) becomes

r2
∂2fn
∂r2

+ r
∂fn
∂r

+

{
(kr)2 −

(√
λn

∆θ

)2
}
fn(r) = 0, 1 ≤ n ≤ N, (2.12)

where fn is the n-th element of [f ].

Note that Bessel’s equation with order α is

x2 ∂
2y

∂x2
+ x

∂y

∂x
+ (x2 − α2)y = 0.
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By substituting x = kr, the Bessel equation can be represented by

r2
∂2y

∂r2
+ r

∂y

∂r
+
{
(kr)2 − α2

}
y = 0,

since
∂y

∂x
=

∂y

∂r

∂r

∂x
=

1

k

∂y

∂r
,

∂

∂x

(
∂y

∂x

)
=

∂

∂x

(
1

k

∂y

∂r

)
=

1

k2

∂2y

∂r2
.

Therefore, (2.12) is just the Bessel equation with order vn =
(√

λn/∆θ
)
,

and its solution is the Bessel function

fn(r) = AnH
(1)
vn (kr), 1 ≤ n ≤ N. (2.13)

Because the scattered fields are outside the scatterer, the first kind of Hankel

function is chosen. By substituting (2.13) into (2.11), we obtain

us
n(r) =

N∑
m=1

PnmAmH
(1)
vm (kr), 1 ≤ n ≤ N. (2.14)

The coefficients Am can be determined by the boundary condition in (2.3), i.e.,

uinc + us = 0 on ∂D,

where uinc = eikr cos(θ−α) is the incident field and α is the direction of incoming

wave. Hence, for each (rn, θn) on the boundary

−eikrn cos(θn−α) =
N∑

m=1

PnmAmH
(1)
vm (krn), 1 ≤ n ≤ N. (2.15)

2.2. Far-field pattern

Now we consider the asymptotic behavior of the scattered field. It is

known that the scattered field us and the Hankel function have the following

behaviors[1]:

us(x) =
eikr√
r

{
u∞(x̂) +O

(
1

r

)}
, r = |x| → ∞, x̂ =

x

|x|
,
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H(1)
v (kr) =

√
2

πkr
ei(kr−

vπ
2
−π

4
)

{
1 +O

(
1

r

)}
, r → ∞. (2.16)

Substituting (2.16) into (2.14)

us
n(r) ≈

√
2

πkr
eikr

N∑
m=1

PnmAme
−i( vm

2
π+π

4
)

≈ eikr√
r
u∞n(x̂), 1 ≤ n ≤ N,

we have

u∞n(x̂) ≈
√

2

πk

N∑
m=1

PnmAme
−i( vm

2
π+π

4
), 1 ≤ n ≤ N. (2.17)
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3. Inverse Problem

3.1. Optimization

Assume that ∂D is identified by a real column distance vector

r = [ r1 r2 · · · rN ]T ∈ RN , (3.1)

∂D := { (rn, θn) | θn = (n− 1)
2π

N
, n = 1, 2, · · · , N }.

Here, RN is the N -dimensional real vector space.

We consider the following cost functional:

χ2(r) =
N∑
i=1

|Xi|2 =
N∑
i=1

X̄iXi, Xi = X(ri), (3.2)

where X is a function of r. Consider finding a minimum of (3.2) by using

Newton’s method to search for zero of the gradient of the function χ2 in (3.2).

Let D be the second derivative matrix(Hessian matrix) of χ2 with respect to

r. Near the current point rcur, we have the second order approximation[7]

χ2(r) ≈ χ2(rcur) + (r − rcur) · ∇χ2(rcur) +
1

2
(r − rcur) ·D · (r − rcur). (3.3)

By taking the derivative with respect to r for the above equation, we have

∇χ2(r) = ∇χ2(rcur) +D · (r − rcur).

