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ABSTRACT

Multispectral Image authentication method via Photon 

Counting Fourier Optics

     Muniraj Inbarasan 

     Advisor : Dr. Inkyu Moon, Ph.D.

     Department of Computer Science

     Graduate School of Chosun University

Optical image encryption algorithms based on Fourier plane encoding (i.e., 

double random phase encryption) systems shown vulnerability against intruder 

attacks. Recently, the integration of photon-counting imaging (PCI) techniques 

to the double random encryption (DRPE) systems based on binary images had 

demonstrated the robustness of information authentication against those 

attacks. In this thesis, we have proposed integration of optical encryption 

systems with the photon counting imaging systems for multispectral information 

authentication. The proposed approaches has two possible combinations of 

integrating PCI and DRPE systems for multispectral image authentication based 

on Bayer patterned color filter array (CFA) images. On the one hand, the 

primary multispectral images are photon-counted subsequently the sparse 

distributed information being encrypted by DRPE systems which yields sparse 

encrypted data, eventually it retrieved as sparse distributed photon-limited 
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version of primary images. Whereas in the second procedure, the reference 

multispectral images are first encrypted by DRPE systems and  the encrypted 

complex information brought to the photon-counted imaging systems, thus the 

noisy and high intensity images retrieved. Both the decrypted images do not 

resemble its original counterpart. Nevertheless, we validate our proposed 

approaches through statistical nonlinear correlations. We also have displayed 

our proposed system's discrimination capability using discrimination metric. 

Experimental results demonstrate that the fewer encrypted distributions are 

adequate in order to decrypt and authenticate the original information. Since 

the multispectral information is introduced in optical imaging systems, better 

authentication and recognition could be achieved. 
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한글 요약

포톤 카운팅 푸리어 광학 기반 칼라영상 인증 기빕

 무니라흐 인파라산

     지도 교수 : 문 인규.

     컴퓨터공학과

     대학원, 조선대학교

푸리에 평면 인코딩 (즉, 이중 임의 위상 암호화)를 기반으로 광학 이미지 암호화 

알고리즘 시스템은 불법 침입자의 공격에 대한 취약점을 보인다. 최근의 광자 계수 

바이너리 이미징(PCI) 기술과 이중 임의 암호화 (DRPE) 시스템의 통합은 이러한 공

격에 대해 정보 인증의 견고성이 입증된 이진이미지를 기반으로 한다. 이 논문에서, 

우리는 멀티 스펙트럼 정보 인증을 위한 광자 계수 이미징 시스템과 광학 암호화 시

스템의 통합을 제안했다. 제안된 방법은 바이엘 패턴 컬러 필터 배열 (CFA) 이미지

를 기반으로 다중 스펙트럼 이미지 인증을 위한 DRPE 시스템과 PCI를 통합하기 위한 

두 가지 가능한 조합을 가진다. 한편, 기본 다중 스펙트럼 이미지는 희박하게 분산

된 정보가 희박한 암호화 데이터가 산출되는 DRPE 시스템을 통해 암호화된 후에 광

자가 계수된다. 두 번째 절차에서, 참조 다중 스펙트럼 이미지가 DRPE 시스템에서 

처음으로 암호화되고 암호화 된 복잡한 정보는 광자 계수 이미징 시스템으로 가지고 

온다. 더하여 잡음이 있고 고강도의 이미지들이 검색된다. 암호가 해독된 두 이미지 

모두 원래의 상대와 비슷하지 않다. 그럼에도 불구하고, 우리는 통계 비선형 상관관

계를 통해 제안 된 방법을 검증한다. 우리는 또한 식별 메트릭을 사용하여 제안한 
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시스템의 식별 능력을 표시했다. 실험 결과는 적은 암호화 된 분포가 원래의 정보를 

해독하고 인증하는 데적절하다는 것을 검증한다. 광학 이미징 시스템에서 다중 스펙

트럼 정보가 알려진 이래로 더 좋은 인증과 인식이 성취될 수 있다.
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1. Introduction

With the extensive growth in multimedia techniques, the digital information 

security has gaining more and more attention since last two decades. In order 

to protect the transmitted information several optical as well as digital 

encryption techniques have been proposed to show the robustness against 

unauthorized attacks [1]. Among them, one of the most powerful and widely used 

techniques is double random phase encryption (DRPE) or 4f optical encryption 

processer [2] which turns the intensity image into stationary white noise, by 

using two statistically independent random phase masks in spatial and Fourier 

domains; eventually, hence, it does not reveal any content of primary 

information. The digital implementation of conventional DRPE approaches have 

shown to be vulnerable against intruder attacks. Recently, Carnicer et al have 

demonstrated the vulnerability of DRPE to chosen-cipher text attacks [3-4]. 

