

저 시-비 리-동 조건 경허락 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

l 차적 저 물 성할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 허락조건
 확하게 나타내어야 합니다.

l 저 터 허가를 러한 조건들 적 지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 적 할 수 없습니다.

동 조건 경허락. 하가 저 물 개 , 형 또는 가공했 경
에는, 저 물과 동 한 허락조건하에서만 포할 수 습니다.

http://creativecommons.org/licenses/by-nc-sa/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-sa/2.0/kr/

August 2013

Master’s Degree Thesis

Online Fault Detection and

Reconfiguration of ALU using Scalable

Error Detection Coding Scheme

Graduate School of Chosun University

Department of Computer Engineering

Zahid Ali

[UCI]I804:24011-200000263922

확장가능한 에러탐지코딩기법 활용

실시간 오류탐지 및 재구성이

가능한 연산기

Online Fault Detection and Reconfiguration of ALU using Scalable

Error Detection Coding Scheme

August 23, 2013

Graduate School of Chosun University

Department of Computer Engineering

Zahid Ali

Online Fault Detection and

Reconfiguration of ALU using Scalable

Error Detection Coding Scheme

Advisor: Prof. Jeong-A Lee

This Thesis is submitted to Graduate School of Chosun

University in partial fulfillment of the requirements for a

Master’s degree

April 2013

Graduate School of Chosun University

Department of Computer Engineering

Zahid Ali

�

Thesis Examination Committee

2013 년 4 월

Graduate School of Chosun University

I dedicate this thesis to my parents, Roshan Ali & Rahat Tameez for their love

and support, and to my teachers, especially Dr. Shoaib Zaidi for his trust in me.

- v -

Table of Contents

Table of Contents.. v

List of Figures .. viii
List of Tables .. ix

List of Acronyms .. x

초초초초 록록록록 ... 11

I. Introduction ... 13
A. Research Motivation .. 13

B. Research Objectives ... 13

C. Thesis Contributions .. 14

D. Thesis Organization ... 15

II. Overview and Related Work ... 16

III. Scalable Error Detection Coding Scheme ... 19

A. SEDC2 Code ... 19

B. SEDC3 Code ... 20

C. SEDC4 Code ... 21

IV. Introduction to Overall System .. 23

A. ALU ... 23

B. SEDC encoded ALU .. 24

C. TSC SEDC checker .. 24

V. Formulation of SEDC encoded ALU .. 25

A. 2-, 3- and 4-bit SEDC encoded Boolean Operation Unit 25

B. 2-, 3- and 4-bit SEDC encoded Shift/Rotate Unit .. 26

C. 2-, 3- and 4-bit SEDC encoded Add/Subtract Unit .. 27

D. 2-, 3- and 4-bit SEDC encoded Compare Unit .. 29

VI. Scaling SEDC encoded ALU for n-bit Input .. 30

A. n-bit SEDC encoded Boolean Operation Unit ... 30

B. n-bit SEDC encoded Shift/Rotate Unit .. 30

C. n-bit SEDC encoded Add/Subtract Unit .. 31

- vi -

D. n-bit SEDC encoded Compare Unit ... 32

VII. TSC SEDC checker ... 33

A. Difference between SEDC and Berger code checker .. 33

B. Logic and circuits for TSC SEDC checkers ... 34

1. TSC SEDC1 checker ... 34

2. TSC SEDC2 checker ... 35

3. TSC SEDC3 checker ... 35

4. TSC SEDC4 checker ... 36

5. TSC SEDCn checker ... 36

VIII. Fault coverage of SEDC encoded ALU .. 38

A. Fault Model .. 38

1. Type 1 error ... 38

2. Type 2 error ... 38

3. Type 3 error ... 38

4. Type 4 error ... 39

5. Type 5 error ... 40

B. Fault Secureness ... 40

1. Against Type 1 error .. 40

2. Against Type 2 error .. 40

3. Against Type 3 error .. 40

4. Against Type 4 error .. 41

5. Against Type 5 error .. 41

C. Overall Fault Coverage .. 42

IX. Results of Fault testing on TSC SEDC checker 43

X. Comparison of Area, Delay, Complexity and Power dissipation 45

A. SEDC encoded ALU .. 45

1. Area Overhead ... 45

2. Delay .. 47

- vii -

3. Complexity in Scaling and Power dissipation ... 48

B. TSC SEDC checker .. 48

1. Area Overhead ... 48

2. Delay .. 50

XI. Prototyping the SEDC based error detecting and reconfiguring ALU
architecture on FPGA ... 51

A. Overall FPGA based system design ... 51

1. Altera DE0 FPGA board.. 52

2. NI Labview Software .. 53

B. Implementation Results and Area Comparison ... 54

XII. Conclusion and Future Considerations ... 56

Bibliography .. 58

ABSTRACT (English) .. 61

ACKNOWLEDGMENT ... 63

- viii -

List of Figures

Fig. 3.1: Data partitioning and encoding using SEDC scheme for given data word.

Fig. 3.2: 2D illustration of SEDC2 scheme. ...

Fig. 3.3: 3D illustration of SEDC3 scheme and SEDC3 circuit..

Fig. 4.1: General model for SEDC based Self-checking ALU. ...

Fig. 7.1: Archietectures of TSC (a) Berger checker (b) SEDC checker.

Fig. 7.2: MOS level implementation of TSC SEDC1 checker. ..

Fig. 7.3: MOS level implementation of TSC SEDC2 checker. ..

Fig. 7.4: Block diagram of TSC SEDC3 checker. ..

Fig. 7.5: Block diagram of TSC SEDC4 checker. ..
Fig. 7.6: Block diagram of TSC SEDCn checker...

Fig. 8.1: Fault injection points in a ripple carry adder. ..
Fig. 8.2: Adding redundant carry generating circuit to cope with Type 3-B errors.

Fig. 8.3: ALU organization that eliminates multiple random errors.

Fig. 10.1: Area utilization chart for SEDC encoded, BCP and simple ALU.

Fig. 10.2 : Berger Check Prediction Arithmetic and Logic Unit.

Fig. 10.3: Increasing trend in SEDC encoded ALU hardware ...

Fig. 11.1: Overall prototype diagram for fault tolerant ALU ..

Fig. 11.2: DE0 Board ...

Fig. 11.3: Area comparison of FPGA implementation of 16-bit normal ALU, SEDC

ALU and BCP ALU. ..

- ix -

List of Tables

Table 5-1: Logic for 2-bit SEDC encoded BO unit ...

Table 5-2: Logic for 2-bit SEDC encoded SRO unit ...

Table 5-3: Logic equations for S1, sibit, S14-S15 signals ..
Table 5-4: Logic for 2-bit SEDC encoded Compare Unit ...

Table 6-1: Logic for scaling n-bit SEDC encoded SRO unit ...

Table 6-2: Logic for scaling n-bit SEDC encoded ASO unit ..

Table 7-1: '10' codes table for one bit input(SEDC1) ...

Table 9-1: Results of single faults on TSC SEDC1 checker ..

Table 10-1: Area comparison between SEDC and Berger checker....................................

Table 10-2: Critical Path (C.P) delay comparison of TSC Berger and SEDC

checker..

Table 11-1 : Function of selection switches and seven segments

- x -

List of Acronyms

ASO

TSC

CDF

Add/Subtract Operation

Totally Self Checking

Chain Description File

ALU

BCP

BCH

Arithmetic and Logic Unit

Berger Check Prediction

Bose Chaudhuri Hocquenghem

CO

SEDC

SEDC2

SEDC3

SEDC4

SFS

Compare Operation

Scalable Error Detection Coding

SEDC codes for 2-bit input

SEDC codes for 3-bit input

SEDC codes for 4-bit input

Strongly Fault Secure

AUED All Unidirectional Error Detection

MOS

CED

Metal Oxide Semiconductor

Concurrent Error Detection

BO Boolean Operation

SRO Shift/Rotate Operation

DMR Double Modular Redundancy

FPGA Field Programmable Gate Array

FF Flip Flop

LSB Least Significant Bit

MSB Most Significant Bit

SEU Single Event Upset

VLSI Very Large Scale Integration

SRAM Static Random Access Memory

TMR Triple Modular Redundancy

- 11 -

초초초초 록록록록

확장가능한확장가능한확장가능한확장가능한 에러탐지코딩기법에러탐지코딩기법에러탐지코딩기법에러탐지코딩기법 활용활용활용활용 실시간실시간실시간실시간 오류탐지오류탐지오류탐지오류탐지 및및및및

재구성이재구성이재구성이재구성이 가능한가능한가능한가능한 연산기연산기연산기연산기

시디키시디키시디키시디키 샤이크샤이크샤이크샤이크 자히드자히드자히드자히드 알리알리알리알리

지도교수지도교수지도교수지도교수:::: 이정아이정아이정아이정아, , , , 교수교수교수교수, Ph.D., Ph.D., Ph.D., Ph.D.
컴퓨터공학과컴퓨터공학과컴퓨터공학과컴퓨터공학과

조선대학교조선대학교조선대학교조선대학교 대학원대학원대학원대학원

 마이크로 전자 회로 및 SRAM 기반의 FPGA 디바이스는 트랜지스터의 크기 감소 및 높은 패키징 밀도로 인한 고장 및 오류에 더 취약해지고 있기 때문에, 오류 검출은 시스템 신뢰성 측면에서 아주 중요한 문제이다. 오류는 크게 소프트 오류와 하드 오류로 분류할 수 있다. 하드 오류는 지속적인 결함으로 발생하나, 소프트 오류는 일시적 또는 간헐적으로 결함이 발생한다. 지금까지 알려진 바에 의하면, 오류의 대부분이 일시적인 오류로 인해 발생된다. 일시적인 오류로 인한 소프트 오류를 검출하는 기술은 일반적으로 프로세서의 성능감소를 가져오거나, 오류 검출에 필요한 추가적인 하드웨어 자원 및 전력소모가 요구되어 이의 적절한 조율과정을 거치게 된다. 이중 모듈 방식은 공통 모드 고장

(CMF)을 포함하여 대부분의 오류에 대응할 수 있지만, 구현상의 변화를 주어야 하고, 하드웨어 자원측면에서 두 배의 오버 헤드 비용이 필요하다. 삼중 모듈 방식(TMR)은 구현상의 변화없이 같은 모듈을 세 번 반복하여 사용할 수는 있으나, 하드웨어 오버헤드 비용이 높고, 각 모듈의 동일한 출력을 비교하기 위해 voting 회로가 필요하다. 추가적인 하드웨어 오버헤드를 피하기위하여, 피연산자를 회전 또는 이동하여 연산을 다시 한 후, 오류를 검출하기도 하는데, 이 경우 연산에 소요되는 시간이 추가되어 이 또한 시스템의

- 12 -

 시간적인 오버헤드가 된다. 연산 중 오류검출 (CED) 방법은 산술 코드, 버저 코드, 패리티 코드 등을 사용하여 인코딩을 한 상태에서 연산을 수행한다. CED 기술의 효율적인 구현을 위해, 발생할 가능성이 높은 결함유형을 고려하는 것이 중요하다.

VLSI 회로에서 고장은 일반적으로 단일방향 오류인 것으로 알려졌다. 단일방향 오류는 동시에 0에서 1 또는 1에서 0으로 오류가 발생되지 않으며, 오류의 방향이 단일방향인 오류이다. 단일방향 오류 감지 (AUED) 기술은 하드웨어 자원 오버 헤드를 고려할 때, 오류 감지의 효율을 높인다. 본 논문에서는 여러개의 단일방향 오류를 탐지할 수 있는 확장 가능한 오류탐지 코딩 (SEDC)을 활용한다. SEDC 방식은 입력 데이터를 4-비트 이하로 분할하고, 분할 된 데이터를 동시에 인코딩하여 오류탐지코드를 할당한다. 따라서, 기존의 단일방향 오류탐지 방식과 달리, 입력데이터의 크기 ‘n’이 증가하더라도, 오류탐지코드 생성에 소요되는 시간은 증가되지 않으며, 기본 모듈들의 활용이 가능하여 구현의 복잡성도 증가되지 않는다. 본 논문에서는 SEDC 방식을 사용하여, 단일 이벤트 오류발생에 대해 높은 내결함성을 가진 ALU 구조를 제안한다. 기존 관련연구에 비하여 제안된 SEDC 코드 기반 ALU는 하드웨어 오버헤드와 지연시간 측면에서 더 나은 결과를 보인다. SEDC 기반 32비트 ALU의 ASIC 구현은 버저 코드 예측 ALU에 비하여 하드웨어 자원을 34% 절약했다 [5]. SEDC 기반 16비트 ALU의 FPGA 구현은 버저 코드 예측 ALU에 비하여 하드웨어 자원을 39% 감소시켰다. 이와 더불어, SEDC 기반 확장가능한 자가완전검증회로(TSC)가 하드웨어 자원과 지연시간을 고려할 때 매우 효율적임을 보였다. 32비트인 경우, 버저코드 기반 TSC에 비하여 SEDC 기반 TSC을 사용하였을 때, 하드웨어 자원 사용량이 67% 감소하였고, 지연시간은 81% 향상되었음을 보였다. 추가적으로, 하드 오류를 완화하기 위해 FPGA 의 재구성 기능을 활용할 수 있음도 보였다.