In Newton’s method, we set ∇χ2(r) = 0 to determine the next iteration point:

r − rcur = −D−1 · ∇χ2(rcur), (3.4)

when D is nonsingular. Let the increment vector δ = r − rcur be

δ = [ δ1 δ2 · · · δN ]T ∈ RN .
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Then (3.4) can be written as the following system of equations

δ = −
[
∂

∂r

(
∂χ2

∂r

)]−1 [
∂χ2

∂r

]
.

To treat the possible singularities of D, we take the following complex version

of Levenberg type regularization formula

δ = −
[
∂

∂r

(
∂χ2

∂r

)
+ λI

]−1 [
∂χ2

∂r

]
, (3.5)

where λ > 0 is the regularization parameter and I is the N×N identity matrix.

The regularization parameter λ in (3.5) can be adjusted automatically during

iterations based on the following selection criterion:

χ2(r + δ) < χ2(r),

where χ2 is the cost defined by (3.2). For a small value of λ, the formula is

similar to the Newton type method, and for a large value of λ, it is close to the

steepest descent method.

We now present an algorithm for solving (3.5)[7].

Algorithm 3.1

Step 1. Choose the initial guesses for the distance vector r and the regular-

ization parameter λ > 0. Perform Step 2 - Step 4 until the cost (3.2)

reaches the minimum.

Step 2. Compute the cost χ2(r) by (3.2).

Step 3. Solve the linear system (3.5) for δ, and compute χ2(r + δ) by (3.2).

Step 4. If χ2(r + δ) ≥ χ2(r), update λ by 10λ and go back to step 3.

If χ2(r + δ) < χ2(r), update λ by λ
10
, update r by r + δ, and go back to

step 3.
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3.2. Direct Method

To obtain {An} in (2.14), we choose an observation distance R and measure

the scattered field ym = us
m(R). Then, from (2.14), we have

An =
1

H
(1)
vn (kR)

N∑
m=1

P T
nmym, 1 ≤ n ≤ N. (3.6)

From (2.15), let

f(rn) = eikrn cos(θn−α) +
N∑

m=1

PnmAmH
(1)
vm (krn), 1 ≤ n ≤ N. (3.7)

Then the inverse problem is to find a rn, 1 ≤ n ≤ N , such that f(rn) = 0.

We consider the following cost functional:

χ2(r) =
N∑

n=1

|fn|2 =
N∑

n=1

f̄nfn, fn = f(rn). (3.8)

The gradient of χ2 with respect to the distance vector r in (3.1) becomes

∂χ2

∂rj
=

N∑
n=1

{
∂fn
∂rj

f̄n + fn
∂f̄n
∂rj

}
= 2Re

{
N∑

n=1

∂fn
∂rj

f̄n

}

= 2Re

{
∂fj
∂rj

f̄j

}
, 1 ≤ j ≤ N, (3.9)

since ∂fn
∂rj

= 0 for n ̸= j.

The following property of the Hankel function is well-known[3],

∂

∂x
H(1)

v (x) =
1

2

(
H

(1)
v−1(x)−H

(1)
v+1(x)

)
.

For each j, j = 1, 2, · · · , N , we have

∂fj
∂rj

= ik cos(θj − α)eikrj cos(θj−α) +
1

2
k

N∑
m=1

PjmAm(H
(1)
vm−1(krj)−H

(1)
vm+1(krj)).

15



To obtain the Hessian matrixD in (3.3), we take an additional partial derivative

for ∂χ2

∂ri
with respect to rj, i, j = 1, 2, · · · , N .

∂

∂rj

(
∂χ2

∂ri

)
=

N∑
n=1

{
∂

∂rj

(
∂fn
∂ri

)
f̄n +

∂fn
∂ri

∂f̄n
∂rj

+
∂

∂rj

(
∂f̄n
∂ri

)
fn +

∂f̄n
∂ri

∂fn
∂rj

}

= 2Re

[
N∑

n=1

{
∂

∂rj

(
∂fn
∂ri

)
f̄n +

∂fn
∂ri

∂f̄n
∂rj

}]

=

 2Re
{

∂
∂rj

(
∂fj
∂rj

)
f̄j +

∂fj
∂rj

∂f̄j
∂rj

}
, i = j,

0, i ̸= j,
(3.10)

since ∂fn
∂rj

= 0 for n ̸= j. Here,

∂

∂rj

(
∂fj
∂rj

)
= {ik cos(θj − α)}2eikrj cos(θj−α)

+
1

4
k2

N∑
m=1

PjmAm{H(1)
vm−2(krj)− 2H(1)

vm (krj) +H
(1)
vm+2(krj)}.