They demonstrated that decryption random key could be reproduced by an 

intruder who has repeated access of encryption or decryption systems. 

Recently, Perez et al have proven the robustness against unauthorized attacks 

by integrating photon-counting imaging technique (PCI) to the conventional 

double random phase encryption (DRPE) technique based on binary images [5]. 

The photon-counted encrypted (i.e., sparse distribution) information is kept 

for the decryption process thus the retrieved information would not resemble 

its original counterpart. Thus this approach demonstrated the robustness 

against unauthorized attacks and also provides the double layer protection 

(i.e., information authentication as well as impossible visual recognition) to 

the encrypted information. However, the intention of this proposed technique 

was only information authentication, but not visualization [5].

In general, for security applications, the multispectral or color images are 

more appropriate and it has shown ameliorates advantage than the monochrome or 
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gray-scale images [6-7]. So far, numerous approaches have been proposed and 

implemented on multispectral image encryption which could be utilized in many 

security applications such as intrusion detections, color object recognition, 

remote sensing image detection and moreover to achieve actual human perception 

system [7-15]. Despite, the multichannel processing said to be increases the 

system complexity and diminishes the reliability of the optical systems [13, 

16]. Thence, the single channel encryption based on double random phase 

encryption technique, which was simplest and robust approach, proposed by 

Zhang et al by using indexed images [16]. Other DRPE based authentication 

techniques that utilize multiple images, biometric information and 

near-infrared remote sensing have been developed for a secure multifactor 

verification. Recently, Moon et al have proposed an approach for multispectal 

3D object visualization in Photon starved environment.  

To date, no one has introduced multispectral information to the integration 

procedures of optical encryption and photon-counted imaging systems. By taking 

this into an account, in this paper, we propose the possible combinations of 

integrating the photon counting imaging (PCI) systems and double random phase 

encryption (DRPE) systems for secured multispectral image authentication using 

Bayer images, which is more reliable and also utilizes the single channel 

compactness. Eventually, the Bayer image would be interpolated to represent as 

multispectral images. We believe that this approach would be beneficial in 

broad spectrum of optical security applications. 

This paper is organized as follows. In section 2, the background of Bayer 

image and downsampling are described. In section 3, we briefly describe the 

principle of interpolation algorithms. In section 4, the procedure of the 

Photon counted imaging is presented. Standard Double Random Phase Encryption 

is described in section 5. In section 6 our proposed procedures are explained. 

In section 7, image authentication metrics described. Then, in section 8, we 

show our experimental results. Finally, we conclude our paper in section 9.
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2. Background 

2.1 Bayer Image

Nowadays, the digital still cameras (DSCs) are gaining much more attention. 

One of the eminent and most cost effective solutions to capture color images 

is using single-sensor cameras, made off charge coupled device (CCD) or 

complementary metal oxide semiconductors (CMOS) coated with color filter 

arrays (CFA). The popular color filter array (CFA) is known as Bayer CFA 

invented by Bryce E. Bayer [17]. The Bayer CFA sensor pixels can allow or 

capture only one of the primary color samples of visible spectrum, i.e., R or 

G or B at each pixel or photosite locations. Figure. 1 shows the conventional 

Bayer CFA (mosaic) pattern. Thus the captured images are known as Bayer image 

or mosaic images.

In Bayer patterned mosaic image, the green (G) samples (luminance sensitive 

elements) are arranged in a checkerboard pattern, and red (R) and blue (B) 

samples (chrominance sensitive elements) are arranged in rectangular grid 

pattern. The green pixels, which contribute remarkably to luminance signals 

requiring high resolution, are more in numbers and the red and blue pixels, 

each of which accounts half of the total number of green pixels, Additionally, 

the spectral response of a green channel is similar with the spectral response 

of human eye’s luminance channel; thence, the Green pixels are more in counts 

[17]. Commonly, the multispectral or color images are represents by combining 

three monochromatic (i.e., R, G and B) image channels. In order to generate 

the multispectral image from Bayer image samples, the missing two colors at 

each pixels should be estimated from the existing mosaic data. The process of 

estimating or interpolating the missing color components from sparsely 

distributed samples is known as demosaicing [18]. In the literatures, plenty 

of interpolation algorithms have been proposed to estimate the missing color 

values and those methods has its unique strengths and weaknesses. Among them, 
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one of the best adaptive approaches called Gradient Corrected Linear 

Interpolation algorithm by Malvar [19] is implemented in our experiments to 

visualize multispectral decrypted images from Bayer patterned images. 