- 13 -

I. Introduction

A. Research Motivation

System reliability has become a major concern as the transistor size decreases [1]. The

consequence of increasing complexity in the functionality of applications accelerated the

demand of more reliable system. On the other hand, people don’t want to return back to less

sophisticated systems due to the grown dependence on luxuries automated systems.

Initially, reliable computing was limited to military, industrial, aerospace, and

communications applications in which the outcome of computer failure had major economic

impact or even loss of life. Nowadays, even commercial and day to day life applications

require high reliability as we move towards the era of wired money transfer and automated

life-style. Reliability is of vital importance in situations where a computer failure could have

disastrous results [2].

Errors can be classified as either soft errors or hard errors. Soft errors are caused by

transient or intermittent faults, while hard errors are caused by permanent faults. Permanent

faults remain for indefinite periods until corrective action is taken. Studies show that the

majority of errors are caused by transient faults.

Studies shows that most of the errors originate from Arithmetic logic unit (ALU) of a

microprocessor based system [3], which is used in almost every automation application. From

space applications to a simple money transfer, error could cause disaster. For example, a

permanent fault in ALU calculation for navigational data may result in the lost of a ten billion

dollar shuttle in space for ever. During a money transfer, a single flip of bit in the transferring

amount can cause huge deficit to an individual.

Hence a fault tolerant ALU has become the most important part of such applications.

B. Research Objectives

Many error detection techniques have been proposed so far. Usually, a tradeoff is made

between the performance of a processor and the area and power required for error detection.

For efficient implementation of CED techniques, it is important to consider the relevant types

- 14 -

of faults that are supposed to be more probable to occur. The types of faults within a VLSI

circuit have been analyzed and found to be of the type which would tend to affect the bits in a

unidirectional manner [4]. Unidirectional errors can alter the node logic from zero to one or

from one to zero, but not both at the same time. So an All Unidirectional Error Detection

(AUED) technique provides optimal fault coverage with reduced area overhead.

Our main objective is to reduce the area penalty with 100% fault coverage against

unidirectional errors. Delay between occurrence and detection of fault can also play a vital role.

If a fault is detected after it is being propagated, then the overall system might fail, hence delay

is also one of the key objectives of our research. We will also take in to account the power

distribution so as to avoid the hot spots in the design. Lastly, our focus will be on reducing the

complexity of overall system when scaling the circuits for higher input data lengths.

C. Thesis Contributions

The main aim of this research is to come up with a fault tolerant ALU using newly

developed AUED technique named Scalable Error Detecting (SEDC) scheme with a better

hardware and delay overhead as compared to the previous CED techniques. In order to achieve

this, we will formulate and design the SEDC encoded ALU for predicting the SEDC code

word of a particular ALU output word. As the name employs, SEDC is scalable with respect to

input data length, while the latency of the circuit remains constant. SEDC splits the input data

into smaller segments (2-, 3- and 4-bits) and encodes them in parallel (using SEDC2, SEDC3

and SEDC4 coding schemes respectively). This inherited parallelism makes our scheme faster.

Moreover, the scaling requires few modifications in the basic circuit resulting in less complex

structure.

SEDC scheme uses four basic coding schemes, namely SEDC2, SEDC3 and SEDC4. For

bigger input data length, multiple copies of these basic coding schemes are used. Hence, the

power distribution of overall circuit is very uniform.

We will also present the design and implementation of Totally Self-checking (TSC)

checker for SEDC scheme. This checker also exploits the parallelism concept like the code

- 15 -

generating part, hence the SEDC checker also exhibit constant latency, no matter how long the

input data length is.

The prototype of a complete 8-bit error detecting and reconfigurable ALU system will also

be illustrated on FPGA.

Result shows that SEDC based ALU outperforms other coding schemes in terms of delay,

while it takes less area than Berger Code Prediction ALU [5] which is known to be the only

coding scheme used for implementing fault secure ALU [6].

D. Thesis Organization

The rest of this thesis is organized as follows: the overview of previous work related to this

topic has been presented in chapter II. Theoretical background of SEDC scheme is given in

chapter III and the overall block diagram of SEDC based self-checking ALU is discussed in

chapter IV. With the help of logic equations, first the method of encoding 2-, 3- and 4-bit

Boolean Logic, Shift/Rotate and Add/Subtract operation units using SEDC scheme is

illustrated in chapter V and then, the scaling of ALU for any input bit length ‘n’ is elaborated

in chapter VI. The design details of TSC SEDC checker is covered in chapter VII. We will

discuss the fault coverage of SEDC based self-checking ALU and the TSC SEDC checker in

chapter VIII & IX respectively. Chapter X is dedicated for comparing the area, delay and

complexity of SEDC scheme with existing self-checking ALU techniques. The FPGA

implementation of SEDC based error detecting ALU is discussed and evaluated in Chapter XI.

Finally, the conclusion with future goals are discussed in last chapter.

- 16 -

II. Overview and Related Work

Self-checking ALU provides concurrent error detection (CED) capability that can be used

to design a fault tolerant computer system. A duplex structure (or double modular redundancy,

i.e., DMR) provides high fault security but require twice the area overhead as compared to the

area of a simple ALU. Checker in DMR system accommodate exactly twice the number of

check bits which increases the area overhead of the checker as well. For example, if a 64-bit

fault tolerant ALU is implemented using DMR technique then the checker for DMR system

must encompass 128-bit (or more). For system to be TSC, the checker must be TSC as well. A

128-bit TSC checker must contain tree structure of two rail checkers that not only increases the

overall area of the system, but also the delay as well. Hence, systems with larger inputs are

proposed not to be protected by DMR technique [7].

Fault tolerance by shifted and rotated operands in TMR [8] is proposed for high fault

security, but the technique requires three copies of same ALU. Moreover, the shifting and

rotating operations slow down the whole process, and hence limits the overall speed of the

microprocessor. The outputs of the three ALU modules have to be checked using a voter

circuitry, which produces erroneous outputs when two copies of any module in the system fail.

The voter circuitry has to cover 3 times the numbers of outputs than the outputs of a single

ALU. For a 128-bit TMR ALU, the voter circuit has to accommodate 384-bit inputs which

tremendously increases the overall area overhead of the system.

In [9], hardware and time redundancy are combined to achieve fault detection, diagnosis as

well as isolation of the faulty module with 75% more area overhead than a normal ALU. The

technique is based on the fact that a 32-bit ALU can be implemented using two 16-bit ALUs.

If one of the ALU struck by a permanent fault, the other 16-bit ALU can compute the 32-bit

result with some degradation in system performance. For the system to work as TSC, the

system must employ TSC multiplexers (i.e., differential multiplexers) for multiplexing the

outputs and inputs of the smaller ALUs, which adds to area overhead. The control unit must

also exhibit self-testing properties, otherwise it will become the single point of failure to the

system.

- 17 -

For efficient implementation of CED techniques, it is important to consider the relevant

types of faults that are more likely to occur. The types of faults within a VLSI circuit have

been analyzed and found to be of the type which would tend to affect the bits in an

unidirectional manner [10]. Unidirectional errors can alter the node logic from zero to one or

from one to zero, but not both at the same time [4],[10],[11]. All Unidirectional Error

Detection (AUED) techniques provide optimal fault coverage with reduced area overhead as

compared to simple duplication (DMR) or triplication (TMR).

Several error detection schemes have been proposed to detect unidirectional errors in

computer hardware. Berger Code scheme is the most popular AUED scheme. In [5], Berger

Check Prediction (BCP) circuit is proposed for detecting unidirectional errors in the ALU

circuit. The BCP circuit generates the check symbol for the n-bit ALU result using the zero’s

counts of the operands as well as the internally generated carries. Although the use of

internally generated carries for computation of check bits makes the scheme strongly fault

secure (SFS), but this also increases the latency of the overall system. Latency of Berger code

checker also adds into this delay. Results in [12] show that FPGA implementation of BCP

ALU requires 45% more area overhead than the area occupied by normal ALU.

Arithmetic codes like Residual codes are efficient for checking arithmetic units because

these codes reside under most arithmetic operations [13]. Arithmetic codes can ensure fault

secureness for most arithmetic operators [14], but arithmetic code checking has some

drawbacks. Logic and shift operations do not preserve arithmetic codes. Therefore, using such

codes in ALU and shifter requires the implementation of complex circuitry. Also, arithmetic

codes don’t provide 100% fault coverage against all unidirectional errors. An efficient fault

tolerant ALU using residual codes [15] for whole data path is proposed, but if only ALU is

considered then this technique occupies the same area as DMR. The circuit also uses internal

carry vectors for CED which makes it slower than the DMR technique.

For applications where only t-unidirectional errors are required to be detected, [16]

proposes a modification of BCP ALU using Bose-Lin codes, with less area overhead than [5].

Similar to BCP circuitry , the Bose-Lin Check Prediction circuitry also uses input operands

- 18 -

and internally generated carries from normal ALU to generate the check symbols. Hence, the

worst case time response of [5] and [16] is almost the same.

No scaling scheme is given in [5] while Bose-Lin based Check Prediction circuitry is not

easily scalable. As the check bits increase above three bits, the arithmetic circuits require

complete change in some parts of the circuitry.

In [17] error correcting codes are proposed for designing 32-bit fault tolerant ALU. The

scheme uses BCH codes for detecting and correcting 5-bit error in any position of its 32-bits

input register. Each encoder and decoder takes 63 clock cycles to compute the result that

introduces more delay to the circuit. Faults within the ALU cannot be detected by this scheme.

Area and time efficient self-checking adders have been proposed recently using two rail

codes [18], but the circuits can't be used in ALU because the shifter and logic unit have to be

encoded using different codes, and thus require different checkers as well. This not only

increases the complexity of the system, but also the cost as well.

In this thesis we present an AUED method for detecting errors in ALU using Scalable Error

Detecting Codes (SEDC) [19]. Unlike BCP [5], this scheme generates the check bits without

using the internally generated carries which is the main reason why this scheme is more area

and delay efficient than the BCP scheme. With 100% fault coverage against all unidirectional

errors, SEDC scheme also provides 82% fault coverage against all other errors that emerge due

to single faults in the ALU. SEDC is easily scalable for any number of input bits 'n' while

latency of SEDC encoded ALU remains constant. Unlike residual codes, here we use only one

type of error detection scheme i.e., SEDC scheme for entire design of ALU, that also

simplifies the overall chip design. The area and delay efficient, scalable TSC checker for

SEDC scheme is also presented in this paper which further reduce the area of overall system.

Although, our coding scheme have bigger code length than Berger codes, but the area efficient

TSC SEDC checker requires less area than the TSC Berger checker. The prototype SEDC

based ALU system is implemented on FPGA platform which exploits its reconfiguration

feature to mitigate permanent errors.

- 19 -

III. Scalable Error Detection Coding Scheme

Scalable Error Detection Coding scheme [19] is formulated and designed in such a way that

only area is scaled, while latency depends on a small portion of the input data (explained later).

For any input binary data D of length n-bits represented as (Dn-1,….., D2, D1, D0) with Di ∈

{0, 1} for 0 ≤ i ≤ n-1, two parameters ‘a’ and ‘b’ are computed using (1), where parameter ‘a’

can only be a positive integer, and parameter ‘b’ can take values only from 2, 3 or 4.

3

max(b)n
a

−
= (1)

Satisfying the condition for parameter ‘a’, the maximum possible value for parameter ‘b’ is

selected. The length of SEDC code C represented as (Cm-1, …, Cj, ..., C2, C1, C0) with Cj ∈ {0,

1} for 0 ≤ j ≤ m-1, is then computed as per (2).

 � =	 �����(
 + 1 − 3�)� + 2� (2)

After computing the values for parameters ‘a’ and ‘b’, the SEDC code ‘C’ for input binary

data ‘D’ is computed. SEDC is designed to generate codes basically for 2-, 3-, and 4-bit data

and accordingly referred to as SEDC2, SEDC3 and SEDC4 scheme, respectively. It is then

extended for any integer values of n, as shown in Fig. 3.1.

Next, we will discuss the mathematical foundations of SEDC2, SEDC3 and SEDC4 schemes

with logical explanations about their error detecting capabilities.

A. SEDC2 code

Fig. 3.2 gives a 2-D square illustration of SEDC2 scheme where nodes represent data words

Figure 3.1 Data partitioning and encoding using SEDC scheme for given data word

and their corresponding code words are written in brackets

The SEDC coding scheme assigns code words to different data words with a unique criteria.

Whenever there is a change of bit (or bits) in data word from '1'

in Fig. 3.2), the change is reflected on code word in opposite way, i.e., the code changes from

'0' → '1'(shown with dashed arrow in Fig. 3.

data word increases, the weight of its SEDC code word decreases and vice versa.

is used to assign 2-bit code words 'C1C0' to the 2

interchangeably; this results in another variant of SEDC

 NAND[]
0

C:
1

[C =

SEDC2 is the basic coding scheme and is embedded in

unidirectional errors in 3-bit and 4-bit data, as shown later. This ability of scaling codes

present in any other coding scheme.

