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 마이크로 전자 회로 및 SRAM 기반의 FPGA 디바이스는 트랜지스터의 크기 감소 및 높은 패키징 밀도로 인한 고장 및 오류에 더 취약해지고 있기 때문에, 오류 검출은  시스템 신뢰성 측면에서 아주 중요한 문제이다.  오류는 크게 소프트 오류와 하드 오류로 분류할 수 있다. 하드 오류는 지속적인 결함으로 발생하나, 소프트 오류는 일시적 또는 간헐적으로 결함이 발생한다. 지금까지 알려진 바에 의하면, 오류의 대부분이 일시적인 오류로 인해 발생된다.  일시적인 오류로 인한 소프트 오류를 검출하는 기술은 일반적으로 프로세서의 성능감소를 가져오거나, 오류 검출에 필요한 추가적인 하드웨어 자원 및 전력소모가 요구되어 이의 적절한 조율과정을 거치게 된다. 이중 모듈 방식은 공통 모드 고장 

(CMF)을 포함하여 대부분의 오류에 대응할 수 있지만, 구현상의 변화를 주어야 하고, 하드웨어 자원측면에서 두 배의 오버 헤드 비용이 필요하다. 삼중 모듈 방식(TMR)은  구현상의 변화없이 같은 모듈을 세 번 반복하여 사용할 수는 있으나, 하드웨어 오버헤드 비용이 높고, 각 모듈의 동일한 출력을 비교하기 위해 voting 회로가 필요하다. 추가적인 하드웨어 오버헤드를 피하기위하여, 피연산자를 회전 또는 이동하여 연산을 다시 한 후, 오류를 검출하기도 하는데, 이 경우 연산에 소요되는 시간이 추가되어 이 또한 시스템의 
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 시간적인 오버헤드가 된다. 연산 중 오류검출 (CED) 방법은 산술 코드, 버저 코드, 패리티 코드 등을 사용하여 인코딩을 한 상태에서 연산을 수행한다. CED 기술의 효율적인 구현을 위해, 발생할 가능성이 높은 결함유형을 고려하는 것이 중요하다.  

VLSI 회로에서 고장은 일반적으로 단일방향 오류인 것으로 알려졌다. 단일방향 오류는  동시에 0에서 1 또는 1에서 0으로 오류가 발생되지 않으며, 오류의 방향이 단일방향인 오류이다. 단일방향 오류 감지 (AUED) 기술은 하드웨어 자원 오버 헤드를 고려할 때, 오류 감지의 효율을 높인다. 본 논문에서는 여러개의 단일방향 오류를 탐지할 수 있는  확장 가능한 오류탐지 코딩 (SEDC)을 활용한다. SEDC 방식은 입력 데이터를 4-비트 이하로 분할하고, 분할 된 데이터를 동시에 인코딩하여 오류탐지코드를 할당한다.   따라서, 기존의 단일방향 오류탐지 방식과 달리, 입력데이터의 크기 ‘n’이  증가하더라도, 오류탐지코드 생성에 소요되는 시간은 증가되지 않으며, 기본 모듈들의 활용이 가능하여 구현의 복잡성도 증가되지 않는다.  본 논문에서는 SEDC 방식을 사용하여, 단일 이벤트 오류발생에 대해 높은 내결함성을 가진 ALU 구조를 제안한다. 기존 관련연구에 비하여 제안된 SEDC 코드 기반 ALU는 하드웨어 오버헤드와 지연시간 측면에서 더 나은 결과를 보인다. SEDC 기반 32비트 ALU의 ASIC 구현은 버저 코드 예측 ALU에 비하여  하드웨어 자원을 34% 절약했다 [5].  SEDC 기반 16비트  ALU의 FPGA 구현은 버저 코드 예측 ALU에 비하여 하드웨어 자원을 39% 감소시켰다. 이와 더불어, SEDC 기반 확장가능한 자가완전검증회로(TSC)가 하드웨어 자원과 지연시간을 고려할 때 매우 효율적임을 보였다. 32비트인 경우, 버저코드 기반 TSC에 비하여 SEDC 기반 TSC을 사용하였을 때, 하드웨어 자원 사용량이 67% 감소하였고, 지연시간은 81% 향상되었음을 보였다. 추가적으로, 하드 오류를 완화하기 위해 FPGA 의 재구성 기능을 활용할 수 있음도 보였다.  
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I. Introduction  

A. Research Motivation 

System reliability has become a major concern as the transistor size decreases [1]. The 

consequence of increasing complexity in the functionality of applications accelerated the 

demand of more reliable system. On the other hand, people don’t want to return back to less 

sophisticated systems due to the grown dependence on luxuries automated systems. 

Initially, reliable computing was limited to military, industrial, aerospace, and 

communications applications in which the outcome of computer failure had major economic 

impact or even loss of life. Nowadays, even commercial and day to day life applications 

require high reliability as we move towards the era of wired money transfer and automated 

life-style. Reliability is of vital importance in situations where a computer failure could have 

disastrous results [2]. 

Errors can be classified as either soft errors or hard errors. Soft errors are caused by 

transient or intermittent faults, while hard errors are caused by permanent faults. Permanent 

faults remain for indefinite periods until corrective action is taken. Studies show that the 

majority of errors are caused by transient faults.  

Studies shows that most of the errors originate from Arithmetic logic unit (ALU) of a 

microprocessor based system [3], which is used in almost every automation application. From 

space applications to a simple money transfer, error could cause disaster. For example, a 

permanent fault in ALU calculation for navigational data may result in the lost of a ten billion 

dollar shuttle in space for ever. During a money transfer, a single flip of bit in the transferring 

amount can cause huge deficit to an individual. 

Hence a fault tolerant ALU has become the most important part of such applications. 

B. Research Objectives 

Many error detection techniques have been proposed so far. Usually, a tradeoff is made 

between the performance of a processor and the area and power required for error detection. 

For efficient implementation of CED techniques, it is important to consider the relevant types 
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of faults that are supposed to be more probable to occur. The types of faults within a VLSI 

circuit have been analyzed and found to be of the type which would tend to affect the bits in a 

unidirectional manner [4]. Unidirectional errors can alter the node logic from zero to one or 

from one to zero, but not both at the same time. So an All Unidirectional Error Detection 

(AUED) technique provides optimal fault coverage with reduced area overhead. 

Our main objective is to reduce the area penalty with 100% fault coverage against 

unidirectional errors. Delay between occurrence and detection of fault can also play a vital role. 

If a fault is detected after it is being propagated, then the overall system might fail, hence delay 

is also one of the key objectives of our research. We will also take in to account the power 

distribution so as to avoid the hot spots in the design. Lastly, our focus will be on reducing the 

complexity of overall system when scaling the circuits for higher input data lengths. 

C. Thesis Contributions 

The main aim of this research is to come up with a fault tolerant ALU using newly 

developed AUED technique named Scalable Error Detecting (SEDC) scheme with a better 

hardware and delay overhead as compared to the previous CED techniques. In order to achieve 

this, we will formulate and design the SEDC encoded ALU for predicting the SEDC code 

word of a particular ALU output word. As the name employs, SEDC is scalable with respect to 

input data length, while the latency of the circuit remains constant. SEDC splits the input data 

into smaller segments (2-, 3- and 4-bits) and encodes them in parallel (using SEDC2, SEDC3 

and SEDC4 coding schemes respectively). This inherited parallelism makes our scheme faster. 

Moreover, the scaling requires few modifications in the basic circuit resulting in less complex 

structure. 

SEDC scheme uses four basic coding schemes, namely SEDC2, SEDC3 and SEDC4. For 

bigger input data length, multiple copies of these basic coding schemes are used. Hence, the 

power distribution of overall circuit is very uniform. 

We will also present the design and implementation of Totally Self-checking (TSC) 

checker for SEDC scheme. This checker also exploits the parallelism concept like the code 
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generating part, hence the SEDC checker also exhibit constant latency, no matter how long the 

input data length is. 

The prototype of a complete 8-bit error detecting and reconfigurable ALU system will also 

be illustrated on FPGA. 

Result shows that SEDC based ALU outperforms other coding schemes in terms of delay, 

while it takes less area than Berger Code Prediction ALU [5] which is known to be the only 

coding scheme used for implementing fault secure ALU [6]. 

D. Thesis Organization 

The rest of this thesis is organized as follows: the overview of previous work related to this 

topic has been presented in chapter II. Theoretical background of SEDC scheme is given in 

chapter III and the overall block diagram of SEDC based self-checking ALU is discussed in 

chapter IV. With the help of logic equations, first the method of encoding 2-, 3- and 4-bit 

Boolean Logic, Shift/Rotate and Add/Subtract operation units using SEDC scheme is 

illustrated in chapter V and then, the scaling of ALU for any input bit length ‘n’ is elaborated 

in chapter VI. The design details of TSC SEDC checker is covered in chapter VII. We will 

discuss the fault coverage of SEDC based self-checking ALU and the TSC SEDC checker in 

chapter VIII & IX respectively. Chapter X is dedicated for comparing the area, delay and 

complexity of SEDC scheme with existing self-checking ALU techniques. The FPGA 

implementation of SEDC based error detecting ALU is discussed and evaluated in Chapter XI. 

Finally, the conclusion with future goals are discussed in last chapter. 
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II. Overview and Related Work  

Self-checking ALU provides concurrent error detection (CED) capability that can be used 

to design a fault tolerant computer system. A duplex structure (or double modular redundancy, 

i.e., DMR) provides high fault security but require twice the area overhead as compared to the 

area of a simple ALU. Checker in DMR system accommodate exactly twice the number of 

check bits which increases the area overhead of the checker as well. For example, if a 64-bit 

fault tolerant ALU is implemented using DMR technique then the checker for DMR system 

must encompass 128-bit (or more). For system to be TSC, the checker must be TSC as well. A 

128-bit TSC checker must contain tree structure of two rail checkers that not only increases the 

overall area of the system, but also the delay as well. Hence, systems with larger inputs are 

proposed not to be protected by DMR technique [7]. 

Fault tolerance by shifted and rotated operands in TMR [8] is proposed for high fault 

security, but the technique requires three copies of same ALU. Moreover, the shifting and 

rotating operations slow down the whole process, and hence limits the overall speed of the 

microprocessor. The outputs of the three ALU modules have to be checked using a voter 

circuitry, which produces erroneous outputs when two copies of any module in the system fail. 

The voter circuitry has to cover 3 times the numbers of outputs than the outputs of a single 

ALU. For a 128-bit TMR ALU, the voter circuit has to accommodate 384-bit inputs which 

tremendously increases the overall area overhead of the system. 

In [9], hardware and time redundancy are combined to achieve fault detection, diagnosis as 

well as isolation of the faulty module with 75% more area overhead than a normal ALU. The 

technique is based on the fact that a 32-bit ALU can be implemented using two 16-bit ALUs. 