Figure. 1. Conventional Bayer mosaic (GRBG sensor) 

2.2 Image Downsampling

 Image downsampling is a process of shrinking a digital image by removing 

unwanted pixels at some pixel locations. Generally, the multispectral images 

are represented by setting specific (RGB) values of the color space 

coordinates for each pixels. Such an image has three colors at each photosite 

locations. These images could be downsampled (i.e., limiting one color value 

for each pixel) according to Bayer CFA samples to achieve single channel 

compactness [20]. Figure 2 shows the multispectral image downsampling process. 

On the other hand, upsampling or interpolation is said to be the reverse 

process of making a digital image larger. In general, an image downsampling is 

usually manipulated in spatial or frequency domains. In the spatial domain, 

downsampling can be performed by uniformly retaining the corresponding pixels 

within the input image. It is also referred to as direct downsampling, which 

is the easiest downsampling algorithm. Whereas, in the frequency domain, 

wavelet transforms, and discrete cosine transforms (DCTs) are usually employed 

for image downsampling, where the transformed coefficients of low frequencies 
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R12 G13 R14G11

G22 B23 G24B21

R32 G33 R34G31

G42 B43 G44B41

are maintained, while the other coefficients are discarded. 

Both the image downsampling and interpolation have wide applications in 

image, video processing techniques. In addition to the conversion between 

different image sizes, downsampling and interpolation are alternative 

approaches to achieve better performance for low-bit-rate image coding, where 

the images are downsampled prior to compression, and then, the missing 

portions are interpolated after decompression. Image downsampling can be also 

utilized in SD/HD video coding, where an HD sequence is downsampled to SD 

before encoding, and then, the decoded SD sequence can be used for an 

SD-display device or converted to HD via interpolation for an HD-display 

device. 

           Figure. 2. Image Downsampling Process (GRBG Pattern) 

 

3. Image Interpolation Algorithms 

 Mathematically, interpolation means that the construction of a new data 

within the range of the existing data. This same idea can be used to estimate 

the missing pixels in the Bayer image in order to generate the true color image 

(RGB at each pixel). This process of estimation is known as demosaicing [18]. 

There are varieties of methods available; among those the simplest method, 
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linear interpolation was widely recommended. Although, there was a problem with 

this method, that produces visible artifacts at the edges in an image. This 

result motivates the necessity to find a best technique for interpolation. Many 

algorithms were emerged. Such algorithms can be classified into two distinct 

groups as non-adaptive algorithms and adaptive algorithms. As their names 

suggest, the non-adaptive algorithms performs the interpolation in a fixed 

pattern on every pixel in an image (within a fixed band or group). It fails to 

maintain the edge information and it causes an artifact known as the zipper 

effect [18]. Whereas the adaptive algorithms can detect the local spatial 

features present in the neighborhood pixel of an input image and then make an 

effective choice to predict the missing pixels. Thus the adaptive algorithm 

provides the stupendous results compared to the non adaptive algorithms. We 

have also made a short comparison analysis on the interpolation algorithms.  

3.1 Nearest Neighbor Interpolation

This is well known non adaptive algorithm and it is very simple to 

implement. In this interpolation method, the interpolated output pixel is 

assigned to have the same value of the nearest (neighbor) pixel in the input 

image. The programmer can select any one of the left, right, upper and lower 

four pixels from the input image [18]. Although this algorithm can provide 

satisfactory result in the smooth regions of an image, they fail to produce 

better results in the high frequency regions (especially along edges).

3.2 Bilinear Interpolation

Bilinear interpolation is the most popular non adaptive algorithm used to 

interpolate the CFA images [18]. To interpolate any pixel in the Bayer CFA, it 

considers its direct neighbors and then it determines the two missing colors 

samples on each pixel location. For an example, if we want to estimate the 
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missing values on , it neighbours are averaged to compute the missing 

pixels as shown in following Equation.