B. SEDC3 code

SEDC3 code for 3-bit data is computed as per (4).

()
()

(

=
SEDCcomplement s1'

 ,D,DSEDC
C,C

012

01

Fig. 3.3.(a) shows a 3-D cube illustrating the unidirectional error detection mechanism of

SEDC3 codes. Same notations are used in Fig. 3

cube represents the embedded SEDC2 coding scheme in SEDC

unidirectional change in data word '001' to '111' (two MSB's changing from '00

Figure 3.2 2D illustration of SEDC

- 20 -

and their corresponding code words are written in brackets.

The SEDC coding scheme assigns code words to different data words with a unique criteria.

e of bit (or bits) in data word from '1' → '0' (shown with bold arrow

2), the change is reflected on code word in opposite way, i.e., the code changes from

3.2), and vice versa. In general, when the weight of

data word increases, the weight of its SEDC code word decreases and vice versa. Equation (3)

' to the 2-bit data words D1D0. C1C0 can also be used

; this results in another variant of SEDC2 code.

() ()]D,DXNOR:D,DNAND 0101
 (3)

is the basic coding scheme and is embedded in SEDC3 and SEDC4 to detect all

data, as shown later. This ability of scaling codes is not

bit data is computed as per (4).

()) =

=

1D if ,D,DSEDC

0D if

2012

2 (4)

D cube illustrating the unidirectional error detection mechanism of

codes. Same notations are used in Fig. 3.3.(a) as in Fig. 3.2. The dashed side of the

coding scheme in SEDC3. Note that when there is a 2-bit

unidirectional change in data word '001' to '111' (two MSB's changing from '00' to '11'), the

2D illustration of SEDC2 scheme

code changes in the opposite direction (MSB

The first four code words for SEDC3 are same as SEDC

dashed side). The remaining four code words are generated by

1) Invert all the 3-bit data bits (we take '100'

2) Find the SEDC2 code word corresponding to the inverted data resulting from step 1

('011'→'01').

3) Now invert the SEDC2 code word which came from step 2 ('

4) The inverted SEDC2 code word resulted in step 3 becomes the code word for the data

word selected in step 1.

Any two data words DA and DB such that D

1's → 0's or 0's → 1's, are assigned unique code word by above shown steps, hence making it

possible to detect all unidirectional errors.

C. SEDC4 code

SEDC4 code for 4-bit data is formulated as per (5).

() D([]C,C:[C 3012 NOT=

MSB of the code word is completely dependent upon MSB of the data word for SEDC

hence any change in the MSB of the data word is detected. While the rest of the three data bits

 (a)

Figure 3.3 (a) 3D illustration of SEDC

- 21 -

SB of the code changes from '1' to '0').

are same as SEDC2 as shown in Fig. 3. 3(a) (with

dashed side). The remaining four code words are generated by the following steps:

bit data bits (we take '100'→'011').

code word corresponding to the inverted data resulting from step 1

code word which came from step 2 ('01'→'10').

code word resulted in step 3 becomes the code word for the data

such that DB can be converted to DA by just changing the

 1's, are assigned unique code word by above shown steps, hence making it

bit data is formulated as per (5).

()]D,D,DSEDC:) 01233
 (5)

MSB of the code word is completely dependent upon MSB of the data word for SEDC4;

hence any change in the MSB of the data word is detected. While the rest of the three data bits

 (b)

(a) 3D illustration of SEDC3 scheme (b) SEDC3 circuit

- 22 -

are encoded using same SEDC3 scheme.

In general, for SEDCn, the n-bit binary data is grouped into one ‘b’-bit segment and ‘a’

number of 3-bit segments, and then these segments are encoded using SEDCb and ‘a’ number

of SEDC3 modules in parallel, as shown in Fig. 3.1. Small code words are produced from 3-bit

and b-bit data segments for error detection. It is noteworthy that each group of data segment

and corresponding code segment is independent to each other. This independency makes our

scheme scalable.

We could partition to get Berger codes in parallel; however it requires more area than

SEDC scheme. For instance, a 3-bit input SEDC circuit shown in Fig. 3.3.(b) can be

implemented with 14 MOS transistors, while 3-input one's counter is implemented with a full

adder that contains 28 MOS transistors [20].

IV. Introduction to Overall System

The general block diagram of SEDC based error detecting

SEDC is a concurrent error detection (CED) scheme

module, like the one proposed in [21]. Inputs are simultaneously applied to the function

(in our case ALU) and output characteristic predictor circuit (in our cas

or SEDC check bits predictor). TSC SEDC checker validates the output of both ALU and

SEDC encoded ALU.

A. Arithmetic and Logic Unit

The ALU generates the normal output ‘F(A, B, op, p)’

and ‘p’. The ALU circuit is capable of performing

Operation of two n-bit operands, n-bit Shift/Rotate O

and n-bit Compare Operation (abbreviated as BO, SRO

the thesis).

Input ‘op’ is designated to specify particular

Shift or any Boolean Operation). To provide the input shift bit

input ‘cin’ for Add/Subtract operation, 1-bit input ‘

Figure 4.1 General model for SEDC based Self

Functional

Unit

- 23 -

Introduction to Overall System

SEDC based error detecting ALU is depicted in Fig. 4.1. [19].

SEDC is a concurrent error detection (CED) scheme which requires a separate encoded

]. Inputs are simultaneously applied to the functional unit

(in our case ALU) and output characteristic predictor circuit (in our case SEDC encoded ALU

TSC SEDC checker validates the output of both ALU and

The ALU generates the normal output ‘F(A, B, op, p)’ by taking the inputs ‘A’, ‘B’, ‘op’

The ALU circuit is capable of performing four basic operations, namely Boolean

Shift/Rotate Operation, n-bit Add/Subtract Operation

(abbreviated as BO, SRO, ASO and CO respectively throughout

particular Arithmetic or Logic Operation (like Add/Sub,

Shift or any Boolean Operation). To provide the input shift bit ‘si’ for shift operation, or carry

input ‘p’ is used.

General model for SEDC based Self-checking ALU

Output

characteristic

predictor

- 24 -

B. SEDC encoded ALU

SEDC encoded ALU or SEDC check bits predictor is designed in such a way that it

generates the corresponding SEDC check bits ‘C = SEDC(F)’ using the same inputs ‘A’, ‘B’,

‘p’ and ‘op’, in parallel. For designing this SEDC encoded ALU, we generated truth tables

with inputs A, B, op and p, while the output equals to ‘C = SEDC (F)’, using Logic Friday

software.

Similar to the ALU, SEDC encoded ALU comprises of SEDC encoded BO Unit, SEDC

encoded SRO Unit, SEDC encoded ASO Unit and SEDC encoded Compare Unit. To switch

between different operations, input ‘op’ is used. One can observe from Fig. 4.1, that unlike

BCP ALU [5], SEDC encoded ALU does not use the internally generated carries.

C. TSC SEDC checker

A totally self-checking (TSC) SEDC checker is used to validate the ALU output ‘F’ with its

corresponding SEDC encoded ALU output ‘C’. A 2-bit error signal ‘V’ is generated if ‘F’ and

‘C’ do not correspond to each other (i.e., C ≠ SEDC (F)). As the checker is TSC, hence it has

the ability to detect or safely hide its own error. The checker also exhibits scalability, i.e., the

checker can be designed for any number of input bits with little increment in hardware while

the latency remains constant.

- 25 -

V. Formulation of SEDC encoded ALU

In this chapter we will discuss the formulation of each SEDC encoded ALU operation

(Boolean, shift/rotate and add/subtract operation, compare operation with some examples).

A. 2-, 3- and 4-bit SEDC encoded Boolean Operation Unit

In Table 5-1 [19], we list the logic equations to implement 2-bit SEDC encoded BO Unit.

The symbol ‘opBO’ is equivalent to ‘op’ in Fig. 4.1. A total of 16 Boolean logic operations

can be performed by changing input ‘opBO’.

The ‘SEDC2’ symbol mentioned in Table 5-1 generate the SEDC2 check bits ‘C1(2bit)C0(2bit)’

of the 2-bit input operands ‘A’ and ‘B’. ‘2 x SEDC2’ denote the one bit left shifted result after

taking SEDC2 of the operands, with ‘0’ as the input shift bit. Other symbols like ‘+’ and ‘-’

represent the normal add and subtract operations. “�” shows the inverted A, while ‘AND’,

‘OR’, ‘XOR’, ‘NAND’ and ‘NOR’ are the normal 2 operand logic gate operations. For

example, if the value of ‘opBO’ is 6, then the output of the ALU is normal XOR value of ‘A’

Table 5-1. Logic for 2-bit SEDC encoded BO Unit

Operations opBO 2-bit SEDC Encoded Boolean Operations A3/

A2

B3/

B2

S9/

S10 (C1(2BIT),C0(2BIT)) = SEDC2 (A, B, OPBO)

Logic 0 0 SEDC2(00) X X 0

A NOR B 1 SEDC2(�̅) + SEDC2(��) ‐ SEDC2(�̅ OR ��) 0 0 1 �̅ AND B 2 SEDC2(�̅) + SEDC2(B) ‐ SEDC2(�̅ OR B) 0 1 1 �̅ 3 SEDC2(�̅) 0 X 1

A AND �� 4 SEDC2(A) + SEDC2(��) ‐ SEDC2(AOR��) 1 0 1 �� 5 SEDC2(��) X 0 1

A XOR B 6 SEDC2(A) + SEDC2(�) ‐ (2×SEDC2(A.B)) +

3

0

1

1

0

1

1

A NAND B 7 SEDC2(�̅) + SEDC2(��) ‐ SEDC2(�̅.��) 1 1 0

A AND B 8 SEDC2(A) + SEDC2(B) ‐ SEDC2(A OR B) 1 1 1

A XNOR B 9 SEDC2(�̅) + SEDC2(�) ‐ (2 × SEDC2(�̅ . B))

+ 3

0

1

0

1

1

1

B 10 SEDC2(B) X 1 1 �̅	OR B 11 SEDC2(�̅) + SEDC2(B) ‐ SEDC2(�̅ . B) 1 0 0

A 12 SEDC2(A) 1 X 1

A OR �� 13 SEDC2(A) + SEDC2(��) ‐ SEDC2(A . ��) 0 1 0

A OR B 14 SEDC2(A) + SEDC2(B) ‐ SEDC2(A . B) 0 0 0

Logic 1 15 SEDC2(11) X X 1

- 26 -

and ‘B’ while output of the SEDC encoded ALU is computed by the corresponding equation

from Table 5-1. Unlike BCP ALU [5], Table 5-1 don’t contain any signal (Carry out, internally

generated carries etc) that is being generated by normal ALU. This makes SEDC encoded

ALU faster than BCP ALU. Following example illustrates the 2-bit SEDC encoded XOR

operation.

Example 1: Let A = 01, B = 10, opBO = 0110 (XOR)

⇒ A AND B = 00; SEDC2(A) = 10, SEDC2(B) = 10, SEDC2(A AND B) = 11;

⇒ 2xSEDC2(A AND B) = 110;

⇒ SEDC2(A) + SEDC2(B) - {2xSEDC2(A AND B)} + 3= 001

Discarding the MSB, the remaining two LSBs ‘01’ are the SEDC2 check bits for XOR

operation between ‘A’ and ‘B’, which can be verified from (3).

For scaling 2-bit SEDC encoded BO unit to 3-bit, ‘opBO’, ‘A2’ and ‘B2’ signals are

encoded to generate ‘S9’, using Table 5-1 (where ‘A2’ and ‘B2’ are the MSB’s of the 3-bit input

operands ‘A’ and ‘B’ respectively). Replacing ‘SQ’ with ‘S9’ in (6), will yield the SEDC3

check bits C1(3bit)C0(3bit).

(C1(3bit), C0(3bit)) = �(C�(����), C�(����))	– 	1											if		#$ 	= 	1(C�(����), C�(����))																			otherwise, (6)

Similarly, (7) & (8) are used for scaling 3-bit SEDC encoded BO unit to 4-bit unit. Here

signals ‘opBO’, ‘A3’ and ‘B3’ are encoded to generate ‘S10’ using Table 5-1, and depending

upon ‘S10’, the output SEDC4 code C2(4bit)C1(4bit)C0(4bit) is obtained.

C2(4bit) = -1											if		#�� 	= 	00													otherwise, (7)

(C1(4bit), C0(4bit)) = SEDC3(A(3bit), B(3bit), opBO) (8)

B. 2-, 3- and 4-bit SEDC encoded Shift/Rotate Unit

The SEDC check of the result of a shift/rotate operation is simply the SEDC check of the

operand, since no information bit is discarded except for their position. The logic shift

- 27 -

operation involves the ‘si’ bit (equivalent to ‘p’ in Fig. 4.1) as input shift bit. Table 5-2

tabulates the logic of 2-bit SRO unit [19].

The circuit is able to perform same operations given in [5] that are, shift left, shift right,

rotate left and rotate right on any 2-bit operand ‘A’ and generate its 2-bit SEDC code.