If one of the ALU struck by a permanent fault, the other 16-bit ALU can compute the 32-bit 

result with some degradation in system performance. For the system to work as TSC, the 

system must employ TSC multiplexers (i.e., differential multiplexers) for multiplexing the 

outputs and inputs of the smaller ALUs, which adds to area overhead. The control unit must 

also exhibit self-testing properties, otherwise it will become the single point of failure to the 

system.   
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For efficient implementation of CED techniques, it is important to consider the relevant 

types of faults that are more likely to occur. The types of faults within a VLSI circuit have 

been analyzed and found to be of the type which would tend to affect the bits in an 

unidirectional manner [10]. Unidirectional errors can alter the node logic from zero to one or 

from one to zero, but not both at the same time [4],[10],[11]. All Unidirectional Error 

Detection (AUED) techniques provide optimal fault coverage with reduced area overhead as 

compared to simple duplication (DMR) or triplication (TMR). 

Several error detection schemes have been proposed to detect unidirectional errors in 

computer hardware. Berger Code scheme is the most popular AUED scheme. In [5], Berger 

Check Prediction (BCP) circuit is proposed for detecting unidirectional errors in the ALU 

circuit. The BCP circuit generates the check symbol for the n-bit ALU result using the zero’s 

counts of the operands as well as the internally generated carries. Although the use of 

internally generated carries for computation of check bits makes the scheme strongly fault 

secure (SFS), but this also increases the latency of the overall system. Latency of Berger code 

checker also adds into this delay. Results in [12] show that FPGA implementation of BCP 

ALU requires 45% more area overhead than the area occupied by normal ALU. 

Arithmetic codes like Residual codes are efficient for checking arithmetic units because 

these codes reside under most arithmetic operations [13]. Arithmetic codes can ensure fault 

secureness for most arithmetic operators [14], but arithmetic code checking has some 

drawbacks. Logic and shift operations do not preserve arithmetic codes. Therefore, using such 

codes in ALU and shifter requires the implementation of complex circuitry. Also, arithmetic 

codes don’t provide 100% fault coverage against all unidirectional errors. An efficient fault 

tolerant ALU using residual codes [15] for whole data path is proposed, but if only ALU is 

considered then this technique occupies the same area as DMR. The circuit also uses internal 

carry vectors for CED which makes it slower than the DMR technique. 

For applications where only t-unidirectional errors are required to be detected, [16] 

proposes a modification of BCP ALU using Bose-Lin codes, with less area overhead than [5]. 

Similar to BCP circuitry , the Bose-Lin Check Prediction circuitry also uses input operands 
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and internally generated carries from normal ALU to generate the check symbols. Hence, the 

worst case time response of [5] and [16] is almost the same. 

No scaling scheme is given in [5] while Bose-Lin based Check Prediction circuitry is not 

easily scalable. As the check bits increase above three bits, the arithmetic circuits require 

complete change in some parts of the circuitry. 

In [17] error correcting codes are proposed for designing 32-bit fault tolerant ALU. The 

scheme uses BCH codes for detecting and correcting 5-bit error in any position of its 32-bits 

input register. Each encoder and decoder takes 63 clock cycles to compute the result that 

introduces more delay to the circuit. Faults within the ALU cannot be detected by this scheme. 

Area and time efficient self-checking adders have been proposed recently using two rail 

codes [18], but the circuits can't be used in ALU because the shifter and logic unit have to be 

encoded using different codes, and thus require different checkers as well. This not only 

increases the complexity of the system, but also the cost as well. 

In this thesis we present an AUED method for detecting errors in ALU using Scalable Error 

Detecting Codes (SEDC) [19]. Unlike BCP [5], this scheme generates the check bits without 

using the internally generated carries which is the main reason why this scheme is more area 

and delay efficient than the BCP scheme. With 100% fault coverage against all unidirectional 

errors, SEDC scheme also provides 82% fault coverage against all other errors that emerge due 

to single faults in the ALU. SEDC is easily scalable for any number of input bits 'n' while 

latency of SEDC encoded ALU remains constant. Unlike residual codes, here we use only one 

type of error detection scheme i.e., SEDC scheme for entire design of ALU, that also 

simplifies the overall chip design. The area and delay efficient, scalable TSC checker for 

SEDC scheme is also presented in this paper which further reduce the area of overall system. 

Although, our coding scheme have bigger code length than Berger codes, but the area efficient 

TSC SEDC checker requires less area than the TSC Berger checker. The prototype SEDC 

based ALU system is implemented on FPGA platform which exploits its reconfiguration 

feature to mitigate permanent errors. 



 

- 19 - 

 

III. Scalable Error Detection Coding Scheme 

Scalable Error Detection Coding scheme [19] is formulated and designed in such a way that 

only area is scaled, while latency depends on a small portion of the input data (explained later). 

For any input binary data D of length n-bits represented as (Dn-1,….., D2, D1, D0) with Di ∈ 

{0, 1} for 0 ≤ i ≤ n-1, two parameters ‘a’ and ‘b’ are computed using (1), where parameter ‘a’ 

can only be a positive integer, and parameter ‘b’ can take values only from 2, 3 or 4. 

   
3

max(b)n
a

−
=     (1)

 

Satisfying the condition for parameter ‘a’, the maximum possible value for parameter ‘b’ is 

selected. The length of SEDC code C represented as (Cm-1, …, Cj, ..., C2, C1, C0) with Cj ∈ {0, 

1} for 0 ≤ j ≤ m-1, is then computed as per (2). 

  � =	 �����(
 + 1 − 3�)� + 2�     (2) 

After computing the values for parameters ‘a’ and ‘b’, the SEDC code ‘C’ for input binary 

data ‘D’ is computed. SEDC is designed to generate codes basically for 2-, 3-, and 4-bit data 

and accordingly referred to as SEDC2, SEDC3 and SEDC4 scheme, respectively. It is then 

extended for any integer values of n, as shown in Fig. 3.1. 

 

 

 

 

 

 

 

Next, we will discuss the mathematical foundations of SEDC2, SEDC3 and SEDC4 schemes 

with logical explanations about their error detecting capabilities. 

 

A. SEDC2 code 

Fig. 3.2 gives a 2-D square illustration of SEDC2 scheme where nodes represent data words 

 
 

Figure 3.1 Data partitioning and encoding using SEDC scheme for given data word 



 

and their corresponding code words are written in brackets

The SEDC coding scheme assigns code words to different data words with a unique criteria. 

Whenever there is a change of bit (or bits) in data word from '1' 

in Fig. 3.2), the change is reflected on code word in opposite way, i.e., the code changes from 

'0' → '1'(shown with dashed arrow in Fig. 3.

data word increases, the weight of its SEDC code word decreases and vice versa. 

is used to assign 2-bit code words 'C1C0' to the 2

interchangeably; this results in another variant of SEDC

  NAND[]
0

C:
1

[C =

SEDC2 is the basic coding scheme and is embedded in 

unidirectional errors in 3-bit and 4-bit data, as shown later. This ability of scaling codes 

present in any other coding scheme. 

 

 

 

 

 

 

 

B. SEDC3 code 

SEDC3 code for 3-bit data is computed as per (4).

( )
( )

(



=
SEDCcomplement s1' 

          ,D,DSEDC 
C,C

012

01

Fig. 3.3.(a) shows a 3-D cube illustrating the unidirectional error detection mechanism of 

SEDC3 codes. Same notations are used in Fig. 3

cube represents the embedded SEDC2 coding scheme in SEDC

unidirectional change in data word '001' to '111' (two MSB's changing from '00

Figure 3.2 2D illustration of SEDC
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and their corresponding code words are written in brackets. 

The SEDC coding scheme assigns code words to different data words with a unique criteria. 

e of bit (or bits) in data word from '1' → '0' (shown with bold arrow 

2), the change is reflected on code word in opposite way, i.e., the code changes from 

3.2), and vice versa. In general, when the weight of 

data word increases, the weight of its SEDC code word decreases and vice versa. Equation (3) 

' to the 2-bit data words D1D0. C1C0 can also be used 

; this results in another variant of SEDC2 code. 

( ) ( )]D,DXNOR:D,DNAND 0101
   (3) 

is the basic coding scheme and is embedded in SEDC3 and SEDC4 to detect all 

data, as shown later. This ability of scaling codes is not 

bit data is computed as per (4). 

( )) =

=

1D if   ,D,DSEDC

0D if                             

2012

2    (4) 

D cube illustrating the unidirectional error detection mechanism of 

codes. Same notations are used in Fig. 3.3.(a) as in Fig. 3.2. The dashed side of the 

coding scheme in SEDC3. Note that when there is a 2-bit 

unidirectional change in data word '001' to '111' (two MSB's changing from '00' to '11'), the 

 
 

2D illustration of SEDC2 scheme 



 

code changes in the opposite direction (MSB

The first four code words for SEDC3 are same as SEDC

dashed side). The remaining four code words are generated by 

1) Invert all the 3-bit data bits (we take '100'

2) Find the SEDC2 code word corresponding to the inverted data resulting from step 1 

('011'→'01'). 

3) Now invert the SEDC2 code word which came from step 2 ('

4) The inverted SEDC2 code word resulted in step 3 becomes the code word for the data 

word selected in step 1. 

 

 

 

 

 

 

 

 

Any two data words DA and DB such that D

1's → 0's or 0's → 1's, are assigned unique code word by above shown steps, hence making it 

possible to detect all unidirectional errors. 

C. SEDC4 code 

SEDC4 code for 4-bit data is formulated as per (5).

( ) D([]C,C:[C 3012 NOT=

MSB of the code word is completely dependent upon MSB of the data word for SEDC

hence any change in the MSB of the data word is detected. While the rest of the three data bits 

                  
 

                       (a)    

 
Figure 3.3  (a) 3D illustration of SEDC
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SB of the code changes from '1' to '0'). 

are same as SEDC2 as shown in Fig. 3. 3(a) (with 

dashed side). The remaining four code words are generated by the following steps: 

bit data bits (we take '100'→'011'). 

code word corresponding to the inverted data resulting from step 1 

code word which came from step 2 ('01'→'10').       

code word resulted in step 3 becomes the code word for the data 

such that DB can be converted to DA by just changing the 

 1's, are assigned unique code word by above shown steps, hence making it 

bit data is formulated as per (5). 

( )]D,D,DSEDC:) 01233
  (5) 

MSB of the code word is completely dependent upon MSB of the data word for SEDC4; 

hence any change in the MSB of the data word is detected. While the rest of the three data bits 

                 

                          (b) 

(a) 3D illustration of SEDC3 scheme (b) SEDC3 circuit 



 

- 22 - 

 

are encoded using same SEDC3 scheme. 