                     
33 42 44 53

43 4
G G G GG + + +

=
                        

                     
32 34 52 54

43 4
R R R RR + + +

=
                   

It’s clear from the Eq.1 that the output values would have the same range 

as input. Similarly for estimating of the missing values on red pixel, the 

green and blue should be utilized accordingly. Whereas, to estimate the 

missing chrominance samples on luminance samples it averages it two immediate 

neighbors of the chrominance samples. By performing this estimation on every 

pixel we can generate the interpolated output (color) image. The band limiting 

nature of this technique would leads to significant artifacts (known as Zipper 

effect) especially across the edges [18].     

3.3 Constant Hue-Based Interpolation

Constant Hue-Based Interpolation was proposed by David R. Cok [18].  

Commonly, the hue is defined as the gradation of color. It represents the 

dominant wavelength of light (ranging from red through yellow, green and blue) 

as perceived by an observer. It denoted by a vector of ratios as (R/G, B/G). 

The color fringes (artifacts) can be reduced by interpolating chrominance 

values based on interpolated hue values and interpolated luminance values. As 

a first step, this algorithm approaches the interpolation of luminance channel 

using standard bilinear interpolation. Later, the chrominance channels are 

interpolated as expressed as follows,

                  

32 34 52 54

32 34 52 54
43 43. 4

R R R R

R
+ + +

=
G G G GG
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23 4321 41

21 23 41 43
32 32.

4

B BB B

B
+ + +

=
G G G GG  (2)

The boldface 'G' value refers to the estimated (bilinear interpolated) 

values from the first pass of this algorithm. Further, by using this algorithm 

the color fringes are reduced without introducing unwanted hue shifts in the 

interpolated output image. 

 

3.4 Gradient Based Interpolation

This method was proposed by Claude A. Laroche and Mark A. Prescott [18]. 

This method takes an advantage that the human eyes are more sensitive to the 

luminance changes. This algorithm employs a three steps process. As a first 

step, the luminance channel is being interpolated, then the second and third 

steps involves in interpolating the gradient value, which can be obtained as 

the color differences (R-G, B-G) in horizontal and vertical directions. 

Corresponding interpolated gradient vaules are then used to reconstruct the 

chrominance channels. For example if we need to estimate , this can be 

calculated using the following equations.

            

42 44

33 53
43

33 42 44 53

,                      if   
2

,                       if   
2

,     if   
4

G G

G G

G G G G

a b

a b

a b

+ì <ï
ï

+ï= >í
ï

+ + +ï =ïî

G

( )41 45 43abs / 2B B Ba = + -é ùë û , ( )23 63 43abs / 2B B Bb = + -é ùë û

Where the  and  referred to the gradient values (also known as 



- 9 -

classifiers). Similarly, for estimating  the following classifiers are 

used, 

       ( )32 36 34abs / 2R R Ra = + -é ùë û , ( )14 54 34abs / 2R R Rb = + -é ùë û . 

             

 

33 35

24 44
34

24 33 35 44

,                      if   
2

,                       if   
2

,     if   
4

G G

G G

G G G G

a b

a b

a b

+ì <ï
ï

+ï= >í
ï

+ + +ï =ïî

G

After this step the chrominance values are interpolated from the differences 

between color and luminance channels (R-G and B-G). This can be expressed as 

follows,

          

32 32 34 34
33 33

34 34 54 54
44 44

32 32 34 34 52 52 54 54
43 43

( ) ( ) ,
2

( ) ( ) ,
2

( ) ( ) ( ) ( ) .
4

R RR G

R RR G

R R R RR G

- + -
= +

- + -
= +

- + - + - + -
= +

G G

G G

G G G G

Note that the luminance channel should completely estimated before this 

process (it’s indicated as boldface values of G). The same procedure can also 

be used to derive for the blue channels. Besides, this algorithm minimizes the 

color artifacts without adding unnecessary complexity to the interpolation 

process. 
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3.5 Adaptive Color Plane Interpolation