Let k > 0 be a wave number. Let N be the number of observation angles.

Then a minimum of χ2 in (3.8) can be found from (3.6),(3.7),(3.9),(3.10) and

Algorithm 3.1 in Section 3.1.

For the far field pattern applications, {An} in (2.17) can be found using the

true far field pattern y∞m , i.e.,

An =

√
πk

2
ei(

vm
2

π+π
4
)

N∑
m=1

P T
nmy∞m , 1 ≤ n ≤ N. (3.11)

3.3. Iterative Method

Let the scattered field us in (2.14) be

us = [ us(r1) us(r2) · · · us(rN) ]
T , (3.12)

16



and the true scattered field measurements be

Y = [ y1 y2 · · · yN ]T ∈ CN , (3.13)

where yi is the true scattered field complex value measured at the location

(R, θi).

We consider the following cost functional:

χ2(r) =
N∑

n=1

|yn − us(rn)|2. (3.14)

The gradient of χ2 with respect to the distance vector r in (3.1) becomes

∂χ2

∂rj
=

N∑
n=1

{
−∂us

n

∂rj
(yn − us

n)− (yn − us
n)
∂ūs

n

∂rj

}

= −2Re

{
N∑

n=1

∂us
n

∂rj
(yn − us

n)

}
, 1 ≤ j ≤ N, (3.15)

From (2.14), the derivative of us with respect to the distance vector r in (3.1)

at ∂D, [
∂us

∂r

]
(n,j)

:=
∂us

n

∂rj
=

N∑
m=1

PnmH
(1)
vm (kR)

∂Am

∂rj
,

where the derivative ∂A
∂r

of A = [A1 A2 · · · AN ]
T ∈ CN is obtained from the

following theorem.

Theorem 3.2. The derivative of A with respect to the distance vector r in

(3.1) at ∂D has the following relation.

N∑
m=1

PnmH
(1)
vm (krn)

∂Am

∂rj

=


−ik cos(θn − α)eikrn cos(θn−α)

−1
2
k
∑N

m=1 Pnm

(
H

(1)
vm−1(krn)−H

(1)
vm+1(krn)

)
Am, j = n,

0, j ̸= n.

17



Proof. In (2.15), let

E = [ E1 E2 · · · En · · · EN ]T , S = [ S1 S2 · · · Sn · · · SN ]T ,

where

En = −eikrn cos(θn−α), Sn =
N∑

m=1

PnmH
(1)
vm (krn)Am.

Then, the derivative of E with respect to the distance vector r becomes

∂E

∂r
=

[
∂E

∂r1

∂E

∂r2
· · · ∂E

∂rj
· · · ∂E

∂rN

]
,

∂E

∂rj
=

[
∂E1

∂rj

∂E2

∂rj
· · · ∂En

∂rj
· · · ∂EN

∂rj

]T
,

where ∂En

∂rj
is,

∂En

∂rj
=

 −ik cos(θn − α)eikrn cos(θn−α), j = n.

0, j ̸= n,

The derivative of S with respect to the distance vector r becomes

∂S

∂r
=

[
∂S

∂r1

∂S

∂r2
· · · ∂S

∂rj
· · · ∂S

∂rN

]
,

∂S

∂rj
=

[
∂S1

∂rj

∂S2

∂rj
· · · ∂Sn

∂rj
· · · ∂SN

∂rj

]T
,

where ∂Sn

∂rj
is,

∂Sn

∂rj
=


∑N

m=1 Pnm

(
∂H

(1)
vm (krn)

∂rj
Am +H

(1)
vm (krn)

∂Am

∂rj

)
, j = n,

∑N
m=1 PnmHvm(krn)

∂Am

∂rj
, j ̸= n.