Following is the example to illustrate the 2-bit SEDC encoded shift/rotate operation.

Example 2: Let A = 01, si = 1, opSR = 01 (shift right);

⇒ [si A1] = 10; (normal shift output)

⇒ SEDC2([si A1]) = 10 (SEDC encoded output)

For scaling 2-bit SEDC encoded SRO unit to 3-bit unit, we replaced SQ with S1 in (6),

while for scaling 3-bit SRO unit to 4-bit unit we used (9) & (10). Signal ‘sibit’ and S1 are

generated using primary inputs opSR, A and si, whose logic equations are given in Table 5-2.

 (C1(4bit), C0(4bit)) = SEDC3(A(A2,A1,A0), sibit, opSR) (9)

 /�(0���) =	1NOT	A�, if	opSR = 0NOT	si, if	opSR = 1NOT	A�, if	opSR = 2NOT	A�, if	opSR = 3, (10)

C. 2-, 3- and 4-bit SEDC encoded Add/Subtract Unit

The SEDC check of the result of an add/subtract operation is simply the SEDC check of the

normal add/subtract result, as formulated in (11) & (12) [19].

 C1(2bit), C0(2bit) = #9:/	{�⨁(� ⊕ �>�#)⨁(/�? ⊕�>�#)} (11)

Cc(2bit) = #9:/{�⊕ (� ⊕ �>�#)}(/�? ⊕�>�#) + �(� ⊕ �>�#) (12)

Table 5-2. Logic for 2-bit SEDC encoded SRO Unit

Operations opSR 2-bit SEDC Shift/Rotate Operations

(C1(2bit),C0(2bit)) = SEDC2(A(A1, A0), si, opSR)

Shift Left A 00 SEDC2([A0 si])

Shift Right A 01 SEDC2([si A1])

Rotate Left A 10 SEDC2(A)

Rotate Right A 11 SEDC2(A)

- 28 -

The ‘opAS’ here corresponds to the input ‘op’, and ‘Cin’ corresponds to ‘p’ in Fig. 4.1.

Cc(2bit) and C1(2bit)C0(2bit) are SEDC check bits for output carry and sum, respectively. Example 3

shows the SEDC check bit generation for 2-bit add operation.

Example 3: Let A = 01, B = 10, Cin = 1, opAS = 0;

⇒ Cout = 1, A + B + Cin = Sum = 00;

⇒ SEDC2 Cout = 0, SEDC2 Sum = 11;

Here again, for scaling 2-bit SEDC encoded Add unit to 3-bit unit, (6) is used to generate

check bits ‘C1(3bit)C0(3bit)’ corresponding to the output sum of the ALU, by replacing SQ with

S15. The logic equations that generate check bit for carry out signal ‘Cc(3bit)’ and S15 signal are

given in Table 5-3.

Similarly, (13) & (14) are used to generate the check bits ‘C2(4bit)C1(4bit)C0(4bit)’

corresponding to output sum of the 4-bit SEDC encoded ALU, while the logic equations for

carry out signal ‘Cc(4bit)’ and S17 signal are given in Table 5-3.

 /�(0���) =	�NOT	/A(�BCD),								if	S�E = 1/A(�BCD),																	otherwise, (13)

 (C1(4bit), C0(4bit)) = (A(3bit), B(3bit), Cin, opAS) (14)

The three SEDC encoded operation units compute the SEDC check bits independent of the

internally generated carries from the normal ALU, which reduce the overall latency of the

system.

Equations in Table 5-3 [19] are formulated by inputting the logic tables in Logic Friday

software and then minimizing them to generate logic equations. All the logic equations uses

Table 5-3. Logic equations for S1, sibit, S14-S15 signals

S1 = (opSR1')(opSR0)(A2) + (opSR1')(opSR0')(A1)

sibit = (opSR0)(A3) + (opSR0')(si)

S14 = Cc(3bit) = (B2')(Cc(2bit)) + (A2')(B2')(Cc(2bit)') + (A2')(B2)(Cc(2bit))

S15 = (A2)(B2)(Cc(2bit)') + (A2)(B2')(Cc(2bit)) + (A2')(B2')(Cc(2bit)') + (A2')(B2)(Cc(2bit))

S16 = Cc(4bit) = (A3')(B3') + (A3')(Cc(3bit)) + (B3')(Cc(3bit))

S17 = A3' B3 + A3 B3'

- 29 -

primary inputs ‘A’, ‘B’, ‘p’ and ‘op’ to compute the SEDC check bits of a particular

Arithmetic and Logic operation.

All the circuits are implemented using combinational logic. These circuits can also work for

1-bit input data. The only change to made is; take the LSB of the SEDC Code (C0) rather than

taking both C1C0 bits.

D. 2-, 3- and 4-bit SEDC encoded Compare Unit

The Compare unit takes in only two operands A & B, and can perform three operations,

that are, A greater than B, A is equal to B, and A is smaller than B. Particular operation can be

selected using the input op. Table 5-4 enlists the SEDC2 code of the two input compare

operation.

For scaling 2-bit unit to 3- (e = 2) and 4-bit (e = 3) unit, equation (15) is generally used.

[C1(e+1-bit), C0(e+1-bit)] = [{(Ae + C1(e-bit)).�F��� + Ae.C1(e-bit)} , {(Ae ⊕ Be) + C0(e-bit)}] (15)

Table 5-4. Logic for 2-bit SEDC encoded Compare Unit

Operations opCC 2-bit SEDC Compare Operations

(C1(2bit),C0(2bit)) = SEDC2(A(A1, A0),

B(B1, B0), opCC)

A > B 00 SEDC2(00)

A == B 01 SEDC2(01)

A < B 11 SEDC2(11)

- 30 -

VI. Scaling SEDC encoded ALU for n-bit Input

As discussed in chapter II, SEDC scheme is made for 2-, 3- and 4-bit inputs. For n-bit input,

combination of these 2-, 3- and 4-bit input schemes are used, denoted as SEDC2, SEDC3 and

SEDC4 respectively. Following we give logic and examples for designing n-bit SEDC encoded

BO, SRO and ASO units using their respective 2-, 3- and 4-bit modules.

A. n-bit SEDC encoded Add/Subtract Unit

The SEDCn check bits (Cm) have two parts; {Cm-1, Cm-2,…,Cm-L} generated by b-bit SEDC

encoded BO with input operands {An-1, An-2,.., An-b}, {Bn-1, Bn-2,.., Bn-b}, opBO, and {Cm-(2xk)-L-1,

Cm-(2xk)-L-2} generated by sets of 3-bit SEDC encoded BO on inputs {Ann-1, Ann-2, Ann-3}, {Bnn-1,

Bnn-2, Bnn-3}, opBO. For calculating values of nn, k and L, (16)-(18) [19] can be used.

 =
 − (3G) − H (16)

 G = 0	I�	(� − 1) (17)

 J = [����{
 + 1 − (3�)}] (18)

Example 5: Let A and B contains 8-bit each;

⇒ b = 2, a = 2 and m = 6 {from (1) & (2)}

⇒ k = 0 to 1, nn = 6, 5 and L = 2. {from (16)-(18)}

So we generate (C5, C4) using one 2-bit SEDC encoded BO unit (SEDC2) with inputs (A7,

A6), (B7, B6) while (C3, C2), (C2, C0) are generated using two 3-bit SEDC encoded BO units

(SEDC3) with inputs (A5, A4, A3), (B5, B4, B3) & (A2, A1, A0), (B2, B1, B0) respectively. Input

‘opBO’ being the common input to all of the three SEDC encoded modules.

B. n-bit SEDC encoded Add/Subtract Unit

Similar to n-bit BO operation unit, the logic to implement n-bit SEDC encoded SRO unit is

given in Table 6-1 [19]. Again the modules are split into b-bit and 3-bit modules for generating

the SEDC code. For 8-bit SEDC encoded SRO unit, values of a, b, m, k and L remains same as

in Example 5. Check bits (C5, C4) are generated by 2-bit SEDC encoded SRO unit using (A7,

A6), (B7, B6) and sibit1 as inputs while (C3, C2) and (C1, C0) are generated by two 3-bit SEDC

encoded SRO units with inputs (A5, A4, A3), (B5, B4, B3), sibit2 and (A2, A1, A0), (B2, B1, B0),

- 31 -

sibit2’ respectively. The sibit2’ is computed the same way as sibit2 but with changed values of

‘k’. The logic to generate sibit1 and sibit2 signals is also given in Table 6-1.

C. n-bit SEDC encoded Add/Subtract Unit

Table 6-2 [19] list the logic to design n-bit SEDC encoded ASO unit. Care must be taken to

connect carry in and carry out signals between a b-bit and 3-bit SEDC encoded ASO units.

Also there is a requirement of two extra XOR gates for inverting B and Cin bits (for subtraction

operation).

Table 6-1. Logic for scaling n-bit SEDC encoded SRO unit

b-bit SEDC encoded SRO unit with inputs ((An-1, An-2, ..An-b), sibit1, opSR)

Operations opSR sibit1

Shift/Rotate Left A X0 An-b-1

Shift Right A 01 si

Rotate Right A 11 A0

3-bit SEDC encoded SRO unit with inputs ((Ann-1, Ann-2, Ann-3), sibit2, opSR)

Operations opSR k sibit2

Shift Left A 00
= (a-1) si

≠ (a-1) An-b-(3x(k+1)-1

Shift/Rotate Right A 01 X An-b-(3xk)

Rotate Left A 10
= (a-1) Amsb

≠ (a-1) An-b-(3x(k+1))-1

Table 6-2. Logic for scaling n-bit SEDC encoded ASO unit

b-bit SEDC encoded ASO unit

Inputs = ((An-1, An-2, …., An-b), (Bn-1, Bn-2, …., Bn-b), Cin1, opAS)

Operations opAS a Cin1 B

A + B + Cin 0
= 0 Cin

B
≠ 0 Ck

A – B - Cin 1
0 /M
����� ��
≠ 0 /G����

(CK, CSm-L-1, …., CSm-(2xL)-L-2 = 3-bit SEDC encoded ASO unit

Inputs = ((Ann-1, Ann-2, …, A0), (Bnn-1, Bnn-2, …, B0), Cin2, opAS)

Operations opAS k Cin2 B

A + B + Cin 0
= (a-1) Cin B
≠ (a-1) Ck+1

A – B - Cin 1
= (a-1) /M
����� ��
≠ (a-1) /N + 1���������

- 32 -

C. n-bit SEDC encoded Compare Unit

Equation (16)-(18) can be used in similar way to partition the data as described earlier. For

designing n-bit SEDC encoded Compare unit, Equation (15) can be utilized. The value of ‘e’

should be equal to ‘n-1’.

- 33 -

VII. TSC SEDC checker

In this chapter we will discuss the basic difference between a SEDC code checker and a

Berger code checker. With introduction to '10' coding, we will explain the logic equations and

MOS level circuit diagrams to implement TSC SEDC checker. We will also show the scaling

of TSC SEDC checker to any number of input bits ‘n’ using the basic 2-, 3- and 4-bit TSC

SEDC checkers.

A. Difference between SEDC and Berger code checker

Close inspection of Fig. 7.1.(a) and Fig.7.1.(b) reveals that Berger code checker differ

SEDC checker by two modules namely; the check bit complement generator which generates

the bit by bit complement of the check bits and a tree of two rail checker [7]. As the

complement generator generates the bit by bit complement, in other words, Berger checker

encodes the n-bit ‘F’ and m-bit pre-computed check bits into two rail codes. The two rail codes

are then checked using tree structure [22]. If we partition the Berger codes in a similar way as

we do with SEDC, then this two rail code length will increase, causing the depth of two rail

checker tree to increase.

On the other hand, SEDC checker has distinct modules as shown in Fig.7.1.(b): the SEDCn

checker and the wired AND-OR logic block. The SEDCn checker encodes the n-bit ‘F’ and m-

bit ‘C’ into ‘10’ codes. Table 7-1 [23]shows the ‘10’ coding scheme for 1-information bit ‘F0’

Figure 7.1 Architectures of TSC (a) Berger checker (b) SEDC checker

and 1-check bit ‘C0’, according to which the correct output code space

(that is why we named this encoding scheme as ‘10’ encoding)

correct code space is V1V0 = {01, 10}. The benefit of ‘10’ codes is that they can be checked

using wired AND-OR circuits in parallel, while the

tree of two rail checkers, which increases the overall delay if the length of check bits increases.

B. Logic and circuits for TSC SEDC1, SEDC

The SEDC checker is also composed of one b

TSC SEDC checkers. These small checkers encodes ‘F’ and ‘C’ into ‘10’ codes, rather than

two rail codes. In the case of 1-, 2- and 3-bit TSC SEDC checkers, the output can be directly

used as an error indication signal, but for n > 3, the outputs of smaller TSC SEDC checkers are

converted to a 2-bit error signal using one level of wired

the logic and circuit diagrams for primitive TSC SEDC checkers (SEDC

SEDC4 checkers) which can be used to scale the TSC SEDC checker to a

checker.