This method was proposed by Hamilton and Adams [18]. It is just an extension 

of the algorithm proposed by Laroche and Prescott. This method estimates the 

missing values based on similar classifier used in Laroche et. al method. As a 

first pass, the adaptive interpolation method is used to estimate the 

luminance value horizontally, vertically or diagonally depending upon the 

gradient value. The gradient values are calculated between the chrominance 

pixel locations in the vertical and horizontal direction. By the second pass, 

the chrominance channels are being interpolated. The classifiers are 

calculated as follows,

( ) ( )
( ) ( )

32 34 36 33 35

14 34 54 24 44

abs 2 abs

abs 2 abs

R R R G G

R R R G G

a

b

= - + - + -

= - + - + -

These classifiers are composed of Laplacian second derivative terms for the 

R and B channels and gradients for G channel. These classifiers can sense the 

high frequency information in the neighborhood pixels in both the horizontal 

and vertical directions. Consider, that we need to estimate , the 

interpolation estimates are determined as in Eq.7,   

( )

( )

( )

32 34 3633 35

14 34 5424 44
34

14 32 34 36 5424 33 35 44

2
,                                        if   

2 4
2

,                                        if   
2 4

4
,     if   

4 8

R R RG G

R R RG G

R R R R RG G G G

a b

a b

a b

- + -ì +
+ <

- + -+
= + >í

- - + - -+ + +
+ =

G

ï
ï
ï

ï
ï
ï
î

This process comprises the first step of the interpolation algorithm. As a 

second pass the chrominance channels are interpolated. For example, if we need 

to estimate  and  the following expressions can be used.
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32 34 32 33 34
33

32 52 32 42 52
42

( ) ( 2 )
2 2

( ) ( 2 )
2 2

R R GR

R R GR

+ - + -
= +

+ - + -
= +

G G

G G

But to estimate the , it employs the similar method used for luminance 

channel. First it finds the classifiers and then it interpolated the 

chrominance data. Let,

( ) ( )
( ) ( )

34 44 52 34 52

32 43 54 32 54

abs 2 abs

abs 2 abs

R R

R R

a

b

= - + - + -

= - + - + -

G G G

G G G

 

34 52 34 43 52

32 54 32 43 54
43

32 34 52 54 32 34 43 52 54

( ) ( 2 ) ,                                      if     <
2 2

( ) ( 2 ) ,                                      if     
2 2

( ) ( 4 ,    
4 4

R R

R RR

R R R R

a b

a b

+ - + -
+

+ - + -
= + >

+ + + - - + - -
+

G G G

G G G

G G G G G if     a b

ì
ï
ï
ï
í
ï
ï =ïî

These estimates are composed of arithmetic averages for the chromaticity 

(red or blue) samples and appropriately scaled Laplacian second order 

derivative terms for the luminance (green) samples. Further, the visible 

artifacts will be reduced effectively by using gradient values and second 

order derivative values.  

3.6 Gradient Corrected Linear Interpolation

This algorithm recently proposed by Henrique S. Malvar [19]. The bilinear 

interpolation generates some visible artifacts since it does not consider the 

statistical correlation among the RGB values in a color image. It’s said that 

in [18] the gradient based algorithms can produce the better interpolated 

results. To estimate the value of missing pixel, this algorithm combines the 
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calculated gradient information with the bilinear interpolated value of a 

given pixel. The combination of such calculated gradient values and the linear 

interpolation technique ameliorate the quality of the interpolated output data 

[19].  In such a way, this adaptive technique corrects the artifacts produced 

by symmetric bilinear interpolation algorithm.  Thus, it termed as Gradient 

Corrected Linear Interpolation. For example, to interpolate the G value at 

location R pixel location the following expression is used,

ˆ ˆ( , ) ( , ) ( , )B Rg x y g x y x ya= + D

Where the subscript B means bilinear interpolated and ∆  is the 

calculated gradient value of R at that pixel location, it can be computed as 

follows,

1( , ) ( , ) ( , )
4R x y r x y r x m y nD - + +å�

Where the boundaries are ( , ) {(0, 2), (0, 2), ( 2,0), (2,0)}m n = - - . The gain 

factor  controls the intensity of correction values. Similarly for 

interpolating G at blue pixels, the same equation can be used with the 

correction (gradient) value ∆ . To interpolate R at G pixel locations, 
the following expression is used, with ∆  determined by a 9-point region 
as defined in [19].