In general, for SEDCn, the n-bit binary data is grouped into one ‘b’-bit segment and ‘a’ 

number of 3-bit segments, and then these segments are encoded using SEDCb and ‘a’ number 

of SEDC3 modules in parallel, as shown in Fig. 3.1. Small code words are produced from 3-bit 

and b-bit data segments for error detection. It is noteworthy that each group of data segment 

and corresponding code segment is independent to each other. This independency makes our 

scheme scalable. 

We could partition to get Berger codes in parallel; however it requires more area than 

SEDC scheme. For instance, a 3-bit input SEDC circuit shown in Fig. 3.3.(b) can be 

implemented with 14 MOS transistors, while 3-input one's counter is implemented with a full 

adder that contains 28 MOS transistors [20].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

IV. Introduction to Overall System

The general block diagram of SEDC based error detecting

SEDC is a concurrent error detection (CED) scheme 

module, like the one proposed in [21]. Inputs are simultaneously applied to the function

(in our case ALU) and output characteristic predictor circuit (in our cas

or SEDC check bits predictor). TSC SEDC checker validates the output of both ALU and 

SEDC encoded ALU. 

 

 

 

 

 

 

 

A. Arithmetic and Logic Unit 

The ALU generates the normal output ‘F(A, B, op, p)’ 

and ‘p’. The ALU circuit is capable of performing 

Operation of two n-bit operands, n-bit Shift/Rotate O

and n-bit Compare Operation (abbreviated as BO, SRO

the thesis). 

Input ‘op’ is designated to specify particular 

Shift or any Boolean Operation). To provide the input shift bit 

input ‘cin’ for Add/Subtract operation, 1-bit input ‘

Figure 4.1 General model for SEDC based Self

Functional 

Unit 
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Introduction to Overall System 

SEDC based error detecting ALU is depicted in Fig. 4.1. [19]. 

SEDC is a concurrent error detection (CED) scheme which requires a separate encoded 

]. Inputs are simultaneously applied to the functional unit 

(in our case ALU) and output characteristic predictor circuit (in our case SEDC encoded ALU 

TSC SEDC checker validates the output of both ALU and 

The ALU generates the normal output ‘F(A, B, op, p)’ by taking the inputs ‘A’, ‘B’, ‘op’ 

The ALU circuit is capable of performing four basic operations, namely Boolean 

Shift/Rotate Operation, n-bit Add/Subtract Operation 

(abbreviated as BO, SRO, ASO and CO respectively throughout 

particular Arithmetic or Logic Operation (like Add/Sub, 

Shift or any Boolean Operation). To provide the input shift bit ‘si’ for shift operation, or carry 

input ‘p’ is used. 

 
 

General model for SEDC based Self-checking ALU 

Output 

characteristic 

predictor 
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B. SEDC encoded ALU 

SEDC encoded ALU or SEDC check bits predictor is designed in such a way that it 

generates the corresponding SEDC check bits ‘C = SEDC(F)’ using the same inputs ‘A’, ‘B’, 

‘p’ and ‘op’, in parallel. For designing this SEDC encoded ALU, we generated truth tables 

with inputs A, B, op and p, while the output equals to ‘C = SEDC (F)’, using Logic Friday 

software.  

Similar to the ALU, SEDC encoded ALU comprises of SEDC encoded BO Unit, SEDC 

encoded SRO Unit, SEDC encoded ASO Unit and SEDC encoded Compare Unit. To switch 

between different operations, input ‘op’ is used. One can observe from Fig. 4.1, that unlike 

BCP ALU [5], SEDC encoded ALU does not use the internally generated carries. 

C. TSC SEDC checker 

A totally self-checking (TSC) SEDC checker is used to validate the ALU output ‘F’ with its 

corresponding SEDC encoded ALU output ‘C’. A 2-bit error signal ‘V’ is generated if ‘F’ and 

‘C’ do not correspond to each other (i.e., C ≠ SEDC (F)). As the checker is TSC, hence it has 

the ability to detect or safely hide its own error. The checker also exhibits scalability, i.e., the 

checker can be designed for any number of input bits with little increment in hardware while 

the latency remains constant. 
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V. Formulation of SEDC encoded ALU 

In this chapter we will discuss the formulation of each SEDC encoded ALU operation 

(Boolean, shift/rotate and add/subtract operation, compare operation with some examples). 

A. 2-, 3- and 4-bit SEDC encoded Boolean Operation Unit 

In Table 5-1 [19], we list the logic equations to implement 2-bit SEDC encoded BO Unit. 

The symbol ‘opBO’ is equivalent to ‘op’ in Fig. 4.1. A total of 16 Boolean logic operations 

can be performed by changing input ‘opBO’. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The ‘SEDC2’ symbol mentioned in Table 5-1 generate the SEDC2 check bits ‘C1(2bit)C0(2bit)’ 

of the 2-bit input operands ‘A’ and ‘B’. ‘2 x SEDC2’ denote the one bit left shifted result after 

taking SEDC2 of the operands, with ‘0’ as the input shift bit. Other symbols like ‘+’ and ‘-’ 

represent the normal add and subtract operations. “�” shows the inverted A, while ‘AND’, 

‘OR’, ‘XOR’, ‘NAND’ and ‘NOR’ are the normal 2 operand logic gate operations. For 

example, if the value of ‘opBO’ is 6, then the output of the ALU is normal XOR value of ‘A’ 

Table 5-1. Logic for 2-bit SEDC encoded BO Unit 

 

Operations opBO 2-bit SEDC Encoded Boolean Operations A3/ 

A2 

B3/ 

B2 

S9/ 

S10 (C1(2BIT),C0(2BIT)) = SEDC2 (A, B, OPBO) 

Logic 0 0 SEDC2(00) X X 0 

A NOR B 1 SEDC2(�̅) + SEDC2(��) ‐ SEDC2(�̅ OR ��) 0 0 1 �̅ AND B 2 SEDC2(�̅) + SEDC2(B) ‐ SEDC2(�̅ OR B) 0 1 1 �̅ 3 SEDC2(�̅) 0 X 1 

A AND ��  4 SEDC2(A) + SEDC2(��) ‐ SEDC2(AOR��) 1 0 1 ��  5 SEDC2(��) X 0 1 

A XOR B 6 SEDC2(A) + SEDC2(�) ‐ (2×SEDC2(A.B)) + 

3 

0 

1 

1 

0 

1 

1 

A NAND B 7 SEDC2(�̅) + SEDC2(��) ‐ SEDC2(�̅.��) 1 1 0 

A AND B 8 SEDC2(A) + SEDC2(B) ‐ SEDC2(A OR B) 1 1 1 

A XNOR B 9 SEDC2(�̅) + SEDC2(�) ‐ (2 × SEDC2(�̅ . B)) 

+ 3 

0 

1 

0 

1 

1 

1 

B 10 SEDC2(B) X 1 1 �̅	OR B 11 SEDC2(�̅) + SEDC2(B) ‐ SEDC2(�̅ . B) 1 0 0 

A 12 SEDC2(A) 1 X 1 

A OR ��  13 SEDC2(A) + SEDC2(��) ‐ SEDC2(A . ��) 0 1 0 

A OR B 14 SEDC2(A) + SEDC2(B) ‐ SEDC2(A . B) 0 0 0 

Logic 1 15 SEDC2(11) X X 1 
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and ‘B’ while output of the SEDC encoded ALU is computed by the corresponding equation 

from Table 5-1. Unlike BCP ALU [5], Table 5-1 don’t contain any signal (Carry out, internally 

generated carries etc) that is being generated by normal ALU. This makes SEDC encoded 

ALU faster than BCP ALU. Following example illustrates the 2-bit SEDC encoded XOR 

operation. 

Example 1: Let A = 01, B = 10, opBO = 0110 (XOR) 

⇒ A AND B = 00; SEDC2(A) = 10, SEDC2(B) = 10, SEDC2(A AND B) = 11;  

⇒ 2xSEDC2(A AND B) = 110; 

⇒ SEDC2(A) + SEDC2(B) - {2xSEDC2(A AND B)} + 3= 001 

Discarding the MSB, the remaining two LSBs ‘01’ are the SEDC2 check bits for XOR 

operation between ‘A’ and ‘B’, which can be verified from (3). 

For scaling 2-bit SEDC encoded BO unit to 3-bit, ‘opBO’, ‘A2’ and ‘B2’ signals are 

encoded to generate ‘S9’, using Table 5-1 (where ‘A2’ and ‘B2’ are the MSB’s of the 3-bit input 

operands ‘A’ and ‘B’ respectively). Replacing ‘SQ’ with ‘S9’ in (6), will yield the SEDC3 

check bits C1(3bit)C0(3bit). 

(C1(3bit), C0(3bit)) = �(C�(����), C�(����))	– 	1											if		#$ 	= 	1(C�(����), C�(����))																			otherwise,   (6) 

Similarly, (7) & (8) are used for scaling 3-bit SEDC encoded BO unit to 4-bit unit. Here 

signals ‘opBO’, ‘A3’ and ‘B3’ are encoded to generate ‘S10’ using Table 5-1, and depending 

upon ‘S10’, the output SEDC4 code C2(4bit)C1(4bit)C0(4bit) is obtained. 

C2(4bit) = -1											if		#�� 	= 	00													otherwise,      (7) 

(C1(4bit), C0(4bit)) = SEDC3(A(3bit), B(3bit), opBO)     (8) 

B. 2-, 3- and 4-bit SEDC encoded Shift/Rotate Unit 

The SEDC check of the result of a shift/rotate operation is simply the SEDC check of the 

operand, since no information bit is discarded except for their position. The logic shift 
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operation involves the ‘si’ bit (equivalent to ‘p’ in Fig. 4.1) as input shift bit. Table 5-2 

tabulates the logic of 2-bit SRO unit [19]. 

 

 

 

The circuit is able to perform same operations given in [5] that are, shift left, shift right, 

rotate left and rotate right on any 2-bit operand ‘A’ and generate its 2-bit SEDC code. 

Following is the example to illustrate the 2-bit SEDC encoded shift/rotate operation. 

Example 2: Let A = 01, si = 1, opSR = 01 (shift right); 

⇒ [si A1] = 10;       (normal shift output) 

⇒ SEDC2([si A1]) = 10     (SEDC encoded output) 

For scaling 2-bit SEDC encoded SRO unit to 3-bit unit, we replaced SQ with S1 in (6), 

while for scaling 3-bit SRO unit to 4-bit unit we used (9) & (10). Signal ‘sibit’ and S1 are 

generated using primary inputs opSR, A and si, whose logic equations are given in Table 5-2. 

 (C1(4bit), C0(4bit)) = SEDC3(A(A2,A1,A0), sibit, opSR)  (9) 

  /�(0���) =	1NOT	A�, if	opSR = 0NOT	si, if	opSR = 1NOT	A�, if	opSR = 2NOT	A�, if	opSR = 3,    (10) 

C. 2-, 3- and 4-bit SEDC encoded Add/Subtract Unit 

The SEDC check of the result of an add/subtract operation is simply the SEDC check of the 

normal add/subtract result, as formulated in (11) & (12) [19]. 