1. TSC SEDC1 checker

Fig. 7.2 shows the pseudo nMOS logic implementation of TSC SEDC

Figure 7. 2 MOS circuit for TSC SEDC

Table 7-1. ‘10’ Codes Table for one bit input (SEDC

F0 C0

0 0

0 1

1 0

1 1

- 34 -

’, according to which the correct output code space is V1V0 = {10} only

(that is why we named this encoding scheme as ‘10’ encoding), while in two rail encoding the

= {01, 10}. The benefit of ‘10’ codes is that they can be checked

OR circuits in parallel, while the two rail codes can only be checked using a

tree of two rail checkers, which increases the overall delay if the length of check bits increases.

, SEDC2, SEDC3, SEDC4 and SEDCn checkers

The SEDC checker is also composed of one b-bit TSC SEDC checker and a-sets of 3-bit

TSC SEDC checkers. These small checkers encodes ‘F’ and ‘C’ into ‘10’ codes, rather than

bit TSC SEDC checkers, the output can be directly

error indication signal, but for n > 3, the outputs of smaller TSC SEDC checkers are

bit error signal using one level of wired-AND-OR gate. Subsections discuss

the logic and circuit diagrams for primitive TSC SEDC checkers (SEDC1, SEDC2, SEDC3 and

checkers) which can be used to scale the TSC SEDC checker to a n-bit TSC SEDC

Fig. 7.2 shows the pseudo nMOS logic implementation of TSC SEDC1 checker.

MOS circuit for TSC SEDC1 Checker

‘10’ Codes Table for one bit input (SEDC1)

V1 V0

1 1

1 0

1 0

0 0

Table 7-1 shows the logic for 1-bit TSC SEDC (TSC SEDC

indicate the valid input code word (i.e., 10, 01) and the valid output code

the 1-bit information word which is the output of ISG ‘F’ and C

generated by SEDC Check Symbol Generator (SCSG) ‘C’. V

signal of TSC SEDC checker ‘V’ [23].

2. TSC SEDC2 checker

Equations (19) & (20) [23] are used to implement TSC SEDC

bit error signal V1V0 (here “.” & “+” denotes the normal AND & OR operations respectively).

Again the correct output code space is {10}. Now C

are the information bits. O� =	 (P� + P� + /���������������
 O� =	/�. (P� + P�������������

The CMOS level design of TSC SEDC2

convert 1-bit SEDC checker circuit to 2-bit SEDC checker as shown in Fig. 7.

3. TSC SEDC3 checker

Fig. 7.4 [23] shows the block diagram and the logic for 3

data F2F1F0 from ISG and 2-bit SEDC check bits C

Figure 7. 3 MOS circuit for TSC SEDC2

 Checker

- 35 -

bit TSC SEDC (TSC SEDC1 checker). Highlighted cases

indicate the valid input code word (i.e., 10, 01) and the valid output code word (10). F0 denotes

bit information word which is the output of ISG ‘F’ and C0 denotes 1-bit SEDC check bit

generated by SEDC Check Symbol Generator (SCSG) ‘C’. V1V0 is the 2-bit error indication

used to implement TSC SEDC2 checker that generates the 2-

(here “.” & “+” denotes the normal AND & OR operations respectively).

Again the correct output code space is {10}. Now C1C0 denotes the SEDC check bits and F1F0

/�)(/� + P�P�/�)����������������������

(19) P�)(/� + P�P�)������������������� (20)

2 checker requires only 9 extra MOS transistors to

bit SEDC checker as shown in Fig. 7.3.

shows the block diagram and the logic for 3-bit TSC SEDC checker. Three bit

bit SEDC check bits C1C0 from SCSG are first converted to F1'F0'

 Figure 7. 4 Block diagram of 3-bit

 TSC SEDC checker

- 36 -

and C1'C0' respectively and then they are checked using the same 2-bit TSC SEDC checker as

shown in Fig. 7.4. When F2 bit is ‘1’, the F1F0 and C1C0 are inverted, while if F2 is ‘0’ then

F1F0 and C1C0 remain same. As the outputs of XOR gates are fed to TSC SEDC2 checker,

hence any error in XOR gates is detected. This makes the overall 3-bit SEDC checker TSC.

4. TSC SEDC4 checker

A 4-bit TSC SEDC checker consists of one TSC SEDC1 checker and one TSC SEDC3

checker as shown in Fig. 7.5 [23]. Both SEDC1 and SEDC3 checkers generate 2-bit output

V1V0. As the valid code word is {10}, hence to make sure that both the checker units generate

{10} output during error free operation, we ‘AND’ V1 output-bit of TSC SEDC1 checker with

V1 output-bit of TSC SEDC3 checker. Also, we ‘OR’ V0 output-bits of both TSC SEDC

checkers using wired logic gates. We checked and confirmed by fault simulation that wired-

AND and wired-OR gates are also TSC for single faults (stuck-at-0, stuck-at-1, transistor-

stuck-on and transistor-stuck-off).

As compared to TSC Berger checker, SEDC checkers don't require tree of TSC two-rail

checkers for comparison of check bits CB with the predicted code bits CB', as shown in Fig. 7.1.

The wired-AND and wired-OR circuitry show constant latency for any number of input bits,

unlike the TRC tree.

5. TSC SEDCn checker

Similar to the SEDC code generator, TSC SEDC checker requires copies of 1-, 2- and 3-bit

SEDC checkers depending upon the value of “a” and “b” (evaluated from (1)). For example, if

Figure 7. 5 Block diagram of TSC SEDC4 Checker

- 37 -

n=8 bits, then from (1), a = 2 and b = 2. This requires a TSC SEDC2 checker and couple of

TSC SEDC3 checkers to realize an 8-bit TSC SEDC checker.

Circuit for wired-AND and wired-OR gates will also expand as “n” increases. For n = 8 bits,

there will be total 3 TSC SEDC checkers with 2-bit output each. So a 3-input wired-AND and

3-input wired-OR gate is required to compare all the V1 and V0 bits. Fig. 7.6 [23] shows the

block diagram of n-bit TSC SEDC checker.

In general, for “n” bit input, there are “a+1” TSC SEDC checkers with 2-bit output each. So

we require d = {2x(a+1)}-input wired-AND and wired-OR gates. With each increasing input to

the wired-AND and wired-OR gates, one extra transistor is required by each of the wired-gates.

Consequently, the circuit expands in width-wise fashion, and hence the latency of the wired

logic remains constant for any value of “n”.

Size of the load transistor driving these wired-AND and OR gates will also increase with

increasing inputs. So we consider the maximum fan in of one gate equal to 4. For d > 4, an

extra load transistor is connected in parallel. If “d” denotes the total number of inputs to the

TSC checker then we require r = (k/4) load transistors. Total “d + r” number of transistors

are required to implement the “d”-input wired AND-OR network with a constant latency of 1

transistor.

Figure 7. 6 Block diagram of TSC SEDCn Checker

- 38 -

VIII. Fault Coverage of SEDC encoded ALU

A. Fault model

As discussed in Chapter III, SEDC scheme is an AUED scheme hence we assume that any

single fault in ALU or SEDC encoded ALU causing a unidirectional change at their respective

outputs, are detected by TSC SEDC checker. But there are some errors in ALU that result in

bidirectional error at the output of ALU, and hence are not be detected by SEDC scheme. First

we will explain the types of errors that can cause bi-directional change at the output of the

ALU and then we will show that how much fault coverage SEDC scheme can provide against

such errors.

1. Type 1 error

In typical ALU design, there is no distinction between the circuit that handles the arithmetic

operations and that which handles the logic operations. Consequently, a single fault in carry

propagation circuit may induce multiple random errors during the logic operations [5].

2. Type 2 error

In a normal ripple carry adder, the carries and sum bits are not computed by independent

circuits (i.e., the half-sum signals are used to compute the sum bits and also to propagate the

carries). Thus an error to half-sum signal can modify both a carry ci and an output sum si

resulting in a bidirectional error.

3. Type 3 error

The error in carry may propagate to other adder blocks, causing bidirectional errors at the

output of ALU. As our scheme encodes 2-bit, 3-bit or 4-bit data segments separately, so we

applied test vectors on a 2-bit, 3-bit and 4-bit carry ripple adder separately. We call each 2-bit,

3-bit and 4-bit carry ripple adder a “block”. We applied stuck at ‘0’ and stuck at ‘1’ faults on

1
st

(C1), 2
nd

(C2)

and 3

rd
(C3) carry of ripple carry adder, one at a time, as shown in Fig. 8.1. We

- 39 -

found the percentage of faults which cause bi-directional change at the output sum bits (S) of

the 2-bit, 3-bit and 4-bit carry ripple adder respectively.

 a) Type 3-A error:

For 4-bit data, we consider that primary input carry (C0) is error free. A 4-bit adder can

have 2
9
 = 512 input combinations (test vectors). Results show that if the stuck at ‘0’ or at ‘1’

error occurs on C1 then 64 input combinations out of 512 possible combinations (12.5%)

produce bidirectional errors at the output sum bits (S3S2S1S0). The stuck at errors on 2
nd

 and 3
rd

propagating carry don’t produce bi-directional error at the output sum at all.

 b) Type 3-B error:

For a 3-bit carry ripple adder, stuck at ‘0’ or ‘1’ error on 2
nd

 propagating carry (C1) results

in 16 out of 128 cases (12.5 %) in which the output sum (S2S1S0) is bi-directionally corrupted

by the error. The stuck at error on 2
nd

 propagating carry (C2) don’t produce bi-directional

errors at the output sum at all.

 c) Type 3-C error:

For a 2-bit carry ripple adder, the stuck at error on 1
st
 propagating carry (C1) does not

produce bi-directional error at the output sum at all (S1S0).

4. Type 4 error

Final carry bit of 2-bit (C2), 3-bit (C3) or 4-bit adder (C4) can also be faulty, which may be

propagated to next stages of carry ripple adder. Again we run the fault simulations and found

that if input carry of a 2-bit, 3-bit or 4-bit adder is faulty, then 25 % of the input combinations

can cause bidirectional error at the output sum bits.

Figure 8.1 Fault injection points in a ripple carry adder

- 40 -

5. Type 5 error

Final carry bit of 2-bit, 3-bit or 4-bit adder can also be propagated to the other adder groups

in the chain. Fig. 8.3 shows an example of 8-bit ALU output and its 6-bit SEDC code. The 8-

bit adder is implemented using one 2-bit and two 3-bit carry ripple adders. We consider that

the erroneous carry is generated by the left most 3-bit adder and this error is also propagated to

the next 3-bit adder as well as the 2-bit adder. We found that subset of the Type 4 errors

(almost 25% of the type 4 errors) are the cause of Type 5 errors. These errors can be detected

by our scheme.

B. Fault secureness

1. Against type 1 error

In our proposed SEDC encoded ALU design, Logic Unit and Arithmetic Unit inside the

ALU are separated, hence we eliminate the probability of multiple random errors of Type 1.

2. Against type 2 error

To cope with this problem, we adapt the method described in [24], i.e., to implement

independent circuits for propagate (or transmit) and half-sum signals. This introduces an

overhead of one XOR gate per bit slice. We took this extra overhead into account when

calculating the overall area overhead of our proposed scheme.

3. Against type 3 error

This type of error is not detectable by SEDC scheme. To cope with this error, we can add

redundant carry out circuitry. As our scheme partitions the data into more numbers of 3-bit

modules in which only type 3-B errors are present. If we generate two carry bits (i.e., C1 & C1’)

as the second propagating carry as shown in Fig. 8.2, and calculate the next Sum bit (S1) and

carry bit (C2) by C1 and C1’ respectively, then we can decrease the chances of bidirectional

error due to type 3-B error.

- 41 -

4. Against type 4 error

As we told, 25% of the type 4 errors result in type 5 errors, which are detected by our

scheme (explained next), so we can say that only 18% of the type 4 errors cause bidirectional

error at the output sum bits of the ripple carry adder, which is undetected by our scheme.

5. Against type 5 error

As our scheme encodes the segmented data (2-bit, 3-bit and 4-bit data), hence each pair of

check bits are generated independently. If the output carry of one adder block is affecting the

outputs of other adder block, then each pair of check bits will not correspond to the n-bit

output of adder, and hence these errors can be detected. Fig. 8.3 shows the example of how a

type 4 error resulted in a type 5 error, and is detected by SEDC check bits.

If Sum2 denotes the normal output of the ALU, and Sum2′ symbolizes the erroneous output

due to the presence of Type 5 error, then SEDC code of Sum2′ (i.e., SEDC(Sum2′)) will not be

Figure 8.2 Adding redundant carry generating circuit to cope with Type 3-B errors

- 42 -

equal to the SEDC check bits generated by the SEDC encoded ALU (i.e., SEDC(Sum2)).

Consequently, the Type 5 error is detected.

C. Overall Fault Coverage

Due to single fault, either Type 3 or Type 4 errors remain undetected by SEDC scheme.

Among Type 3 and Type 4 errors, a subset of Type 4 errors (called Type 5 errors) are detected

by SEDC scheme, so in worst case only 18% bi-directional faults stay undetected, while 100%

unidirectional errors can still be detected.