ˆ ˆ( , ) ( , ) ( , )B Gr x y r x y x yb= + D

Whereas interpolating R value at B pixels can be denoted as follows,

ˆ ˆ( , ) ( , ) ( , )B Bluer x y r x y x yg= + D

With ∆  is computed on a 5-point region as defined in [19]. Similar 
expressions can be used for interpolating blue pixel. The values of gain 
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parameters  were determined by Wiener approach. The approximated final 

values are       . On the whole, this method takes an 

advantage of reduced computational complexity than others. 

4. Photon Counting Imaging (PCI)

Photon-counting imaging (PCI) systems are special class of imaging system, 

designed for low light level (photon-starved conditions) or night vision, 

where only the limited number photons would reach the image sensors [21-22]. 

In general, photon-counted image has lesser information than its counterpart. 

Similar effect could be computed digitally by allowing a limited number of 

incident photons   to the captured image scene. Thus the photon counted 

images would carry less information than the primary image. Recently, we have 

proposed a multispectral photon-counting integral imaging system based on 

Bayer images for 3D low light visualization [22]. We assumed that the 

probability of counting photons at any arbitrary pixels in a captured Bayer 

image follows Poisson distribution [23]. To generate the photon counted 

multispectral images from Bayer samples, the captured primary color images are 

first down sampled according to the Bayer image and then the Bayer samples are 

individually (i.e., R, G and B) Poisson distributed. We generate the Poisson 

random numbers at arbitrary pixels for each spectral element (channel) in a 

given Bayer image with corresponding Poisson parameter .

 ≈ 
× 

Where the terms  
 are denotes red (R), green (G) and blue (B) 

channels, average number of expected photons per Bayer image and normalized 

Bayer image respectively [21]. The term   denotes random numbers 

generated using the Poisson distribution. To epitomize, in general, the 
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photon-counted images would have lesser information than the input images 

[24-25].  

5. Double Random Phase Encoding (DRPE)

Optical and digital information security systems based on double random 

phase encoding (DRPE) [1-5] technique had shown predominant role in 

information security. According to DRPE principle, the primary image  

represents spatial coordinates of a two dimensional signal or an image, is 

being encrypted as stationary white noise using two random phase masks, which 

does not lead to fabricate or reveal any content of the original image. The 

random phase masks of spatial and frequency domain, exp and 

exp respectively, are statistically independent and uniformly 

distributed over . The decryption procedure is said to be the reverse or 

inverse process of encryption. Figure 3 shows the complete image encryption 

and decryption processes. In our experiments, the Bayer image is used for 

encryption and it is defined as follows; first, the original multispectral 

images are down sampled according to Bayer samples . Since the color 

samples (i.e., R, G and B), shows different attributes in visible spectrum, it 

processed independently as monochrome channels [22]. The segregated channels 

are multiplied with spatial phase mask  and transform into frequency 

domain (i.e., Fourier transform) subsequently. Later, the transformed images 

are multiplied with frequency domain phase masks . Eventually, an 

inverse Fourier transform is then performed on color channels individually to 

get the encrypted channels. In general, the encrypted data are 

complex-amplitude and white noise [2]. Mathematically this process can be 

defined as follows, 

    

    
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Where, the subscript    denotes red, green or blue 

channels.FFTandIFFTrepresenttheFourierandinverseFouriertransformsrespectively,

andthetermdenotes the encrypted Bayer image. The spatial and Fourier phase 

masks values are same for all three monochromatic channels.

The reverse procedure of encryption process is to be employed in order 

decrypt the original channels. At first, the encrypted Bayer images are 

transformed into the Fourier domain individually and then multiplied with 

inverse (i.e., complex conjugate) Fourier phase masks. The resultants are then 

inverse Fourier transformed and multiplied with inverse spatial phase mask in 

order to obtain the decrypted (original) image. It can be mathematically 

represented as follows,

     

      

Where ‘*’ symbol denotes complex conjugate operation. It is been proven 

that the decrypting the original information without knowing phase masks would 

lead to futile. Thus this technique leads to a robust reconstruction of an 

input image. However, some researchers have demonstrated the vulnerability 

against known and chosen cipher-text attacks on digital implementation of DRPE 

techniques [3-4].  

Figure. 3. A schematic representation of DRPE.
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This result motivates the need to find a specialized approach in order to 

increase the security of an encrypted data. Plenty of new approaches have been 

proposed in recent years, among them, the integration of PCI and DRPE based on 

binary images have demonstrated the robustness against those attacks by 

providing double layer of protection [5].