 C1(2bit), C0(2bit) = #9:/	{�⨁(� ⊕ �>�#)⨁(/�? ⊕�>�#)}  (11) 

Cc(2bit) = #9:/{�⊕ (� ⊕ �>�#)}(/�? ⊕�>�#) + �(� ⊕ �>�#)   (12) 

Table 5-2. Logic for 2-bit SEDC encoded SRO Unit 

 

Operations opSR 2-bit SEDC Shift/Rotate Operations 

(C1(2bit),C0(2bit)) = SEDC2(A(A1, A0), si, opSR) 

Shift Left A 00 SEDC2([A0 si]) 

Shift Right A 01 SEDC2([si A1]) 

Rotate Left A 10 SEDC2(A) 

Rotate Right A 11 SEDC2(A) 
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The ‘opAS’ here corresponds to the input ‘op’, and ‘Cin’ corresponds to ‘p’ in Fig. 4.1. 

Cc(2bit) and C1(2bit)C0(2bit) are SEDC check bits for output carry and sum, respectively. Example 3 

shows the SEDC check bit generation for 2-bit add operation. 

Example 3: Let A = 01, B = 10, Cin = 1, opAS = 0; 

⇒ Cout  = 1,   A + B + Cin = Sum = 00; 

⇒ SEDC2 Cout = 0,        SEDC2 Sum = 11; 

Here again, for scaling 2-bit SEDC encoded Add unit to 3-bit unit, (6) is used to generate 

check bits ‘C1(3bit)C0(3bit)’ corresponding to the output sum of the ALU, by replacing SQ with 

S15. The logic equations that generate check bit for carry out signal ‘Cc(3bit)’ and S15 signal are 

given in Table 5-3. 

Similarly, (13) & (14) are used to generate the check bits ‘C2(4bit)C1(4bit)C0(4bit)’ 

corresponding to output sum of the 4-bit SEDC encoded ALU, while the logic equations for 

carry out signal ‘Cc(4bit)’ and S17 signal are given in Table 5-3. 

  /�(0���) =	�NOT	/A(�BCD),								if	S�E = 1/A(�BCD),																	otherwise,    (13) 

  (C1(4bit), C0(4bit)) = (A(3bit), B(3bit), Cin, opAS)   (14) 

The three SEDC encoded operation units compute the SEDC check bits independent of the 

internally generated carries from the normal ALU, which reduce the overall latency of the 

system. 

 

 

 

 

 

 

Equations in Table 5-3 [19] are formulated by inputting the logic tables in Logic Friday 

software and then minimizing them to generate logic equations. All the logic equations uses 

Table 5-3. Logic equations for S1, sibit, S14-S15 signals 

 

S1 = (opSR1')(opSR0)(A2)  + (opSR1')(opSR0')(A1) 

sibit = (opSR0)(A3) + (opSR0')(si) 

S14 = Cc(3bit) = (B2')(Cc(2bit)) + (A2')(B2')(Cc(2bit)') + (A2')(B2)(Cc(2bit)) 

S15 = (A2)(B2)(Cc(2bit)') + (A2)(B2')(Cc(2bit)) + (A2')(B2')(Cc(2bit)') + (A2')(B2)(Cc(2bit)) 

S16 = Cc(4bit) = (A3')(B3') + (A3')(Cc(3bit)) + (B3')(Cc(3bit)) 

S17 = A3' B3 + A3 B3' 
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primary inputs ‘A’, ‘B’, ‘p’ and ‘op’ to compute the SEDC check bits of a particular 

Arithmetic and Logic operation. 

All the circuits are implemented using combinational logic. These circuits can also work for 

1-bit input data. The only change to made is; take the LSB of the SEDC Code (C0) rather than 

taking both C1C0 bits. 

D. 2-, 3- and 4-bit SEDC encoded Compare Unit 

The Compare unit takes in only two operands A & B, and can perform three operations, 

that are, A greater than B, A is equal to B, and A is smaller than B. Particular operation can be 

selected using the input op. Table 5-4 enlists the SEDC2 code of the two input compare 

operation. 

 

 

 

 

 

 

 

 

 

For scaling 2-bit unit to 3- (e = 2) and 4-bit (e = 3) unit, equation (15) is generally used. 

[C1(e+1-bit), C0(e+1-bit)] = [{(Ae + C1(e-bit)).�F��� + Ae.C1(e-bit)} , {(Ae ⊕ Be) + C0(e-bit)}]  (15) 

 

 

 

 

 

 

 

 

 

 

Table 5-4. Logic for 2-bit SEDC encoded Compare Unit 

Operations opCC 2-bit SEDC Compare Operations 

(C1(2bit),C0(2bit)) = SEDC2(A(A1, A0), 

B(B1, B0), opCC) 

A > B 00 SEDC2(00) 

A == B 01 SEDC2(01) 

A < B 11 SEDC2(11) 
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VI. Scaling SEDC encoded ALU for n-bit Input 

As discussed in chapter II, SEDC scheme is made for 2-, 3- and 4-bit inputs. For n-bit input, 

combination of these 2-, 3- and 4-bit input schemes are used, denoted as SEDC2, SEDC3 and 

SEDC4 respectively. Following we give logic and examples for designing n-bit SEDC encoded 

BO, SRO and ASO units using their respective 2-, 3- and 4-bit modules. 

A. n-bit SEDC encoded Add/Subtract Unit 

The SEDCn check bits (Cm) have two parts; {Cm-1, Cm-2,…,Cm-L} generated by b-bit SEDC 

encoded BO with input operands {An-1, An-2,.., An-b}, {Bn-1, Bn-2,.., Bn-b}, opBO, and {Cm-(2xk)-L-1, 

Cm-(2xk)-L-2} generated by sets of 3-bit SEDC encoded BO on inputs {Ann-1, Ann-2, Ann-3}, {Bnn-1, 

Bnn-2, Bnn-3},  opBO. For calculating values of nn, k and L, (16)-(18) [19] can be used. 

   

 = 
 − (3G) − H   (16) 

   G = 0	I�	(� − 1)   (17) 

           J = [����{
 + 1 − (	3�)}]  (18) 

Example 5: Let A and B contains 8-bit each; 

⇒ b = 2, a = 2 and m = 6      {from (1) & (2)} 

⇒ k = 0 to 1, nn = 6, 5 and L = 2.        {from (16)-(18)} 

So we generate (C5, C4) using one 2-bit SEDC encoded BO unit (SEDC2) with inputs (A7, 

A6), (B7, B6) while (C3, C2), (C2, C0) are generated using two 3-bit SEDC encoded BO units 

(SEDC3) with inputs (A5, A4, A3), (B5, B4, B3) & (A2, A1, A0), (B2, B1, B0) respectively. Input 

‘opBO’ being the common input to all of the three SEDC encoded modules. 

B. n-bit SEDC encoded Add/Subtract Unit 

Similar to n-bit BO operation unit, the logic to implement n-bit SEDC encoded SRO unit is 

given in Table 6-1 [19]. Again the modules are split into b-bit and 3-bit modules for generating 

the SEDC code. For 8-bit SEDC encoded SRO unit, values of a, b, m, k and L remains same as 

in Example 5. Check bits (C5, C4) are generated by 2-bit SEDC encoded SRO unit using (A7, 

A6), (B7, B6) and sibit1 as inputs while (C3, C2) and (C1, C0) are generated by two 3-bit SEDC 

encoded SRO units with inputs (A5, A4, A3), (B5, B4, B3), sibit2 and (A2, A1, A0), (B2, B1, B0), 
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sibit2’ respectively. The sibit2’ is computed the same way as sibit2 but with changed values of 

‘k’. The logic to generate sibit1 and sibit2 signals is also given in Table 6-1. 

 

 

 

 

 

 

C. n-bit SEDC encoded Add/Subtract Unit 

Table 6-2 [19] list the logic to design n-bit SEDC encoded ASO unit. Care must be taken to 

connect carry in and carry out signals between a b-bit and 3-bit SEDC encoded ASO units. 

Also there is a requirement of two extra XOR gates for inverting B and Cin bits (for subtraction 

operation). 

 

 

 

 

 

 

Table 6-1. Logic for scaling n-bit SEDC encoded SRO unit 

b-bit SEDC encoded SRO unit with inputs ((An-1, An-2, ..An-b), sibit1, opSR) 

Operations opSR sibit1 

Shift/Rotate Left A X0 An-b-1 

Shift Right A 01 si 

Rotate Right A 11 A0 

3-bit SEDC encoded SRO unit with inputs ((Ann-1, Ann-2, Ann-3), sibit2, opSR) 

Operations opSR k sibit2 

Shift Left A 00 
= (a-1) si 

≠ (a-1) An-b-(3x(k+1)-1 

Shift/Rotate Right A 01 X An-b-(3xk) 

Rotate Left A 10 
= (a-1) Amsb 

≠ (a-1) An-b-(3x(k+1))-1 

 

Table 6-2. Logic for scaling n-bit SEDC encoded ASO unit 

b-bit SEDC encoded ASO unit 

Inputs = ((An-1, An-2, …., An-b), (Bn-1, Bn-2, …., Bn-b), Cin1, opAS) 

Operations opAS a Cin1 B 

A + B + Cin 0 
= 0 Cin 

B 
≠ 0 Ck 

A – B - Cin 1 
0 /M
����� ��  
≠ 0 /G���� 

(CK, CSm-L-1, …., CSm-(2xL)-L-2 = 3-bit SEDC encoded ASO unit 

Inputs = ((Ann-1, Ann-2, …, A0), (Bnn-1, Bnn-2, …, B0), Cin2, opAS) 

Operations opAS k Cin2 B 

A + B + Cin 0 
= (a-1) Cin B 
≠ (a-1) Ck+1 

A – B - Cin 1 
= (a-1) /M
����� ��  
≠ (a-1) /N + 1��������� 
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C. n-bit SEDC encoded Compare Unit 

Equation (16)-(18) can be used in similar way to partition the data as described earlier. For 

designing n-bit SEDC encoded Compare unit, Equation (15) can be utilized. The value of ‘e’ 

should be equal to ‘n-1’.  
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VII. TSC SEDC checker 

In this chapter we will discuss the basic difference between a SEDC code checker and a 

Berger code checker. With introduction to '10' coding, we will explain the logic equations and 

MOS level circuit diagrams to implement TSC SEDC checker. We will also show the scaling 

of TSC SEDC checker to any number of input bits ‘n’ using the basic 2-, 3- and 4-bit TSC 

SEDC checkers. 