The fault coverage of SEDC scheme can further be increased by putting redundant circuitry

to cop against Type 3 and Type 4 errors. The redundant circuitry could specifically be added to

certain locations of the normal adder by fully understanding the nature of the faults. For

example, Type 3 error occurs when fault is present in first propagating carry, i.e., C1. If we

duplicate the circuit for C1 only, then this type of error can completely be covered.

Figure 8.3 SEDC ALU organization that eliminates Type 5 errors

- 43 -

IX. Results of Fault Testing on TSC SEDC checker

The following definitions can be used to describe a Totally Self-Checking (TSC) system [4],

[7], [10], [11], [22].

• Definition 1: A circuit is fault-secure for a set of faults, if for any valid input and for

any fault among the fault set the circuit either produces a faulty code word, or correct output.

• Definition 2: A circuit is self-testing for a set of faults, if for every fault among the

fault set the circuit produces a faulty code word for at least one valid input.

• Definition 3: A circuit is code disjoint iff it maps the input code space to output code

space, and the non-input code space to non-output code space.

• Definition 4: A circuit is totally self-checking if it is self-testing and fault-secure.

A Circuit is TSC if it obeys all above definitions. TSC SEDC1, SEDC2, SEDC3 and SEDC4

circuits given earlier in this paper are tested for single stuck-at-0, stuck-at-1 and transistor-

stuck-open and transistor-stuck-short faults. We assume that fault occurs one at a time and

there is enough time between detection of first fault to the occurrence of other fault. Following

is the analysis of SEDC checker circuit for satisfying all three properties of totally self-

checking checker. We apply one fault at a time in the circuit of Fig. 7.2 and observe the output.

Table 9-1 shows that under single fault operation, the circuit never produce any incorrect code

word (hence its fault secure), generates error indication signal for at least one valid input code

word (hence it is self-testing) and remains code disjoint (here {10} is the correct output code

space).

• Case 1- Transistor stuck ON: In Table 9-1, we show all 6 cases of transistor stuck

ON faults (one at a time). For the case of N3 or N4 stuck ON, the circuit shows fault detection

by one input code combination (highlighted with dark), and hence the circuit is self-testing,

while other cases show that the circuit is fault secure as well as code disjoint.

- 44 -

• Case 2-Transistor stuck OFF: In Table 9-1, all 6 cases for transistor stuck OFF fault

are shown. In case of N1 or N2 stuck OFF, the circuit shows self-testing property (highlighted

with dark) and for rest of the cases, the circuit is fault-secure.

• Case 3- Input stuck at 0: When input F0 or C0 is stuck at 0, the circuit shows self-

testing property, otherwise it remains fault secure.

• Case 4- Input stuck at 1: When input F0 or C0 is stuck at 1, the circuit shows self-

testing property, otherwise it remains fault secure.

There are two cases where the output becomes floating (i.e., P2 stuck OFF). In either case,

if we consider the floating voltage as logic high, then the circuit is fault secure, and if we

consider the floating voltage as logic low, then the circuit is self-testing. Hence, we can say

that the circuit in Fig. 7.2, which is a 1-bit SEDC checker, is TSC checker because it satisfies

all the three axioms of being TSC. Similar analysis was carried out for testing 2-, 3- and 4-bit

SEDC checkers and found that all these checkers are TSC.

Table 9-1. Results of single faults on TSC SEDC1 checker

F0 C0 V1 V0 F0 C0 V1 V0 F0 C0 V1 V0

Transistor P1 is stuck ON Transistor P1 is stuck OFF Input C0 stuck at zero

0 1 1 0 0 1 1 0 0 0 1 1

1 0 1 0 1 0 1 0 1 0 1 0

Transistor P2 is stuck ON Transistor P2 is stuck OFF Input F0 stuck at zero

0 1 1 0 0 1 Floating 0 0 0 1 1

1 0 1 0 1 0 Floating 0 0 1 1 0

Transistor N1 is stuck ON Transistor N1 is stuck OFF Input C0 stuck at 1

0 1 1 0 0 1 1 0 0 1 1 0

1 0 1 0 1 0 1 1 1 1 0 0

Transistor N2 is stuck ON Transistor N2 is stuck OFF Input F0 stuck at 1

0 1 1 0 0 1 1 1 1 0 1 0

1 0 1 0 1 0 1 0 1 1 0 0

Transistor N3 is stuck ON Transistor N3 is stuck OFF - - - -

0 1 0 0 0 1 1 0 - - - -

1 0 1 0 1 0 1 0 - - - -

Transistor N4 is stuck ON Transistor N4 is stuck OFF - - - -

0 1 1 0 0 1 1 0 - - - -

1 0 0 0 1 0 1 0 - - - -

- 45 -

X. Area, Delay, Complexity and Power Comparison

A. SEDC encoded ALU

1. Area overhead

Fig. 10.1 shows the gate count for normal, SEDC encoded and BCP ALUs having 8-, 16- &

32-bit inputs. Data for a 16-bit Residue ALU (ALU+Controller) [15] is also presented for

comparison. For the gate count, all the logic tables (Table 5-1 - 6-2) and equations are

logically minimized and synthesized using Logic Friday logic minimize software [25]. All the

circuits for SEDC encoded ALU are functionally tested using Modelsim software with Verilog

language, while the post fitting simulations are carried out using Quartus II software. Altera's

Cyclone III device was used for post-layout simulations.

The gate count includes all the circuitry inside SEDC encoded ALU shown in Fig. 4.1

except the Compare unit. The extra XOR gates that cope with Type 2 errors are also taken into

account while calculating data for Fig. 10.1. The multiplexer that selects the particular

operation is also considered.

The data for BCP based ALU is taken from [5], [16], [26] & [27] with few changes: the

data in [10] does not include the area overhead due to zero's counter for operands (i.e, Xc and

Yc), shown in Fig. 10.2 [5]. The Multiple Carry Save Adder (MCSA) contains chains of full

Figure 10.1 Area utilization chart for SEDC encoded, BCP and simple ALU

and half adders and their exact gate count is estimated from

implemented with multiple input gates, so we translated all the circuits to 2

uniformity.

The increasing trend in BCP hardware is due to the presence of

right after the 3x1 input MUX and two for calculating ‘X

Fig. 10.2. Although ‘Xc’ and ‘Yc’ are re-utilized for whole data path, still they add to overall

area. P. K. Lala [27] proposed the most area

compared to previous implementation. The area required to implement these zero counters

becomes more than double when the number of input bits to the zero counter is doubled

The size of MCSA block also increases with increasing number of inputs (2 full adders and

1 half adder for each increasing ‘k’-bit). The

linearly with ‘n’ (one 2-bit gate with each increasing input) while XOR and NAND

increases linearly with increasing ‘k’, in Fig.

implementation) takes twice the gate counts while

Figure 10.2 Berger Check Prediction Arithmetic and Logic Unit

- 46 -

and half adders and their exact gate count is estimated from [26]. Circuits in [27] are

implemented with multiple input gates, so we translated all the circuits to 2-input gates, for

The increasing trend in BCP hardware is due to the presence of three n-bit counters; one

right after the 3x1 input MUX and two for calculating ‘Xc’ and ‘Yc’ respectively, as shown in

utilized for whole data path, still they add to overall

area optimized realization of the zeroes counter as

e area required to implement these zero counters

becomes more than double when the number of input bits to the zero counter is doubled.

The size of MCSA block also increases with increasing number of inputs (2 full adders and

bit). The number of ‘AND’ & ‘OR’ gates increases

bit gate with each increasing input) while XOR and NAND gates

increases linearly with increasing ‘k’, in Fig. 10.2. ‘MUX’ (NOT-AND-OR based

implementation) takes twice the gate counts while the size of ‘X2’ block (n-bit 2x1 mux)

Berger Check Prediction Arithmetic and Logic Unit

increases slowly when the number of inputs are doubled. The ‘+n’ block has very

effect on overall circuitry, so its gate count is not taken into account.

In short, every single unit occupies twice or more than twice area if input data length is

doubled, except ‘k’ input gates and ‘X2’ block which have little increment in their hardware.

But, more than doubling effects of three zeroes counters has the dominant effect on overall

gate requirement. The resultant effect is that

data length is doubled.

On the other hand, SEDC uses set of pre

bit SEDC encoded ALU. By looking at Fig.

in SEDC encoded ALU hardware is slower than that of BCP. It is also evident from Fig.

that SEDC encoded ALU takes less than twice the hardware, when input data length is doubled,

which concludes that SEDC encoded ALU occupies less area than BCP circuitry for any

number of input bits ‘n’.

2. Delay

The PLA block in Fig. 10.1 generates the control signals (t1, t2, t3, t4, t5) after the arrival

of Cout from the normal ALU. The MCSA unit is made up of full and half adder trees. As

stated previously, the number of full and half adders increase with the increasing inputs so the

Figure 10.3 Increasing trend in SEDC encoded ALU hardware

- 47 -

increases slowly when the number of inputs are doubled. The ‘+n’ block has very negligible

effect on overall circuitry, so its gate count is not taken into account.

very single unit occupies twice or more than twice area if input data length is

‘k’ input gates and ‘X2’ block which have little increment in their hardware.

But, more than doubling effects of three zeroes counters has the dominant effect on overall

effect is that, the overall gate count becomes twice if the input

On the other hand, SEDC uses set of pre-defined 2-, 3- and 4-bit modules to implement n-

Fig. 10.3, one can figure out that the increasing trend

in SEDC encoded ALU hardware is slower than that of BCP. It is also evident from Fig. 10.1

that SEDC encoded ALU takes less than twice the hardware, when input data length is doubled,

encoded ALU occupies less area than BCP circuitry for any

generates the control signals (t1, t2, t3, t4, t5) after the arrival

from the normal ALU. The MCSA unit is made up of full and half adder trees. As

stated previously, the number of full and half adders increase with the increasing inputs so the

Increasing trend in SEDC encoded ALU hardware

- 48 -

delay in generation of check symbol is also increased. On the other hand, SEDC encoded ALU

does not wait for internally generated carries of normal ALU for computation of check bits.

Moreover, SEDC uses parallel modules of 2-, 3- and 4-bit SEDC encoded ALUs, so the

maximum delay incurred is equal to the latency of a 4-bit input SEDC module, hence

maximum delay remains same for any number of input bits 'n≥4'.

3. Power and Complexity in Scaling

The scaling of SEDC encoded ALU is also very simple. Scaling method of BCP ALU is

not presented in [5] but more than doubling of the circuit is required to scale the BCP ALU for

doubling the input bits which increases the overall complexity. Bose-Lin scheme in [16] is not

as simple when more than three check bits are required. Some changes in MCSA block need to

be made. In case of scaling SEDC, the scaled circuit is the same un-scaled circuit plus some

extra gates. For more than 4-input bits, the circuit requires replication of 2-, 3- and 4- bit

SEDC encoded ALU modules. Due to this replication, the power distribution of the overall

circuitry is very uniform.

For scaling Bose-Lin scheme with more than 4 check bits, X2 block is completely changed

(Fig. 10.2). While for SEDC, only one inverter is required to convert SEDC3 to SEDC4.

B. TSC SEDC checker

In this section, area consumed by TSC SEDC checker and wired AND-OR network is

compared with TSC Berger one’s counter and two rail checker. As the code rate of SEDC

scheme is more than that of Berger scheme, hence for fairness in comparison, we also consider

the area utilized to store the check bits.

1. Area Overhead

The TSC SEDCn checker block shown in Fig. 4.1 requires fewer gates (whose circuit

diagrams are given in chapter VII), that are implemented with [15 + (a × 39)] MOS transistors

if ‘b’ value is 2, [39 + (a × 39)] MOS transistors if ‘b’ value is 3 or [45 + (a × 39)] MOS

transistors if ‘b’ value is 4. The wired AND-OR logic network is implemented with ‘d + r’

- 49 -

MOS transistors where d = {2×(a+1)}and r = �d/4�. As far as the latency of overall TSC

SEDC checker is concerned, it is observed constant for n > 3 as shown in Table 10-2. SEDC

circuits are first designed by Logic Friday software using logic equations in chapter VII. These

circuits are then implemented with Verilog HDL using Modelsim software, and then finally

synthesized by Altera’s Quartus II.

We took data for combinational implementation of one’s counter from [27] in which gate

level circuit diagrams for up to 32-bit one’s counter are given. For translating gate level

circuits to transistor level circuits we use data given in [20].

Although the SEDC scheme has a bigger code size than Berger coding scheme, if we

consider the overall area, it is observed that TSC SEDC checker takes less area than TSC

Berger checker. Table 10-1 enlists the area (in terms of # of transistors) for implementing the

TSC SEDC and Berger checkers for up to 32-bit information word. It can be seen from Table

10-1 that with the increase in binary data length area increases if we consider the

combinational implementation of Berger code [27]. SEDC scheme takes almost 67% less area

than latency optimized version of Berger scheme [27] even after taking into account the

storage area for check bit.