6. Proposed Integration Approaches

6.1 Procedure I (PCI + DRPE)

The integration photon-counting imaging (PCI) with double random phase 

encryption (DRPE) techniques can be processed in two different ways by 

associating both the techniques in different orders. One of the procedures is 

discussed in this section. On this approach, the multispectral reference 

images are photon-counted and given to the DRPE systems for further security. 

The photon-counted decrypted images do not resemble and reveal any content of 

its original information, at any cost. Thus, this procedure achieves 

additional security as compared to conventional DRPE systems. Figure 4 shows a 

schematic representation of our procedure I. In our experiments, the primary 

multispectral (i.e., reference) images are first down sampled according to the 

Bayer samples. Later, the photon-counted Bayer image   is obtained by 

employing PCI procedures individually on normalized three color samples as 

mentioned earlier in section 3. Subsequently, the photon-counted (i.e., sparse 

distributed) Bayer images are kept for encryption using conventional DPRE 

technique and it would be processed as explained in section 4. Eventually the 

decrypted Bayer image retrieved and it would be a sparse distribution of the 

primary image and hence it cannot be visualized or recognize by ordinary human 

eyes. We represent such decrypted Bayer information by this procedure as 



- 17 -

 . Remember the fact that the integration PCI and DRPE systems intended 

for only image authentication, but not for image visualization [5]. Since the 

decrypted images make possible to authenticate the information by nonlinear 

correlations also with impossible human visual recognition, the integration 

procedures can said to be providing additional layer of protection to the 

primary data.  

  

Figure. 4. A schematic representation of Procedure I (PCI + DRPE).

6.2 Procedure II (DRPE + PCI)

On the other hand, in this approach, the multispectral reference images are 

first encrypted using DPRE technique and then photon-counted. In our 

experiments, the down sampled Bayer images are encrypted individually using 

DRPE as explained in section 4. In general, the encrypted Bayer distributions 

 are complex-amplitude; hence both the amplitude and phase values must 

be given to decryption process. At first, the photon-counting imaging (PCI) 

technique is applied only on the amplitude or magnitude information of the 

Bayer encrypted complex data. Thus, the photon-counted Bayer amplitude 

encrypted distributions    are generated. Later, the pixels which 

have non-zero amplitude (intensity) would keep for the decryption process 

including their corresponding phase information. This decrypted image would 
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looks like a noisy image with much higher intensity, on average, than the 

primary image. We represent such decrypted Bayer image as  . Figure 5 

shows the schematic representation of our procedure II. Since, only few 

samples (i.e., non-zero pixels) of encrypted Bayer images are utilized for 

decryption, it is worth to state that the bandwidth reduction is achieved only 

by this procedure [26].  Whereas by the procedure I (i.e., PCI +DRPE), the 

primary image is photon-counted and then the photon-counted primary image 

encrypted using DPRE systems, in such cases no compression is achieved. 

However, the number of photons could only be reduced for decrypting the 

information by procedure I (PCI+ DRPE) when compared to the procedure II (DRPE 

+ PCI), as the noisy-like appearance would require larger number of photons 

[5].

 Figure. 5. A schematic representation of Procedure II (DRPE + PCI).

Further, the outcomes (i.e., decrypted images) of both the procedures 

    would not resemble its original primary image. To 

reiterate, the integration of Photon-counting Imaging (PCI) technique and 

Double Random Phase Encryption (DRPE) systems is introduced only for image 

authentication or verification, not for the image visualization [5].   
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7. Image Authentication

 The integration of PCI and DRPE procedures decrypts the image, which cannot 

be recognize by direct visualization [5]. Nevertheless, the decrypted or 

retrieved image authentication might be verified through statistical 

correlation techniques [27-30]. One of the widely used metrics to calculate 

similarity between two signals is nonlinear correlation. In this procedure the 

signals or images are transformed from time or spatial domain to frequency 

domain (i.e., Fourier transform), then the signals are nonlinearly modified 

and multiplied. Eventually by taking inverse Fourier transform of the 

multiplied product yields the nonlinear correlation between reference and 

probe images [27]. Such nonlinear cross-correlation operation between 

reference and probe images can be expressed as follows, 

     exp       

Where   represents 2D Fourier transform of decrypted and 

reference images respectively. The parameter k defines applied nonlinearity in 

the nonlinear cross-correlation and we estimated the best suited value for k 

is 0.3 which achieves sharp intensity peak value in our experiments. In 

addition to this, we have calculated the Discrimination Metric (DM) in order 

to verify the performance of our proposed methods [5]. It is computed as the 

ratio between maximum intensity value of cross-correlation output and maximum 

intensity value auto-correlation and it’s expressed as follows,

  
 