A. Difference between SEDC and Berger code checker 

Close inspection of Fig. 7.1.(a) and Fig.7.1.(b) reveals that Berger code checker differ 

SEDC checker by two modules namely; the check bit complement generator which generates 

the bit by bit complement of the check bits and a tree of two rail checker [7]. As the 

complement generator generates the bit by bit complement, in other words, Berger checker 

encodes the n-bit ‘F’ and m-bit pre-computed check bits into two rail codes. The two rail codes 

are then checked using tree structure [22]. If we partition the Berger codes in a similar way as 

we do with SEDC, then this two rail code length will increase, causing the depth of two rail 

checker tree to increase. 

 

 

 

 

 

 

 

 

On the other hand, SEDC checker has distinct modules as shown in Fig.7.1.(b): the SEDCn 

checker and the wired AND-OR logic block. The SEDCn checker encodes the n-bit ‘F’ and m-

bit ‘C’ into ‘10’ codes. Table 7-1 [23]shows the ‘10’ coding scheme for 1-information bit ‘F0’ 

 
 

Figure 7.1 Architectures of TSC (a) Berger checker (b) SEDC checker 



 

and 1-check bit ‘C0’, according to which the correct output code space 

(that is why we named this encoding scheme as ‘10’ encoding)

correct code space is V1V0 = {01, 10}. The benefit of ‘10’ codes is that they can be checked 

using wired AND-OR circuits in parallel, while the

tree of two rail checkers, which increases the overall delay if the length of check bits increases.

B. Logic and circuits for TSC SEDC1, SEDC

The SEDC checker is also composed of one b

TSC SEDC checkers. These small checkers encodes ‘F’ and ‘C’ into ‘10’ codes, rather than 

two rail codes. In the case of 1-, 2- and 3-bit TSC SEDC checkers, the output can be directly 

used as an error indication signal, but for n > 3, the outputs of smaller TSC SEDC checkers are 

converted to a 2-bit error signal using one level of wired

the logic and circuit diagrams for primitive TSC SEDC checkers (SEDC

SEDC4 checkers) which can be used to scale the TSC SEDC checker to a 

checker. 

1. TSC SEDC1 checker 

  

 

 

 

Fig. 7.2 shows the pseudo nMOS logic implementation of TSC SEDC

Figure 7. 2 MOS circuit for TSC SEDC

Table 7-1. ‘10’ Codes Table for one bit input (SEDC

F0 C0 

0 0 

0 1 

1 0 

1 1 
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’, according to which the correct output code space is V1V0 = {10} only 

(that is why we named this encoding scheme as ‘10’ encoding), while in two rail encoding the 

= {01, 10}. The benefit of ‘10’ codes is that they can be checked 

OR circuits in parallel, while the two rail codes can only be checked using a 

tree of two rail checkers, which increases the overall delay if the length of check bits increases. 

 

 

 

 

, SEDC2, SEDC3, SEDC4 and SEDCn checkers 

The SEDC checker is also composed of one b-bit TSC SEDC checker and a-sets of 3-bit 

TSC SEDC checkers. These small checkers encodes ‘F’ and ‘C’ into ‘10’ codes, rather than 

bit TSC SEDC checkers, the output can be directly 

error indication signal, but for n > 3, the outputs of smaller TSC SEDC checkers are 

bit error signal using one level of wired-AND-OR gate. Subsections discuss 

the logic and circuit diagrams for primitive TSC SEDC checkers (SEDC1, SEDC2, SEDC3 and 

checkers) which can be used to scale the TSC SEDC checker to a n-bit TSC SEDC 

Fig. 7.2 shows the pseudo nMOS logic implementation of TSC SEDC1 checker. 

 

MOS circuit for TSC SEDC1 Checker 

‘10’ Codes Table for one bit input (SEDC1) 

 

V1 V0 

1 1 

1 0 

1 0 

0 0 



 

Table 7-1 shows the logic for 1-bit TSC SEDC (TSC SEDC

indicate the valid input code word (i.e., 10, 01) and the valid output code 

the 1-bit information word which is the output of ISG ‘F’ and C

generated by SEDC Check Symbol Generator (SCSG) ‘C’. V

signal of TSC SEDC checker ‘V’ [23]. 

2. TSC SEDC2 checker 

Equations (19) & (20) [23] are used to implement TSC SEDC

bit error signal V1V0 (here “.” & “+” denotes the normal AND & OR operations respectively). 

Again the correct output code space is {10}. Now C

are the information bits. O� =	 (P� + P� + /���������������
   O� =	/�. (P� + P�������������

The CMOS level design of TSC SEDC2

convert 1-bit SEDC checker circuit to 2-bit SEDC checker as shown in Fig. 7.

 

 

 

 

 

 

 

 

3. TSC SEDC3 checker 

Fig. 7.4 [23] shows the block diagram and the logic for 3

data F2F1F0 from ISG and 2-bit SEDC check bits C

       

Figure 7. 3 MOS circuit for TSC SEDC2  

  Checker    
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bit TSC SEDC (TSC SEDC1 checker). Highlighted cases 

indicate the valid input code word (i.e., 10, 01) and the valid output code word (10). F0 denotes 

bit information word which is the output of ISG ‘F’ and C0 denotes 1-bit SEDC check bit 

generated by SEDC Check Symbol Generator (SCSG) ‘C’. V1V0 is the 2-bit error indication 

used to implement TSC SEDC2 checker that generates the 2-

(here “.” & “+” denotes the normal AND & OR operations respectively). 

Again the correct output code space is {10}. Now C1C0 denotes the SEDC check bits and F1F0 

/�)(/� + P�P�/�)����������������������
  

(19) P�)(/� + P�P�)�������������������   (20) 

2 checker requires only 9 extra MOS transistors to 

bit SEDC checker as shown in Fig. 7.3. 

shows the block diagram and the logic for 3-bit TSC SEDC checker. Three bit 

bit SEDC check bits C1C0 from SCSG are first converted to F1'F0' 

            

       Figure 7. 4 Block diagram of 3-bit  

     TSC SEDC checker 
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and C1'C0' respectively and then they are checked using the same 2-bit TSC SEDC checker as 

shown in Fig. 7.4. When F2 bit is ‘1’, the F1F0 and C1C0 are inverted, while if F2 is ‘0’ then 

F1F0 and C1C0 remain same. As the outputs of XOR gates are fed to TSC SEDC2 checker, 

hence any error in  XOR gates is detected. This makes the overall 3-bit SEDC checker TSC. 

4. TSC SEDC4 checker 

A 4-bit TSC SEDC checker consists of one TSC SEDC1 checker and one TSC SEDC3 

checker as shown in Fig. 7.5 [23]. Both SEDC1 and SEDC3 checkers generate 2-bit output 

V1V0. As the valid code word is {10}, hence to make sure that both the checker units generate 

{10} output during error free operation, we ‘AND’ V1 output-bit of TSC SEDC1 checker with 

V1 output-bit of TSC SEDC3 checker. Also, we ‘OR’ V0 output-bits of both TSC SEDC 

checkers using wired logic gates. We checked and confirmed by fault simulation that wired-

AND and wired-OR gates are also TSC for single faults (stuck-at-0, stuck-at-1, transistor-

stuck-on and transistor-stuck-off). 

 

 

 

 

As compared to TSC Berger checker, SEDC checkers don't require tree of TSC two-rail 

checkers for comparison of check bits CB with the predicted code bits CB', as shown in Fig. 7.1. 

The wired-AND and wired-OR circuitry show constant latency for any number of input bits, 

unlike the TRC tree. 

5. TSC SEDCn checker 

Similar to the SEDC code generator, TSC SEDC checker requires copies of 1-, 2- and 3-bit 

SEDC checkers depending upon the value of “a” and “b” (evaluated from (1)). For example, if 

 

Figure 7. 5 Block diagram of TSC SEDC4 Checker 
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n=8 bits, then from (1), a = 2 and b = 2. This requires a TSC SEDC2 checker and couple of 

TSC SEDC3 checkers to realize an 8-bit TSC SEDC checker. 

Circuit for wired-AND and wired-OR gates will also expand as “n” increases. For n = 8 bits, 

there will be total 3 TSC SEDC checkers with 2-bit output each. So a 3-input wired-AND and 

3-input wired-OR gate is required to compare all the V1 and V0 bits. Fig. 7.6 [23] shows the 

block diagram of n-bit TSC SEDC checker. 

 

 

 

 

 

In general, for “n” bit input, there are “a+1” TSC SEDC checkers with 2-bit output each. So 

we require d = {2x(a+1)}-input wired-AND and wired-OR gates. With each increasing input to 

the wired-AND and wired-OR gates, one extra transistor is required by each of the wired-gates. 

Consequently, the circuit expands in width-wise fashion, and hence the latency of the wired 

logic remains constant for any value of “n”. 

Size of the load transistor driving these wired-AND and OR gates will also increase with 

increasing inputs. So we consider the maximum fan in of one gate equal to 4. For d > 4, an 

extra load transistor is connected in parallel. If “d” denotes the total number of inputs to the 

TSC checker then we require r = (k/4) load transistors. Total “d + r” number of transistors 

are required to implement the “d”-input wired AND-OR network with a constant latency of 1 

transistor. 

 

 

 

 
Figure 7. 6 Block diagram of TSC SEDCn Checker 
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VIII. Fault Coverage of SEDC encoded ALU 

A. Fault model 

As discussed in Chapter III, SEDC scheme is an AUED scheme hence we assume that any 

single fault in ALU or SEDC encoded ALU causing a unidirectional change at their respective 

outputs, are detected by TSC SEDC checker. But there are some errors in ALU that result in 

bidirectional error at the output of ALU, and hence are not be detected by SEDC scheme. First 

we will explain the types of errors that can cause bi-directional change at the output of the 

ALU and then we will show that how much fault coverage SEDC scheme can provide against 

such errors. 

1. Type 1 error 

In typical ALU design, there is no distinction between the circuit that handles the arithmetic 

operations and that which handles the logic operations. Consequently, a single fault in carry 

propagation circuit may induce multiple random errors during the logic operations [5]. 

2. Type 2 error 

In a normal ripple carry adder, the carries and sum bits are not computed by independent 

circuits (i.e., the half-sum signals are used to compute the sum bits and also to propagate the 

carries). Thus an error to half-sum signal can modify both a carry ci and an output sum si 

resulting in a bidirectional error. 

3. Type 3 error 

The error in carry may propagate to other adder blocks, causing bidirectional errors at the 

output of ALU. As our scheme encodes 2-bit, 3-bit or 4-bit data segments separately, so we 

applied test vectors on a 2-bit, 3-bit and 4-bit carry ripple adder separately. We call each 2-bit, 

3-bit and 4-bit carry ripple adder a “block”. We applied stuck at ‘0’ and stuck at ‘1’ faults on 

1
st 

(C1), 2
nd 

(C2)
 
and 3

rd 
(C3) carry of ripple carry adder, one at a time, as shown in Fig. 8.1. We 
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found the percentage of faults which cause bi-directional change at the output sum bits (S) of 

the 2-bit, 3-bit and 4-bit carry ripple adder respectively. 