Because of ∂S
∂r

= ∂E
∂r
, we obtain

−
∑N

m=1 PnmH
(1)
vm (krn)

∂Am

∂rj
=

ik cos(θn − α)eikrn cos(θn−α) +
∑N

m=1 Pnm
∂H

(1)
vm (krn)

∂rj
Am, j = n,

∑N
m=1 PnmH

(1)
vm (krn)

∂Am

∂rj
= 0, j ̸= n.

18



From the following relation[3]:

∂

∂x
H(1)

v (x) =
1

2

(
H

(1)
v−1(x)−H

(1)
v+1(x)

)
,

we have,

N∑
m=1

PnmH
(1)
vm (krn)

∂Am

∂rj

=


−ik cos(θn − α)eikrn cos(θn−α)

−1
2
k
∑N

m=1 Pnm

(
H

(1)
vm−1(krn)−H

(1)
vm+1(krn)

)
Am, j = n,

0, j ̸= n.

To obtain the Hessian matrix D in (3.3), we take an additional partial

derivative for ∂χ2

∂ri
with respect to rj, i, j = 1, 2, 3, · · · , N .

∂

∂rj

(
∂χ2

∂ri

)
= −

N∑
n=1

{
∂

∂rj

(
∂us

n

∂ri

)
(yn − us

n)−
∂us

n

∂ri

∂ūs
n

∂rj

+
∂

∂rj

( ¯∂us
n

∂ri

)
(yn − us

n)−
¯∂us
n

∂ri

∂us
n

∂rj

}
. (3.16)

Note that the components ∂
∂rj

(
∂χ2

∂ri

)
of the Hessian matrix depend both on the

first derivatives and on the second derivatives of us with respect to r. We will

ignore the second derivative of us. Because the second derivative term can be

small enough to be negligible when compared to the term involving the first

derivative[7]. So, (3.16) becomes, for i, j = 1, 2, · · · , N

∂

∂rj

(
∂χ2

∂ri

)
≈

N∑
n=1

{
∂us

n

∂ri

∂ūs
n

∂rj
+

¯∂us
n

∂ri

∂us
n

∂rj

}

= 2Re
N∑

n=1

{
∂us

n

∂ri

∂ūs
n

∂rj

}
. (3.17)
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Let k > 0 be the wave number. Let N be the number of observation angles. Let

Y be the target scattered field measurements as in (3.13). Then a minimum of

χ2 in (3.14) can be found from (3.12),(3.15),(3.17) and Algorithm 3.1 in Section

3.1.

For the far field pattern applications, χ2 in (3.14) becomes

χ2(r) =
N∑

n=1

|y∞n − u∞n|2, (3.18)

where y∞ is the true measured far field pattern and u∞ is the estimated far

field pattern. The derivative of u∞ with respect to the distance vector r in

(3.1) at ∂D,[
∂u∞

∂r

]
(n,j)

:=
∂u∞n

∂rj
=

√
2

πk
e−i( vm

2
π+π

4
)

N∑
m=1

Pnm
∂Am

∂rj
,

where ∂Am

∂rj
can be obtained from the Theorem 3.2
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4. Examples

We consider the following circle with center (1, 1) and radius 6. The bound-

ary of the circle can be represented in polar form as

∂D : r = cos θ + sin θ +
√
35 + 2 cos θ sin θ, 0 ≤ θ ≤ 2π.

The wave number k = 1 was chosen for the numerical experiments. The starting

regularization parameter λ > 0 in (3.5) was chosen as 0.001.

In the direct method, the stopping criterion for global iteration, we used

the following sequential difference:

χ2(r(n))− χ2(r(n+1)) < tolerance (4.1)

with tolerance 10−2, where r(n) is the n-th iteration distance vector and χ2 is

defined in (3.8).