Table 10-1. Area comparison between SEDC and Berger checker

Data

Bit

Berger Code SEDC

C
o

d
e

st
o

ra
g

e

A
re

a

1
's

 c
o

u
n

te
r

A
re

a

T
R

C
 A

re
a

T
o

ta
l

A
re

a

C
o

d
e

st
o

ra
g

e

A
re

a

C
h

ec
k

er

A
re

a

A
N

D
-O

R

N
et

w
o

rk

T
o

ta
l

A
re

a

2 24 18 4 46 24 15 0 39

3 24 46 8 78 24 39 0 63

4 36 123 12 171 36 45 6 87

5 36 114 16 166 48 54 6 108

7 36 208 24 268 60 84 8 152

8 48 246 28 322 72 93 8 173

9 48 355 32 435 72 117 8 197

15 48 686 56 790 120 195 14 329

16 60 879 60 999 132 321 16 469

30 60 1640 116 1816 240 390 26 656

32 72 1939 120 2131 264 405 28 697

- 50 -

2. Delay

As far as the delay is concerned, again it is observed to be constant for SEDC scheme. The

maximum latency of SEDC checker is limited to 4 equivalent MOS transistor levels, which

does not affect the overall performance. The reason behind the constant latency being the use

of wired-AND-OR circuitry as the equivalency tester, rather than two rail checker. The n-bit

TSC SEDC checker itself consists of small parallel checkers, that are, SEDC1, SEDC2, SEDC3

or SEDC4 checkers.

On the other hand, Berger checker provides delay, both due to ones counters as well as the

tree structure of two rail checkers. Moreover, this delay keeps on increasing as the data length

increases, which is undesirable for delay optimized reconfigurable embedded architectures,

like FPGA.

Table 10-2. Critical Path (C.P) delay comparison of TSC Berger and SEDC checker

(unit = nanoseconds)

Data

Bits

Berger SEDC

C
.P

 o
f

1
's

co
u

n
te

r

C
.P

 d
u

e
to

T
R

C

T
o

ta
l

C
.P

C
.P

 o
f

S
E

D
C

ch
ec

k
er

C
.P

 o
f

A
N

D
-O

R

n
et

w
o

rk

T
o

ta
l

C
.P

2 20.4 11.6 32 35.6 0 35.6

3 22.1 23.2 45.3 42.2 0 42.2

4 35.9 23.2 59.1 42.2 10.8 53

5 59.5 23.2 82.7 42.2 10.8 53

7 59.5 23.2 82.7 42.2 10.8 53

8 93.5 23.2 116.7 42.2 10.8 53

15 138.6 34.8 173.4 42.2 10.8 53

16 151.1 34.8 185.9 42.2 10.8 53

30 207.2 46.4 253.6 42.2 10.8 53

32 244.2 46.4 290.6 42.2 10.8 53

- 51 -

XI. Prototyping the SEDC based error detecting reconfigurable

ALU architecture on FPGA

In this chapter we discuss the FPGA implementation of overall system whose block

diagram was presented in chapter IV. We also present the method of autonomous

reconfiguration of FPGA upon detection of error in an 8-bit ALU. The comparison of area

overhead of FPGA implementation of SEDC, DMR, BCP and TMR schemes are also

evaluated in this chapter.

A. Overall FPGA based system design

The overall block diagram of FPGA and PC based fault tolerant ALU system is shown in

Fig. 11.1. The SEDC based error detecting and reconfiguring ALU architecture consists of an

8-bit normal ALU, an 8-bit SEDC encoded ALU and an 8-bit TSC SEDC checker. This system

is implemented on FPGA along with the logic to send error signal to PC via PS2 port. If the

error is transient, the program counter of the ALU halts and current instruction is recomputed

until the fault disappears. If the error prevails for more than specified amount of clock cycles,

then the error signal is sent to PC via the PS2 port. The PC containing Labview software

receives the error signal and reconfigures the FPGA with fresh bit stream of the system

without running the complete design flow of FPGA design implementation, as discussed later.

The USB JTAG port carries this fresh bit stream for reconfiguring FPGA.

In the subsection, we discuss the implementation details of each and every module.

Figure 11.1 Overall prototype diagram for fault tolerant ALU

- 52 -

1. Altera DE0 FPGA board

Fig. 11.2 shows the detail view of Altera’s DE0 FPGA board. The board contains

Cyclone III EP3C16F484 FPGA chip. This FPGA contains 16k Logic Elements (LE) and 484

usable I/O pins. The board consists of many peripherals out of which the following listed

peripherals are used in our project.

• 10 Toggle : Due to the limited number of switches, we multiplexed the data using two

switches SW1 and SW0. The remaining switches are used to input the operands ‘A’, ‘B’, ‘p’

and operation selecting input ‘op’. Toggle switches SW1 and SW0 act as selector switches for

multiplexing the inputs A, B, p and op whose detailed function is enlisted in Table 11-1.

• 3 Push Buttons : Push Button 2 is designated as the system reset while Button 0 is

used to manually clock the circuit. Button 1 is used to force the outputs of ALU (S) to some

faulty condition, and hence this situation is simulated as a fault.

Table 11-1. Function of selection switches & seven segments

S.No SW1SW0 Mode SW9-SW2 Seg_2-Seg_0

1 00 Input first operand A 8-bit Operand ‘A’ Operand A

2 01 Input second operand B 8-bit Operand ‘B’ Operand B

3 10

Input Cin (in case of Add/Subtract

operation) or

Input si (in case of shift/rotate

operation)

SW9-SW3 = don’t

care

SW2 = ‘p’

1-bit ‘P’

4 11
Select the operation to be

performed
8-bit ‘op’ Result S

- 53 -

• 4 Seven Segment Displays : The four seven segment displays are used to show the

status of inputs as well as the outputs. Table 11.1 also lists the status of Segments at every

possible position of SW1 and SW0.

• PS/2 Port PS/2 Port is used to send the interrupt to the PC upon detection of error.

The ASCII code of ESCAPE key is used to send to PC via PS2 port, which is recognized by

the Labview’s virtual instrument as error.

• 9 Green LEDs LEDG9-LEDG8 are used to indicate the status of 2-bit output of the

TSC SEDC checker, while the output of SEDC encoded ALU (i.e., the SEDC check bits) is

shown on LEDG5-LEDG0.

2. NI Labview Software

In this project, we used NI Labview 9.0 for developing a keystroke logger whose job is to

receive the error signal from FPGA and then reprogram the FPGA. The block diagram consists

Figure 11.2 DE0 Board

- 54 -

of a keyboard stroke capture module and a while loop. The keyboard stroke capture module

fires the while loop when a particular keystroke is observed from the PS2 port of the PC. The

while loop then executes a batch file that contains required instructions for provoking the

Programmer which then reprograms the FPGA with given bit stream file via USB JTAG port.

The reconfiguration also resets the FPGA circuitry, and hence there is a high probability

that the permanent faults are removed (except manufacturing defects). Rather than going

through all the steps of FPGA design, the programming file (.cdf) for the complete system is

once generated and reutilized for reprogramming. The typical reconfiguration time taken by

Cyclone III chip is 20ms, and it varies with the size of .cdf file.

B. Implementation Results & Area Comparison

Fig. 11.3 shows the area comparison between normal ALU, SEDC ALU and BCP ALU.

These ALUs are implemented on Cyclone III FPGA EP3C16F484 chip and their area in terms

of Logic Element counts is presented. Result shows that the FPGA implementation of SEDC

encoded ALU takes 16% more area than simple ALU while BCP ALU takes 90% more area.

Less area consumption of SEDC is due to the fact that SEDC circuits are less complex and can

easily be synthesized by the synthesizing software. A 16-bit SEDC ALU is composed of

smaller 2-, 3- and 4-bit ALUs, which require less area when synthesized by the software.

SEDC encoded ALU don’t require internally generated carries from the normal ALU, which

cause longer latencies as well as large area consumption after synthesizing on FPGA.

Figure 11.3 Area comparison of FPGA implementation of 16-bit normal ALU, SEDC

ALU and BCP ALU

BCP ALU is implemented using the equation (20)

and ‘Sc’ denote the zeroes count value of input operands ‘X’, ‘Y’, internally generated carries

‘C’ and output of ALU ‘S’, respectively. To convert X, Y and C to Xc, Yc a

16-bit, 16-bit and 15-bit zeroes counters respectively.

convert the output of Logic operation unit to its equivalent zeroes count (represented as (X v

Y)c in equation (22)). These bulky zero counter

when implemented on FPGA. Equations (20) and (21) contains multiple add operations, hence

they require multiple levels of adder circuits

- 55 -

BCP ALU is implemented using the equation (20)-(37) [5]. The symbols ‘Xc’, ‘Yc’, ‘Cc’

and ‘Sc’ denote the zeroes count value of input operands ‘X’, ‘Y’, internally generated carries

To convert X, Y and C to Xc, Yc and Cc, we require

bit zeroes counters respectively. Another zeroes counter is required to

convert the output of Logic operation unit to its equivalent zeroes count (represented as (X v

bulky zero counter circuits constitute much of the Logic Elements

Equations (20) and (21) contains multiple add operations, hence

they require multiple levels of adder circuits which further requires more area on FPGA.

- 56 -

XII. Conclusions and Future Enhancements

In this thesis we presented a new architecture for detecting all unidirectional errors in ALU

using SEDC scheme. We presented theory and design technique of an SEDC encoded ALU.

We also discussed the method of scaling SEDC encoded ALU for n-bit input data length with

simple addition in hardware, which does not affect the overall latency of the system. We show

that the complexity in scaling the SEDC circuit is less than Bose-Lin implementation [16],

while the SEDC encoded ALU is faster than both [5] & [16]. We implemented the circuits of

BCP ALU and SEDC encoded ALU using 2-input logic gates for uniformity in calculation of

gate counts and found that BCP ALU hardware requires more area than SEDC encoded ALU

for same input data length. We also show that SEDC provides 82% fault coverage against all

errors that result due to single faults in ALU. Hence, for delay and area sensitive applications,

n-bit SEDC encoded ALU performs better in terms of speed & complexity than [5] and [16]

with optimum fault coverage.

We also presented a totally self-checking checker for scalable error detecting codes. We

introduced how this SEDC scheme utilizes the parallelism concept by partitioning of input data

bits “D” into 2-, 3- and 4- bit data segments and then encode those using SEDC2, SEDC3 and

SEDC4 schemes. Then for checker part, SEDC scheme again partitions the functional circuitry

outputs into 2-, 3- and 4-bit segments and use TSC SEDC2, SEDC3 and SEDC4 checker blocks

to detect all unidirectional errors. The proposed SEDC checker is tested and shown to be

totally self-checking by fault testing method. We also show that due to specific 2-bit error

indication signal by each TSC checker module, overall SEDC TSC checker employs TSC

wired-AND and wired-OR logic gates as an equality tester of code bits rather than TSC two

rail checkers tree, which makes SEDC TSC checker more area and delay efficient than Berger

TSC checker. Also the inherited parallelism and independency between modules within n-bit

checker makes the checker faster.

Lastly, we implement an 8-bit SEDC based error detecting ALU system on Altera’s FPGA.

We designed a Labview VI that receives error signal from FPGA and reconfigures it. We again

compare the area utilization by SEDC and BCP schemes, this time on FPGA, and found that

SEDC requires less area as compared to BCP.

- 57 -

In future, SEDC based error detecting ALU can be more refined for locating errors. This

will enable us to use partially reconfiguring in only those parts of ALU that are effected by

error. Separate PC for reconfiguring the FPGA can also be replaced with a microcontroller to

increase the portability of the system. The results in our research also motivate to design error

secure data path of the complete microprocessor.

- 58 -

Bibliography

[1] N. Alves, “State-of-the-art techniques for detecting transient errors in electrical circuits,”

IEEE Potentials, vol. 30, no. 3, pp. 30-35, May 2011.

[2] V. S. Veeravalli, “Diagnosis and error correction for a fault-tolerant Arithmetic and Logic

Unit for medical microprocessors,” M.S. thesis, Dept. of Elec. & Comput. Eng., NBR

Univ., New Jercy, 2008.

[3] A. Rohani, H. R. Zarandi, “An Analysis of fault effects and propagations in AVR

Microcontroller ATmega103(L),” IEEE Int. Conf. on Availability, Reliability & Security,

pp. 166-172, 2009.

[4] M. Al-Ani and Q. Al-Shayea, “Unidirecitonal Error Correcting Codes for Memory

Systems: A Comparative Study,” Int. J. of Comput. Sci. Issues, vol. 7, Issue 1, no. 3, 2010.

[5] J.-C. Lo, S. Thanawastein, and M. Nicolaidis, "An SFS Berger check prediction ALU and

its application to self-checlking processor designs," IEEE Trans. Comput.-Aided Des.

Integr. Circuits Syst., vol. 11, pp. 525-540, April 1992.

[6] R. Bickham, “An analysis of error detection techniques for Arithmetic Logic Units,” M.S.

thesis, Dept. of Elec. Eng., Vanderbilt Univ., Nasville, Tennessee, 2010.

[7] N. K. Jha and S. J. Wang, “Design and synthesis of self-checking VLSI circuits,” IEEE

Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 12, pp. 878-887, June 1993.