 

 

 

 

 a) Type 3-A error: 

For 4-bit data, we consider that primary input carry (C0) is error free. A 4-bit adder can 

have 2
9
 = 512 input combinations (test vectors). Results show that if the stuck at ‘0’ or at ‘1’ 

error occurs on C1 then 64 input combinations out of 512 possible combinations (12.5%)  

produce bidirectional errors at the output sum bits (S3S2S1S0). The stuck at errors on 2
nd

 and 3
rd

 

propagating carry don’t produce bi-directional error at the output sum at all. 

 b) Type 3-B error: 

For a 3-bit carry ripple adder, stuck at ‘0’ or ‘1’ error on 2
nd

 propagating carry (C1) results 

in 16 out of 128 cases (12.5 %) in which the output sum (S2S1S0) is bi-directionally corrupted 

by the error. The stuck at error on 2
nd

 propagating carry (C2) don’t produce bi-directional 

errors at the output sum at all. 

 c) Type 3-C error: 

For a 2-bit carry ripple adder, the stuck at error on 1
st
 propagating carry (C1) does not 

produce bi-directional error at the output sum at all (S1S0). 

4. Type 4 error 

Final carry bit of 2-bit (C2), 3-bit (C3) or 4-bit adder (C4) can also be faulty, which may be 

propagated to next stages of carry ripple adder. Again we run the fault simulations and found 

that if input carry of a 2-bit, 3-bit or 4-bit adder is faulty, then 25 % of the input combinations 

can cause bidirectional error at the output sum bits. 

 

Figure 8.1 Fault injection points in a ripple carry adder 
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5. Type 5 error 

Final carry bit of 2-bit, 3-bit or 4-bit adder can also be propagated to the other adder groups 

in the chain. Fig. 8.3 shows an example of 8-bit ALU output and its 6-bit SEDC code. The 8-

bit adder is implemented using one 2-bit and two 3-bit carry ripple adders. We consider that 

the erroneous carry is generated by the left most 3-bit adder and this error is also propagated to 

the next 3-bit adder as well as the 2-bit adder. We found that subset of the Type 4 errors 

(almost 25% of the type 4 errors) are the cause of Type 5 errors. These errors can be detected 

by our scheme. 

B. Fault secureness 

1. Against type 1 error 

In our proposed SEDC encoded ALU design, Logic Unit and Arithmetic Unit inside the 

ALU are separated, hence we eliminate the probability of multiple random errors of Type 1. 

2. Against type 2 error 

To cope with this problem, we adapt the method described in [24], i.e., to implement 

independent circuits for propagate (or transmit) and half-sum signals. This introduces an 

overhead of one XOR gate per bit slice. We took this extra overhead into account when 

calculating the overall area overhead of our proposed scheme. 

3. Against type 3 error 

This type of error is not detectable by SEDC scheme. To cope with this error, we can add 

redundant carry out circuitry. As our scheme partitions the data into more numbers of 3-bit 

modules in which only type 3-B errors are present. If we generate two carry bits (i.e., C1 & C1’) 

as the second propagating carry as shown in Fig. 8.2, and calculate the next Sum bit (S1) and 

carry bit (C2) by C1 and C1’ respectively, then we can decrease the chances of bidirectional 

error due to type 3-B error. 
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4. Against type 4 error 

As we told, 25% of the type 4 errors result in type 5 errors, which are detected by our 

scheme (explained next), so we can say that only 18% of the type 4 errors cause bidirectional 

error at the output sum bits of the ripple carry adder, which is undetected by our scheme. 

5. Against type 5 error 

As our scheme encodes the segmented data (2-bit, 3-bit and 4-bit data), hence each pair of 

check bits are generated independently. If the output carry of one adder block is affecting the 

outputs of other adder block, then each pair of check bits will not correspond to the n-bit  

output of adder, and hence these errors can be detected. Fig. 8.3 shows the example of how a 

type 4 error resulted in a type 5 error, and is detected by SEDC check bits. 

If Sum2 denotes the normal output of the ALU, and Sum2′ symbolizes the erroneous output 

due to the presence of Type 5 error, then SEDC code of Sum2′ (i.e., SEDC(Sum2′)) will not be 

 
Figure 8.2 Adding redundant carry generating circuit to cope with Type 3-B errors 
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equal to the SEDC check bits generated by the SEDC encoded ALU (i.e., SEDC(Sum2)). 

Consequently, the Type 5 error is detected. 

 

 

 

 

 

 

 

C. Overall Fault Coverage 

Due to single fault, either Type 3 or Type 4 errors remain undetected by SEDC scheme. 

Among Type 3 and Type 4 errors, a subset of Type 4 errors (called Type 5 errors) are detected 

by SEDC scheme, so in worst case only 18% bi-directional faults stay undetected, while 100% 

unidirectional errors can still be detected. 

The fault coverage of SEDC scheme can further be increased by putting redundant circuitry 

to cop against Type 3 and Type 4 errors. The redundant circuitry could specifically be added to 

certain locations of the normal adder by fully understanding the nature of the faults. For 

example, Type 3 error occurs when fault is present in first propagating carry, i.e., C1. If we 

duplicate the circuit for C1 only, then this type of error can completely be covered. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 8.3 SEDC ALU organization that eliminates Type 5 errors 
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IX. Results of Fault Testing on TSC SEDC checker 

The following definitions can be used to describe a Totally Self-Checking (TSC) system [4], 

[7], [10], [11], [22]. 

• Definition 1: A circuit is fault-secure for a set of faults, if for any valid input and for 

any fault among the fault set the circuit either produces a faulty code word, or correct output. 

• Definition 2: A circuit is self-testing for a set of faults, if for every fault among the 

fault set the circuit produces a faulty code word for at least one valid input. 

• Definition 3: A circuit is code disjoint iff it maps the input code space to output code 

space, and the non-input code space to non-output code space. 

• Definition 4: A circuit is totally self-checking if it is self-testing and fault-secure. 

A Circuit is TSC if it obeys all above definitions. TSC SEDC1, SEDC2, SEDC3 and SEDC4 

circuits given earlier in this paper are tested for single stuck-at-0, stuck-at-1 and transistor-

stuck-open and transistor-stuck-short faults. We assume that fault occurs one at a time and 

there is enough time between detection of first fault to the occurrence of other fault. Following 

is the analysis of SEDC checker circuit for satisfying all three properties of totally self-

checking checker. We apply one fault at a time in the circuit of Fig. 7.2 and observe the output. 

Table 9-1 shows that under single fault operation, the circuit never produce any incorrect code 

word (hence its fault secure), generates error indication signal for at least one valid input code 

word (hence it is self-testing) and remains code disjoint (here {10} is the correct output code 

space). 

• Case 1- Transistor stuck ON: In Table 9-1, we show all 6 cases of transistor stuck 

ON faults (one at a time). For the case of N3 or N4 stuck ON, the circuit shows fault detection 

by one input code combination (highlighted with dark), and hence the circuit is self-testing, 

while other cases show that the circuit is fault secure as well as code disjoint. 
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• Case 2-Transistor stuck OFF: In Table 9-1, all 6 cases for transistor stuck OFF fault 

are shown. In case of N1 or N2 stuck OFF, the circuit shows self-testing property (highlighted 

with dark) and for rest of the cases, the circuit is fault-secure. 

• Case 3- Input stuck at 0: When input F0 or C0 is stuck at 0, the circuit shows self-

testing property, otherwise it remains fault secure. 

•  Case 4- Input stuck at 1: When input F0 or C0 is stuck at 1, the circuit shows self-

testing property, otherwise it remains fault secure. 

 

 

 

 

 

 

 

 

 

There are two cases where the output becomes floating (i.e., P2 stuck OFF). In either case, 

if we consider the floating voltage as logic high, then the circuit is fault secure, and if we 

consider the floating voltage as logic low, then the circuit is self-testing. Hence, we can say 

that the circuit in Fig. 7.2, which is a 1-bit SEDC checker, is TSC checker because it satisfies 

all the three axioms of being TSC. Similar analysis was carried out for testing 2-, 3- and 4-bit 

SEDC checkers and found that all these checkers are TSC. 

Table  9-1. Results of single faults on TSC SEDC1 checker 

F0 C0 V1 V0 F0 C0 V1 V0 F0 C0 V1 V0 

Transistor P1 is stuck ON Transistor P1 is stuck OFF Input C0 stuck at zero 

0 1 1 0 0 1 1 0 0 0 1 1 

1 0 1 0 1 0 1 0 1 0 1 0 

Transistor P2 is stuck ON Transistor P2 is stuck OFF Input F0 stuck at zero 

0 1 1 0 0 1 Floating 0 0 0 1 1 

1 0 1 0 1 0 Floating 0 0 1 1 0 

Transistor N1 is stuck ON Transistor N1 is stuck OFF Input C0 stuck at 1 

0 1 1 0 0 1 1 0 0 1 1 0 

1 0 1 0 1 0 1 1 1 1 0 0 

Transistor N2 is stuck ON Transistor N2 is stuck OFF Input F0 stuck at 1 

0 1 1 0 0 1 1 1 1 0 1 0 

1 0 1 0 1 0 1 0 1 1 0 0 

Transistor N3 is stuck ON Transistor N3 is stuck OFF - - - - 

0 1 0 0 0 1 1 0 - - - - 

1 0 1 0 1 0 1 0 - - - - 

Transistor N4 is stuck ON Transistor N4 is stuck OFF - - - - 

0 1 1 0 0 1 1 0 - - - - 

1 0 0 0 1 0 1 0 - - - - 
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X. Area, Delay, Complexity and Power Comparison 

A. SEDC encoded ALU 

1. Area overhead 

Fig. 10.1 shows the gate count for normal, SEDC encoded and BCP ALUs having 8-, 16- & 

32-bit inputs. Data for a 16-bit Residue ALU (ALU+Controller) [15] is also presented for 

comparison. For the gate count, all the logic tables (Table 5-1 - 6-2) and equations are 

logically minimized and synthesized using Logic Friday logic minimize software [25]. All the 

circuits for SEDC encoded ALU are functionally tested using Modelsim software with Verilog 

language, while the post fitting simulations are carried out using Quartus II software. Altera's 

Cyclone III device was used for post-layout simulations. 

 

 

 

 

 

 

 

 

 

The gate count includes all the circuitry inside SEDC encoded ALU shown in Fig. 4.1 

except the Compare unit. The extra XOR gates that cope with Type 2 errors are also taken into 

account while calculating data for Fig. 10.1. The multiplexer that selects the particular 

operation is also considered. 