The number of observation angles N = 64, the incident angle α = 0, the

observation distance R = 15, and the initial guess for r = 5 were chosen. Table

1 shows the convergence of χ2 for the scattered field by the direct method.

Table 1: Convergence of χ2 (Noise 0%, α = 0, scattered field)

Iter χ2 χ2Seq Iter χ2 χ2Seq

0 64.8948 64.8948 5 0.1826 0.4104

1 19.7524 45.1424 6 0.1014 0.0812

2 6.4980 13.2544 7 0.0939 0.0075

3 2.0473 4.4507 8 0.0937 0.0002

4 0.5930 1.4543
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Figures 1-4 show the reconstruction results for the scattered field using the

direct method with incident angle α = 0, π, π/2, π/3, respectively.

  2

  4

  6

  8

30

210

60

240

90

270

120

300

150

330

180 0

  2

  4

  6

  8

30

210

60

240

90

270

120

300

150

330

180 0

Figure 1. Shape (α = 0) Figure 2. Shape (α = π)

( scattered field, exact(solid line), reconstruction(dashed line) )
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( scattered field, exact(solid line), reconstruction(dashed line) )

For the far field pattern applications, the number of observation angles

N = 64, the incident angle α = 0, and the initial guess for r = 5 were chosen.
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Table 2 shows the convergence of χ2 for the far field pattern by the direct

method.

Table 2: Convergence of χ2 (Noise 0%, α = 0, far field pattern)

Iter χ2 χ2Seq Iter χ2 χ2Seq

0 64.7878 64.7878 5 0.3238 0.4271

1 19.6410 45.1468 6 0.2236 0.1001

2 6.5424 13.0986 7 0.2087 0.0149

3 2.1900 4.3525 8 0.2078 0.0009

4 0.7509 1.439

Figures 5-8 show the reconstruction results for the far field pattern using

the direct method and incident angle α = 0, π, π/2, π/3, respectively.
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Figure 5. Shape (α = 0) Figure 6. Shape (α = π)

( far field pattern, exact(solid line), reconstruction(dashed line) )

The random noise was added as 5% to the exact data. We observed that if

the number of observation angles N is greater than or equal to 64, χ2 in (3.8)

23



  2

  4

  6

  8

30

210

60

240

90

270

120

300

150

330

180 0

  2

  4

  6

  8

30

210

60

240

90

270

120

300

150

330

180 0

Figure 7. Shape (α = π
2
) Figure 8. Shape (α = π

3
)

( far field pattern, exact(solid line), reconstruction(dashed line) )

diverged. The number of observation angles N = 32, the incident angle α = 0,

the observation distance R = 15, and the initial guess for r = 5 were chosen.

Tables 3-4 show the convergence of χ2 for the scattered field and the far field

pattern, respectively.

Table 3: Convergence of χ2 (Noise 5%, α = 0, scattered field )

Iter χ2 χ2Seq Iter χ2 χ2Seq

0 44.3170 44.3170 4 7.4208 0.6650

1 19.3376 24.9794 5 7.1784 0.2424

2 10.4686 8.8690 6 7.1008 0.0776

3 8.0857 2.3829 7 7.0829 0.0179

Figures 9-10 show the reconstruction results using the direct method for

the scattered field and the far field pattern, respectively.
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Table 4: Convergence of χ2 (Noise 5%, α = 0, far field pattern)

Iter χ2 χ2Seq Iter χ2 χ2Seq

0 47.3650 47.3650 4 7.8922 0.9541

1 22.2199 25.1452 5 7.6466 0.2456

2 12.5555 9.6644 6 7.5521 0.0945

3 8.8463 3.7092 7 7.5411 0.0110
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Figure 9. Shape(scattered field) Figure 10. Shape(far field pattern)

( Noise 5%, α = 0, exact(solid line), reconstruction(dashed line) )

In the iterative method, the following relative residual stopping criterion

for global iteration was used,

Res(r) =

[∑N
i=1 |yi − us(ri)|2

] 1
2

[∑N
i=1 |yi|2

] 1
2

.