[8] M. Alderighi, S. D. Angelo, C. Metra, & G. R. Sechi, "Achieving fault-tolerance by

shifted and rotated operands in TMR non-diverse ALUs," Proc. IEEE Int. Symp. on Defect

and Fault Tolerance in VLSI Syst., pp.155-163, 2000.

[9] S. Hong & S. Kim, "Lizard: Energy-efficient hard fault detection, diagnosis and isolation

in the ALU," IEEE Int. Conf. on Comput. Des., pp. 342-349, Oct. 2010.

[10] R. W. Cook et al., “Design of self-checking microprogram control," IEEE Trans.

Comput., vol. c-22, pp. 255-262, Mar. 1973.

- 59 -

[11] D. K. Pradhan and J. J. Stiffler, "Error correcting codes and self-checking circuits in

fault-tolerant computers," IEEE Trans. Comput., vol. 13, pp 27-37, Mar. 1980.

[12] V. Srinivasan, J. W. Farquharson, W. H. Robinson, and B. L. Bhuva, “Evaluation of

Error Detection Strategies for an FPGA-Based Self-Checking Arithmetic and Logic Unit,”

Military & Aerospace Programmable Logic Devices Conf., Washington, D.C., Sept. 2005.

[13] R. Forsati, K. Faez, F. Moradi and A. Rahbar, "A Fault Tolerant Method for Residue

Arithmetic Circuits," Int. Conf. on Inform. Manage. & Eng., pp.59-63, 3-5 April 2009.

[14] M. Nicolaidis, R. O. Duarte, S. Manich and J. Figueras, "Fault-secure parity prediction

arithmetic operators," IEEE Des. & Test, vol.14, no.2, pp.60-71, Apr-Jun 1997.

[15] M. Medwed, S. Mangard, "Arithmetic logic units with high error detection rates to

counteract fault attacks," Proc. of Europe Conf. on Des., Automation & Test, pp. 1-6, 14-

18 March 2011.

[16] S. S. Gorshe and B. Bose, “A Self-Checking ALU Design with Efficient Codes,” Proc.

of 14th VLSI Test Symp., pp. 157-161, May. 1996.

[17] V. Khorasani, B. V. Vahdat and M. Mortazavi, "Analyzing Area Penalty of 32-Bit

Fault Tolerant ALU Using BCH Code," 14th Euromicro Conf. on Digital Syst. Des.,

pp.409-413, Aug-Sept. 2011.

[18] D. P. Vasudevan, P. K. Lala & J. P. Parkerson, "Self-Checking Carry-Select Adder

Design Based on Two-Rail Encoding," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54,

no. 12, pp. 2696-2705, Dec. 2007.

[19] S. Natarajan and J. A. Lee, “Self-checking programmable arithmetic & logic unit

(PALU) having the scalable error detection code (SEDC) generator and method of scalable

error detection code," Korean Patent Application no. 10-2011-XXXXXXX.

[20] M. A. Smith, “Equivalent gate counts,” 2013, Available :

http://en.wikipedia.org/wiki/Transistor_count

[21] S. Mitra, E. J. McCluskey, "Which concurrent error detection scheme to

choose," Proc. Int. Test Conf., pp. 985-994, 2000.

- 60 -

[22] S. J. Piestrak, D. Bakalis & X. Kavousianos, “On the design of self-testing checkers

for modified Berger codes,” IEEE Online Testing workshop, pp. 153-157, 2001.

[23] S. Natarajan and J. A. Lee, “Scalable totally self-checking checker for self-checking

processing unit based on scalable error detection coding (SEDC) algorithm and processing

system having the checker," Korean Patent Application no. 10-2012-XXXXXXX.

[24] G. G. Langdon Jr. & C. K. Tang, “Concurrent error detection for group lookahead

binary adders,” IBM j. Res. Develop., pp. 563-573, Sept. 1970.

[25] Logic Friday Software : http://sontrak.com/

[26] J.-C. Lo, S. Thanawastien and T. R. N. Rao, "Concurrent error detection in arithmetic

and logical operations using Berger codes," Proc. of 9
th
 Symp. on Comput. Arithmetic, pp.

233-240, Sep 1989.

[27] D. A. Pierce, JR. and P. K. Lala, "Modular implementation of efficient self-checking

checkers for the Berger code," J. of Electron. Testing: Theory and Applicat., vol. 9, pp.

279-294, 1996.

- 61 -

ABSTRACT

Online Fault Detection and Reconfiguration of ALU using Scalable Error

Detection Coding Scheme

Zahid Ali

Advisor: Prof. Jeong-A Lee, Ph. D.

Department of Computer Engineering

Graduate School of Chosun University

Microelectronic circuits and SRAM-based FPGA devices are becoming more vulnerable to

faults and errors due to shrinking size and higher packaging densities for the transistors. As a

result, error detection becomes a vital concern for system reliability.

Errors can be broadly classified as soft and hard errors. Soft errors are caused by transient

or intermittent faults, while hard errors are caused by persistent faults. Studies show that the

majority of errors are caused by transient faults.

Techniques to detect soft errors caused by transient faults have been developed and

tradeoff is usually made between processor performance and the area and power required for

error detection. Diverse duplex circuits can cope against most of the errors including common

mode failure (CMF) at the cost of twice the area overhead. Triple Modular Redundancy can be

used to reduce the complexity of the system by just copying the same circuit three times and

using a voting circuit. Time redundant methods like re-computing with rotated operands

(RERO) and with shifted operands (RESO) are employed to save area overhead, but they

introduce unavoidable delay to the system. Several concurrent error detection (CED) methods

involve encoding the functional circuit using some codes, like arithmetic codes, Berger codes

and parity codes. For efficient implementation of CED techniques, it is important to consider

the relevant types of faults that are supposed to be more probable to occur. The types of faults

within a VLSI circuit have been analyzed and found to be unidirectional errors. Unidirectional

errors can alter the node logic from zero to one or from one to zero, but not both at the same

- 62 -

time. Unidirectional Error Detection (AUED) technique provides good fault coverage with

reduced area overhead.

In this thesis, we employ an error detection scheme called Scalable Error Detection Coding

(SEDC) which is capable of detecting single as well as multiple unidirectional errors. SEDC

scheme partition the data into segments and perform parallel encoding for assigning code

words. Consequently, SEDC scheme can be scaled for any binary data length 'n' with constant

latency and less complexity as compared to other All Unidirectional Error Detection (AUED)

schemes.

Using SEDC scheme, we present a fault tolerant ALU architecture that achieves high fault

tolerance against single event upsets. The proposed SEDC encoded ALU performs better in

terms of area and delay as compared to the previous implementation. Result shows that ASIC

implementation of SEDC based error detecting 32-bit ALU saves 34% area while FPGA

implementation of 16-bit SEDC encoded ALU saves 39% area as compared to the Berger

Code Prediction ALU [5]. We also present an area and delay efficient, scalable, Totally Self-

checking (TSC) checker for SEDC scheme. The proposed 32-bit checker achieves 67%

reduction in area and 81% improvement in delay as compared to TSC Berger checker. We also

utilize the reconfiguration feature of FPGA to mitigate hard errors.

- 63 -

ACKNOWLEDGMENT

I would first of all thank Allah Almighty Who enabled me to carry out this project with full

devotion and consistency. It is only because of His blessings that I could find my way up to the

completion of this task.

Next, I would like to express my immense regards and honest gratitude to my supervisor,

Prof. Jeong-A Lee. Her valuable support, guidance, appreciation and supervision, throughout

the course of this novel research, motivationally steered me to accomplish this task

successfully.

I would like to thanks Dr. S. Natarajan for his contributions to this work. Also my lab mates

Olufemi Adeluyi and Park Hui-Jong for their absolute help.

Finally, I also pay my esteem regards to MKE (Ministry of Knowledge Economy), Korea

under the Global IT Talents Program supervised by NIPA (National IT Industry Promotion

Agency), for its financial support during the period of my Master studies.

	I. Introduction
	A. Research Motivation
	B. Research Objectives
	C. Thesis Contributions
	D. Thesis Organization

	II. Overview and Related Work
	III. Scalable Error Detection Coding Scheme
	A. SEDC2 Code
	B. SEDC3 Code
	C. SEDC4 Code

	IV. Introduction to Overall System
	A. ALU
	B. SEDC encoded ALU
	C. TSC SEDC checker

	V. Formulation of SEDC encoded ALU
	A. 2-, 3- and 4-bit SEDC encoded Boolean Operation Unit
	B. 2-, 3- and 4-bit SEDC encoded Shift/Rotate Unit
	C. 2-, 3- and 4-bit SEDC encoded Add/Subtract Unit
	D. 2-, 3- and 4-bit SEDC encoded Compare Unit

	VI. Scaling SEDC encoded ALU for n-bit Input
	A. n-bit SEDC encoded Boolean Operation Unit
	B. n-bit SEDC encoded Shift/Rotate Unit
	C. n-bit SEDC encoded Add/Subtract Unit
	D. n-bit SEDC encoded Compare Unit

	VII. TSC SEDC checker
	A. Difference between SEDC and Berger code checker
	B. Logic and circuits for TSC SEDC checkers
	1. TSC SEDC1 checker
	2. TSC SEDC2 checker
	3. TSC SEDC3 checker
	4. TSC SEDC4 checker
	5. TSC SEDCn checker

	VIII. Fault coverage of SEDC encoded ALU
	A. Fault Model
	1. Type 1 error
	2. Type 2 error
	3. Type 3 error
	4. Type 4 error
	5. Type 5 error

	B. Fault Secureness
	1. Against Type 1 error
	2. Against Type 2 error
	3. Against Type 3 error
	4. Against Type 4 error
	5. Against Type 5 error

	C. Overall Fault Coverage

	IX. Results of Fault testing on TSC SEDC checker
	X. Comparison of Area, Delay, Complexity and Power dissipation
	A. SEDC encoded ALU
	1. Area Overhead
	2. Delay
	3. Complexity in Scaling and Power dissipation

	B. TSC SEDC checker
	1. Area Overhead
	2. Delay

	XI. Prototyping the SEDC based error detecting and reconfiguring ALU architecture on FPGA
	A. Overall FPGA based system design
	1. Altera DE0 FPGA board
	2. NI Labview Software

	B. Implementation Results and Area Comparison

	XII. Conclusion and Future Considerations
	Bibliography
	ABSTRACT (English)
	ACKNOWLEDGMENT

<startpage>3
I. Introduction 13
 A. Research Motivation 13
 B. Research Objectives 13
 C. Thesis Contributions 14
 D. Thesis Organization 15
II. Overview and Related Work 16
III. Scalable Error Detection Coding Scheme 19
 A. SEDC2 Code 19
 B. SEDC3 Code 20
 C. SEDC4 Code 21
IV. Introduction to Overall System 23
 A. ALU 23
 B. SEDC encoded ALU 24
 C. TSC SEDC checker 24
V. Formulation of SEDC encoded ALU 25
 A. 2-, 3- and 4-bit SEDC encoded Boolean Operation Unit 25
 B. 2-, 3- and 4-bit SEDC encoded Shift/Rotate Unit 26
 C. 2-, 3- and 4-bit SEDC encoded Add/Subtract Unit 27
 D. 2-, 3- and 4-bit SEDC encoded Compare Unit 29
VI. Scaling SEDC encoded ALU for n-bit Input 30
 A. n-bit SEDC encoded Boolean Operation Unit 30
 B. n-bit SEDC encoded Shift/Rotate Unit 30
 C. n-bit SEDC encoded Add/Subtract Unit 31
 D. n-bit SEDC encoded Compare Unit 32
VII. TSC SEDC checker 33
 A. Difference between SEDC and Berger code checker 33
 B. Logic and circuits for TSC SEDC checkers 34
 1. TSC SEDC1 checker 34
 2. TSC SEDC2 checker 35
 3. TSC SEDC3 checker 35
 4. TSC SEDC4 checker 36
 5. TSC SEDCn checker 36
VIII. Fault coverage of SEDC encoded ALU 38
 A. Fault Model 38
 1. Type 1 error 38
 2. Type 2 error 38
 3. Type 3 error 38
 4. Type 4 error 39
 5. Type 5 error 40
 B. Fault Secureness 40
 1. Against Type 1 error 40
 2. Against Type 2 error 40
 3. Against Type 3 error 40
 4. Against Type 4 error 41
 5. Against Type 5 error 41
 C. Overall Fault Coverage 42
IX. Results of Fault testing on TSC SEDC checker 43
X. Comparison of Area, Delay, Complexity and Power dissipation 45
 A. SEDC encoded ALU 45
 1. Area Overhead 45
 2. Delay 47
 3. Complexity in Scaling and Power dissipation 48
 B. TSC SEDC checker 48
 1. Area Overhead 48
 2. Delay 50
XI. Prototyping the SEDC based error detecting and reconfiguring ALU architecture on FPGA 51
 A. Overall FPGA based system design 51
 1. Altera DE0 FPGA board 52
 2. NI Labview Software 53
 B. Implementation Results and Area Comparison 54
XII. Conclusion and Future Considerations 56
Bibliography 58
ABSTRACT (English) 61
ACKNOWLEDGMENT 63
</body>