The data for BCP based ALU is taken from [5], [16], [26] & [27] with few changes: the 

data in [10] does not include the area overhead due to zero's counter for operands (i.e, Xc and 

Yc), shown in Fig. 10.2 [5]. The Multiple Carry Save Adder (MCSA) contains chains of full 

 
 

Figure 10.1 Area utilization chart for SEDC encoded, BCP and simple ALU 



 

and half adders and their exact gate count is estimated from 

implemented with multiple input gates, so we translated all the circuits to 2

uniformity. 

The increasing trend in BCP hardware is due to the presence of 

right after the 3x1 input MUX and two for calculating ‘X

Fig. 10.2. Although ‘Xc’ and ‘Yc’ are re-utilized for whole data path, still they add to overall 

area. P. K. Lala [27] proposed the most area 

compared to previous implementation. The area required to implement these zero counters 

becomes more than double when the number of input bits to the zero counter is doubled

 

 

 

 

 

 

 

 

 

The size of MCSA block also increases with increasing number of inputs (2 full adders and 

1 half adder for each increasing ‘k’-bit). The 

linearly with ‘n’ (one 2-bit gate with each increasing input) while XOR and NAND

increases linearly with increasing ‘k’, in Fig. 

implementation) takes twice the gate counts while

Figure 10.2 Berger Check Prediction Arithmetic and Logic Unit
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and half adders and their exact gate count is estimated from [26]. Circuits in [27] are 

implemented with multiple input gates, so we translated all the circuits to 2-input gates, for 

The increasing trend in BCP hardware is due to the presence of three n-bit counters; one 

right after the 3x1 input MUX and two for calculating ‘Xc’ and ‘Yc’ respectively, as shown in 

utilized for whole data path, still they add to overall 

area optimized realization of the zeroes counter as 

e area required to implement these zero counters 

becomes more than double when the number of input bits to the zero counter is doubled. 

The size of MCSA block also increases with increasing number of inputs (2 full adders and 

bit). The number of ‘AND’ & ‘OR’ gates increases 

bit gate with each increasing input) while XOR and NAND gates 

increases linearly with increasing ‘k’, in Fig. 10.2. ‘MUX’ (NOT-AND-OR based 

implementation) takes twice the gate counts while the size of ‘X2’ block (n-bit 2x1 mux) 

 
Berger Check Prediction Arithmetic and Logic Unit 



 

increases slowly when the number of inputs are doubled. The ‘+n’ block has very 

effect on overall circuitry, so its gate count is not taken into account.

In short, every single unit occupies twice or more than twice area if input data length is 

doubled, except ‘k’ input gates and ‘X2’ block which have little increment in their hardware. 

But, more than doubling effects of three zeroes counters has the dominant effect on overall 

gate requirement. The resultant effect is that

data length is doubled. 

 

 

 

 

 

 

 

 

 

On the other hand, SEDC uses set of pre

bit SEDC encoded ALU. By looking at Fig. 

in SEDC encoded ALU hardware is slower than that of BCP. It is also evident from Fig. 

that SEDC encoded ALU takes less than twice the hardware, when input data length is doubled, 

which concludes that SEDC encoded ALU occupies less area than BCP circuitry for any 

number of input bits ‘n’. 

2. Delay 

The PLA block in Fig. 10.1 generates the control signals (t1, t2, t3, t4, t5) after the arrival 

of Cout from the normal ALU. The MCSA unit is made up of full and half adder trees. As 

stated previously, the number of full and half adders increase with the increasing inputs so the 

Figure 10.3 Increasing trend in SEDC encoded ALU hardware
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increases slowly when the number of inputs are doubled. The ‘+n’ block has very negligible 

effect on overall circuitry, so its gate count is not taken into account. 

very single unit occupies twice or more than twice area if input data length is 

‘k’ input gates and ‘X2’ block which have little increment in their hardware. 

But, more than doubling effects of three zeroes counters has the dominant effect on overall 

effect is that, the overall gate count becomes twice if the input 

On the other hand, SEDC uses set of pre-defined 2-, 3- and 4-bit modules to implement n-

Fig. 10.3, one can figure out that the increasing trend 

in SEDC encoded ALU hardware is slower than that of BCP. It is also evident from Fig. 10.1 

that SEDC encoded ALU takes less than twice the hardware, when input data length is doubled, 

encoded ALU occupies less area than BCP circuitry for any 

generates the control signals (t1, t2, t3, t4, t5) after the arrival 

from the normal ALU. The MCSA unit is made up of full and half adder trees. As 

stated previously, the number of full and half adders increase with the increasing inputs so the 
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delay in generation of check symbol is also increased. On the other hand, SEDC encoded ALU 

does not wait for internally generated carries of normal ALU for computation of check bits. 

Moreover, SEDC uses parallel modules of 2-, 3- and 4-bit SEDC encoded ALUs, so the 

maximum delay incurred is equal to the latency of a 4-bit input SEDC module, hence 

maximum delay remains same for any number of input bits 'n≥4'. 

3. Power and Complexity in Scaling 

The scaling of SEDC encoded ALU is also very simple. Scaling method of BCP ALU is 

not presented in [5] but more than doubling of the circuit is required to scale the BCP ALU for 

doubling the input bits which increases the overall complexity. Bose-Lin scheme in [16] is not 

as simple when more than three check bits are required. Some changes in MCSA block need to 

be made. In case of scaling SEDC, the scaled circuit is the same un-scaled circuit plus some 

extra gates. For more than 4-input bits, the circuit requires replication of 2-, 3- and 4- bit 

SEDC encoded ALU modules. Due to this replication, the power distribution of the overall 

circuitry is very uniform. 

For scaling Bose-Lin scheme with more than 4 check bits, X2 block is completely changed 

(Fig. 10.2). While for SEDC, only one inverter is required to convert SEDC3 to SEDC4. 

B. TSC SEDC checker 

In this section, area consumed by TSC SEDC checker and wired AND-OR network is 

compared with TSC Berger one’s counter and two rail checker. As the code rate of SEDC 

scheme is more than that of Berger scheme, hence for fairness in comparison, we also consider 

the area utilized to store the check bits. 

1. Area Overhead 

The TSC SEDCn checker block shown in Fig. 4.1 requires fewer gates (whose circuit 

diagrams  are given in chapter VII), that are implemented with [15 + (a × 39)] MOS transistors 

if ‘b’ value is 2, [39 + (a × 39)] MOS transistors if ‘b’ value is 3 or [45 + (a × 39)] MOS 

transistors if ‘b’ value is 4. The wired AND-OR logic network is implemented with ‘d + r’ 
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MOS transistors where d = {2×(a+1)}and r = �d/4�. As far as the latency of overall TSC 

SEDC checker is concerned, it is observed constant for n > 3 as shown in Table 10-2. SEDC 

circuits are first designed by Logic Friday software using logic equations in chapter VII. These 

circuits are then implemented with Verilog HDL using Modelsim software, and then finally 

synthesized by Altera’s Quartus II. 

We took data for combinational implementation of one’s counter from [27] in which gate 

level circuit diagrams for up to 32-bit one’s counter are given. For translating gate level 

circuits to transistor level circuits we use data given in [20]. 

Although the SEDC scheme has a bigger code size than Berger coding scheme, if we 

consider the overall area, it is observed that TSC SEDC checker takes less area than TSC 

Berger checker. Table 10-1 enlists the area (in terms of # of transistors) for implementing the 

TSC SEDC and Berger checkers for up to 32-bit information word. It can be seen from Table 

10-1 that with the increase in binary data length area increases if we consider the 

combinational implementation of Berger code [27]. SEDC scheme takes almost 67% less area 

than latency optimized version of Berger scheme [27] even after taking into account the 

storage area for check bit. 

 
 

 

 

 

 

 

 

 

 

Table 10-1. Area comparison between SEDC and Berger checker 
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2 24 18 4 46 24 15 0 39 

3 24 46 8 78 24 39 0 63 

4 36 123 12 171 36 45 6 87 

5 36 114 16 166 48 54 6 108 

7 36 208 24 268 60 84 8 152 

8 48 246 28 322 72 93 8 173 

9 48 355 32 435 72 117 8 197 

15 48 686 56 790 120 195 14 329 

16 60 879 60 999 132 321 16 469 

30 60 1640 116 1816 240 390 26 656 

32 72 1939 120 2131 264 405 28 697 
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2. Delay 

As far as the delay is concerned, again it is observed to be constant for SEDC scheme. The 

maximum latency of SEDC checker is limited to 4 equivalent MOS transistor levels, which 

does not affect the overall performance. The reason behind the constant latency being the use 

of wired-AND-OR circuitry as the equivalency tester, rather than two rail checker. The n-bit 

TSC SEDC checker itself consists of small parallel checkers, that are, SEDC1, SEDC2, SEDC3 

or SEDC4 checkers. 

On the other hand, Berger checker provides delay, both due to ones counters as well as the 

tree structure of two rail checkers. Moreover, this delay keeps on increasing as the data length 

increases, which is undesirable for delay optimized reconfigurable embedded architectures, 

like FPGA.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 10-2. Critical Path (C.P) delay comparison of TSC Berger and SEDC checker 

(unit = nanoseconds) 
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2 20.4 11.6 32 35.6 0 35.6 

3 22.1 23.2 45.3 42.2 0 42.2 

4 35.9 23.2 59.1 42.2 10.8 53 

5 59.5 23.2 82.7 42.2 10.8 53 

7 59.5 23.2 82.7 42.2 10.8 53 

8 93.5 23.2 116.7 42.2 10.8 53 

15 138.6 34.8 173.4 42.2 10.8 53 

16 151.1 34.8 185.9 42.2 10.8 53 

30 207.2 46.4 253.6 42.2 10.8 53 

32 244.2 46.4 290.6 42.2 10.8 53 
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XI. Prototyping the SEDC based error detecting reconfigurable 

ALU architecture on FPGA 
 

In this chapter we discuss the FPGA implementation of overall system whose block 

diagram was presented in chapter IV. We also present the method of autonomous 

reconfiguration of FPGA upon detection of error in an 8-bit ALU. The comparison of area 

overhead of FPGA implementation of SEDC, DMR, BCP and TMR schemes are also 

evaluated in this chapter. 

A. Overall FPGA based system design 

The overall block diagram of FPGA and PC based fault tolerant ALU system is shown in 

Fig. 11.1. The SEDC based error detecting and reconfiguring ALU architecture consists of an 

8-bit normal ALU, an 8-bit SEDC encoded ALU and an 8-bit TSC SEDC checker. This system 

is implemented on FPGA along with the logic to send error signal to PC via PS2 port. If the 

error is transient, the program counter of the ALU halts and current instruction is recomputed 

until the fault disappears. If the error prevails for more than specified amount of clock cycles, 

then the error signal is sent to PC via the PS2 port. The PC containing Labview software 

receives the error signal and reconfigures the FPGA with fresh bit stream of the system 

without running the complete design flow of FPGA design implementation, as discussed later. 