The global iteration was terminated when

Res(r(n))−Res(r(n+1)) < tolerance (4.2)
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with tolerance 10−2, where r(n) is the distance vector from the n-th iteration.

The number of observation angles N = 64, the incident angle α = 0, the

observation distance R = 15, and the initial guess for r = 5.5 were chosen.

Table 5 shows the convergence of residual for the scattered field by the iterative

method.

Table 5: Convergence of residual (Noise 0%, α = 0, scattered field)

Iter χ2 Res ResSeq Iter χ2 Res ResSeq

0 8.0647 0.6531 0.6531 5 0.4227 0.1495 0.0117

1 2.9656 0.3960 0.2570 6 0.0390 0.0454 0.1041

2 1.3599 0.2682 0.1278 7 0.0171 0.0301 0.0153

3 1.1006 0.2413 0.0269 8 0.0089 0.0217 0.0084

4 0.4914 0.1612 0.0800
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( scattered field, exact(solid line), reconstruction(dashed line) )
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( scattered field, exact(solid line), reconstruction(dashed line) )

Figures 11-14 show the reconstruction results for the scattered field using the

iterative method and incident angle α = 0, π, π/2, π/3, respectively.

For the far field pattern applications, the number of observation angles N =

64, the incident angle α = 0, the initial guess for r = 5.5 were chosen. Table

6 shows the convergence of residual for the far field pattern by the iterative

method.

Table 6: Convergence of residual (Noise 0%, α = 0, far field pattern)

Iter χ2 Res ResSeq Iter χ2 Res ResSeq

0 118.1380 0.6546 0.6546 4 0.9590 0.0590 0.0813

1 62.4856 0.4761 0.1785 5 0.3910 0.0377 0.0213

2 14.2059 0.2270 0.2491 6 0.3876 0.0375 0.0002

3 5.4254 0.1403 0.0867
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Figures 15-18 show the reconstruction results for the far field pattern using the

iterative method and incident angle α = 0, π, π/2, π/3, respectively.
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( far field pattern, exact(solid line), reconstruction(dashed line) )
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( far field pattern, exact(solid line), reconstruction(dashed line) )

The random noise was added as 5% to the exact data. The number of

observation angles N = 64, the incident angle α = 0, the observation distance
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R = 15, and the initial guess for r = 5.5 were chosen. Tables 7-8 show the

convergence of χ2 for the scattered field and the far field pattern, respectively.

Table 7: Convergence of residual (Noise 5%, α = 0, scattered field)

Iter χ2 Res ResSeq Iter χ2 Res ResSeq

0 8.0309 0.6511 0.6511 4 0.0372 0.0443 0.0673

1 2.9059 0.3916 0.2594 5 0.0279 0.0384 0.0059

2 0.8093 0.2067 0.1850 6 0.0258 0.0369 0.0015

3 0.2360 0.1116 0.0951 7 0.0256 0.0367 0.0002

Table 8: Convergence of residual (Noise 5%, α = 0, far field pattern)

Iter χ2 Res ResSeq Iter χ2 Res ResSeq

0 119.9382 0.6573 0.6573 4 0.9180 0.0575 0.0408

1 57.4011 0.4547 0.2026 5 0.5841 0.0459 0.0116

2 11.2586 0.2014 0.2534 6 0.5627 0.0450 0.0008

3 2.6849 0.0984 0.1030

Figures 19-20 show the reconstruction results using the iterative method for the

scattered field and the far field pattern, respectively. Comparing with Figures

11 and 15, one can observe that the reconstruction accuracy is similar to those

of without noise.

From Tables 1-8, one can see that the sequence convergence for stopping

criterion in (4.1) and (4.2) has achieved in 6-8 iterations under the tolerance
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Figure 19. Shape(scattered field) Figure 20. Shape(far field pattern)

( Noise 5%, α = 0, exact(solid line), reconstruction(dashed line) )

10−2. From Figures 1-20, we observed that the reconstruction errors were

related to the incident angles.
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