The USB JTAG port carries this fresh bit stream for reconfiguring FPGA. 

 

 

 

 

 

In the subsection, we discuss the implementation details of each and every module. 

 
Figure 11.1 Overall prototype diagram for fault tolerant ALU 
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1. Altera DE0 FPGA board 

Fig. 11.2 shows the detail view of Altera’s DE0 FPGA board. The board contains 

Cyclone III EP3C16F484 FPGA chip. This FPGA contains 16k Logic Elements (LE) and 484 

usable I/O pins. The board consists of many peripherals out of which the following listed 

peripherals are used in our project. 

• 10 Toggle : Due to the limited number of switches, we multiplexed the data using two 

switches SW1 and  SW0. The remaining switches are used to input the operands ‘A’, ‘B’, ‘p’ 

and operation selecting input ‘op’. Toggle switches SW1 and SW0 act as selector switches for 

multiplexing the inputs A, B, p and op whose detailed function is enlisted in Table 11-1. 

 

 

 

 

 

 

 

 

 

• 3 Push Buttons : Push Button 2 is designated as the system reset while Button 0 is 

used to manually clock the circuit. Button 1 is used to force the outputs of ALU (S) to some 

faulty condition, and hence this situation is simulated as a fault. 

Table 11-1. Function of selection switches & seven segments 

 
S.No SW1SW0 Mode SW9-SW2 Seg_2-Seg_0 

1 00 Input first operand A 8-bit Operand ‘A’ Operand A 

2 01 Input second operand B 8-bit Operand ‘B’ Operand B 

3 10 

Input Cin (in case of Add/Subtract 

operation) or 

Input si (in case of shift/rotate 

operation) 

SW9-SW3 = don’t 

care 

SW2 = ‘p’ 

1-bit ‘P’ 

4 11 
Select the operation to be 

performed 
8-bit ‘op’ Result S 
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• 4 Seven Segment Displays : The four seven segment displays are used to show the 

status of inputs as well as the outputs. Table 11.1 also lists the status of Segments at every 

possible position of SW1 and SW0. 

 

 

 

 

 

 

 

 

 

 

• PS/2 Port PS/2 Port is used to send the interrupt to the PC upon detection of error. 

The ASCII code of ESCAPE key is used to send to PC via PS2 port, which is recognized by 

the Labview’s virtual instrument as error. 

• 9 Green LEDs LEDG9-LEDG8 are used to indicate the status of 2-bit output of the 

TSC SEDC checker, while the output of SEDC encoded ALU (i.e., the SEDC check bits) is 

shown on LEDG5-LEDG0. 

2. NI Labview Software 

In this project, we used NI Labview 9.0 for developing a keystroke logger whose job is to 

receive the error signal from FPGA and then reprogram the FPGA. The block diagram consists 

 
 

Figure 11.2 DE0 Board 
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of a keyboard stroke capture module and a while loop. The keyboard stroke capture module 

fires the while loop when a particular keystroke is observed from the PS2 port of the PC. The 

while loop then executes a batch file that contains required instructions for provoking the 

Programmer which then reprograms the FPGA with given bit stream file via USB JTAG port. 

The reconfiguration also resets the FPGA circuitry, and hence there is a high probability 

that the permanent faults are removed (except manufacturing defects). Rather than going 

through all the steps of FPGA design, the programming file (.cdf) for the complete system is 

once generated and reutilized for reprogramming. The typical reconfiguration time taken by 

Cyclone III chip is 20ms, and it varies with the size of .cdf file.  

B. Implementation Results & Area Comparison 

Fig. 11.3 shows the area comparison between normal ALU, SEDC ALU and BCP ALU. 

These ALUs are implemented on Cyclone III FPGA EP3C16F484 chip and their area in terms 

of Logic Element counts is presented. Result shows that the FPGA implementation of SEDC 

encoded ALU takes 16% more area than simple ALU while BCP ALU takes 90% more area. 

Less area consumption of SEDC is due to the fact that SEDC circuits are less complex and can 

easily be synthesized by the synthesizing software. A 16-bit SEDC ALU is composed of 

smaller 2-, 3- and 4-bit ALUs, which require less area when synthesized by the software. 

SEDC encoded ALU don’t require internally generated carries from the normal ALU, which 

cause longer latencies as well as large area consumption after synthesizing on FPGA. 

 

 

 

 

 

  
Figure 11.3 Area comparison of FPGA implementation of 16-bit normal ALU, SEDC 

ALU and BCP ALU 



 

BCP ALU is implemented using the equation (20)

and ‘Sc’ denote the zeroes count value of input operands ‘X’, ‘Y’, internally generated carries 

‘C’ and output of ALU ‘S’, respectively. To convert X, Y and C to Xc, Yc a

16-bit, 16-bit and 15-bit zeroes counters respectively. 

convert the output of Logic operation unit to its equivalent zeroes count (represented as (X v 

Y)c in equation (22)). These bulky zero counter 

when implemented on FPGA. Equations (20) and (21) contains multiple add operations, hence 

they require multiple levels of adder circuits
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BCP ALU is implemented using the equation (20)-(37) [5]. The symbols ‘Xc’, ‘Yc’, ‘Cc’ 

and ‘Sc’ denote the zeroes count value of input operands ‘X’, ‘Y’, internally generated carries 

To convert X, Y and C to Xc, Yc and Cc, we require 

bit zeroes counters respectively. Another zeroes counter is required to 

convert the output of Logic operation unit to its equivalent zeroes count (represented as (X v 

bulky zero counter circuits constitute much of the Logic Elements 

Equations (20) and (21) contains multiple add operations, hence 

they require multiple levels of adder circuits which  further requires more area on FPGA.  
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XII. Conclusions and Future Enhancements 

In this thesis we presented a new architecture for detecting all unidirectional errors in ALU 

using SEDC scheme. We presented theory and design technique of an SEDC encoded ALU. 

We also discussed the method of scaling SEDC encoded ALU for n-bit input data length with 

simple addition in hardware, which does not affect the overall latency of the system. We show 

that the complexity in scaling the SEDC circuit is less than Bose-Lin implementation [16], 

while the SEDC encoded ALU is faster than both [5] & [16]. We implemented the circuits of 

BCP ALU and SEDC encoded ALU using 2-input logic gates for uniformity in calculation of 

gate counts and found that BCP ALU hardware requires more area than SEDC encoded ALU 

for same input data length. We also show that SEDC provides 82% fault coverage against all 

errors that result due to single faults in ALU. Hence, for delay and area sensitive applications, 

n-bit SEDC encoded ALU performs better in terms of speed & complexity than [5] and [16] 

with optimum fault coverage. 

We also presented a totally self-checking checker for scalable error detecting codes. We 

introduced how this SEDC scheme utilizes the parallelism concept by partitioning of input data 

bits “D” into 2-, 3- and 4- bit data segments and then encode those using SEDC2, SEDC3 and 

SEDC4 schemes. Then for checker part, SEDC scheme again partitions the functional circuitry 

outputs into 2-, 3- and 4-bit segments and use TSC SEDC2, SEDC3 and SEDC4 checker blocks 

to detect all unidirectional errors. The proposed SEDC checker is tested and shown to be 

totally self-checking by fault testing method. We also show that due to specific 2-bit error 

indication signal by each TSC checker module, overall SEDC TSC checker employs TSC 

wired-AND and wired-OR logic gates as an equality tester of code bits rather than TSC two 

rail checkers tree, which makes SEDC TSC checker more area and delay efficient than Berger 

TSC checker. Also the inherited parallelism and independency between modules within n-bit 

checker makes the checker faster. 

Lastly, we implement an 8-bit SEDC based error detecting ALU system on Altera’s FPGA. 

We designed a Labview VI that receives error signal from FPGA and reconfigures it. We again 

compare the area utilization by SEDC and BCP schemes, this time on FPGA, and found that 

SEDC requires less area as compared to BCP. 
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In future, SEDC based error detecting ALU can be more refined for locating errors. This 

will enable us to use partially reconfiguring in only those parts of ALU that are effected by 

error. Separate PC for reconfiguring the FPGA can also be replaced with a microcontroller to 

increase the portability of the system. The results in our research also motivate to design error 

secure data path of the complete microprocessor. 
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Microelectronic circuits and SRAM-based FPGA devices are becoming more vulnerable to 

faults and errors due to shrinking size and higher packaging densities for  the transistors. As a 

result, error detection becomes a vital concern for system reliability. 

Errors can be broadly classified as soft and hard errors. Soft errors are caused by transient 

or intermittent faults, while hard errors are caused by persistent faults. Studies show that the 

majority of errors are caused by transient faults. 

Techniques to detect soft errors caused by transient faults have been  developed and 

tradeoff is usually made between processor performance and the area and power required for 

error detection. Diverse duplex circuits can cope against most of the errors including common 

mode failure (CMF) at the cost of twice the area overhead. Triple Modular Redundancy can be 

used to reduce the complexity of the system by just copying the same circuit three times and 

using a voting circuit. Time redundant methods like re-computing with rotated operands 

(RERO) and with shifted operands (RESO) are employed to save area overhead, but they 

introduce unavoidable delay to the system. Several concurrent error detection (CED) methods 

involve encoding the functional circuit using some codes, like arithmetic codes, Berger codes 

and parity codes. For efficient implementation of CED techniques, it is important to consider 

the relevant types of faults that are supposed to be more probable to occur. The types of faults 

within a VLSI circuit have been analyzed and found to be unidirectional errors. Unidirectional 

errors can alter the node logic from zero to one or from one to zero, but not both at the same 
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time. Unidirectional Error Detection (AUED) technique provides good fault coverage with 

reduced area overhead. 

In this thesis, we employ  an error detection scheme called Scalable Error Detection Coding 

(SEDC) which is capable of detecting single as well as multiple unidirectional errors. SEDC 

scheme partition  the data into segments  and perform parallel encoding  for assigning code 

words. Consequently, SEDC scheme can be scaled for any binary data length 'n' with constant 

latency and less complexity as compared to other All Unidirectional Error Detection (AUED) 

schemes. 

Using SEDC scheme, we present a fault tolerant ALU architecture that achieves high fault 

tolerance against single event upsets. The proposed SEDC encoded ALU performs better in 

terms of area and delay as compared to the previous implementation. Result shows that ASIC 

implementation of SEDC based error detecting 32-bit ALU saves 34% area while FPGA 

implementation of 16-bit SEDC encoded ALU saves 39% area as compared to the Berger 

Code Prediction ALU [5]. We also present an area and delay efficient, scalable, Totally Self-

checking (TSC) checker for SEDC scheme. The proposed 32-bit checker achieves 67% 

reduction in area and 81% improvement in delay as compared to TSC Berger checker. We also 

utilize  the reconfiguration feature of FPGA to mitigate hard errors. 
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