Where, CC, cross correlation, refers to the maximum cross-correlation 
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intensity value when the decrypted image (by both the procedures) is 

correlated with reference multispectral image and AC, autocorrelation, is 

computed when the reference images are correlated with themselves. In order to 

estimate the better discrimination and nonlinear correlation values, the 

maximum values are considered as unity. Also, in our experiments, we have 

arbitrarily selected some threshold (0.5) value to estimate a good 

discrimination. When the calculated DM value is greater than the threshold 

(>0.5), the decrypted image is said to be authorized or sought image, whereas 

the lesser DM values (<0.5) indicates unauthorized or imposter decrypted 

image. In our experiments, DM is measured for all three monochromatic channels 

(i.e., R, G and B) individually and the results are averaged then.  

 8. Experimental Results

Experimental results are illustrated here to validate of our proposed 

systems. Figure 6 (a-c) shows three standard multispectral reference images 

taken from Kodak true color image data sets, each with the size of 512x512x3 

pixels. As mentioned earlier, at first, the multispectral reference images are 

down sampled according to Bayer samples and the Bayer images are manipulated 

in both the procedures (I and II) in order to examine our proposed approaches. 

Figure 6 (d-f) shows the corresponding down sampled Bayer images (8 bits) in 

GRBG pattern which are manipulated in our experiments. The spatial and Fourier 

random phase masks are generated using MATLAB random number generator. In our 

experiments, we have implemented one of the best demosaicing algorithms the 

Gradient corrected linear interpolation proposed by Henrique S. Malvar, on 

retrieved Bayer images to visualize the multispectral or RGB decrypted images.  

The missing color samples from the Bayer decrypted images are interpolated and 

visualized as multispectral decrypted images. Additionally this method said to 
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be reducing the computational complexity and it outperforms all other adaptive 

demosaicing approaches [19, 22].  

           (a)               (b)              (c) 

         (d)                     (e)                       (f)  

Figure. 6. Images used in our experiments; (a)-(c) original (reference) 

multispectral images (d) - (f) Corresponding down sampled Bayer patterned 

(GRBG format) mosaic images. 

According to the procedure I (PCI + DRPE), the down sampled Bayer images are 

first photon counted as explained in section 5.1, following that the 

photon-counted Bayer images are encrypted using DRPE technique. Eventually, 



- 22 -

the encrypted sparse Bayer samples are decrypted. Figure 7 (a-c) shows such 

the Bayer patterned retrieved images (sparse distribution) by procedure I, 

 , when the photon numbers 10^3 (or equivalently 0.38% of image pixels) 

is considered. Figure 7 (d-f) shows corresponding decrypted images in RGB 

format (i.e., after Malvar’s demosaicing) while the photons are same in 

count. On the other hand, for the procedure II (DRPE + PCI) the sampled Bayer 

images are first encrypted as explained in section 5.2, and then the encrypted 

Bayer images are photon-counted. Figure 8 (a-c) shows the retrieved images 

(noisy distribution) off procedure II in Bayer format,   with photon 

numbers 10^4 (or equivalently 3.8% of image size). Figure 8 (d-f) shows the 

corresponding decrypted images, after Malvar’s demosaicing, in RGB format at 

the same photons as in Bayer image. It is precise from figures 7 and 8 that, 

neither the sparse distribution images of procedure I nor the noisy-like 

images of procedure II do allow us for authenticating the decrypted images by 

direct visual inspection. Thus the proposed approaches produce additional 

layer of information protection. To reiterate, the proposed integration 

procedures only for image authentication but not for image visualization.

Figure 9 (a-b) and (c-d) shows the calculated DM results for both the 

procedures using Bayer and RGB Images respectively. It is precise from Figure 

9 that, it’s possible to significantly reduce the number photons in procedure 

I (PCI + DRPE) as compared to procedure II (DRPE+ PCI) to get successful 

authentication. For instance, a good trade-off between photons and approached 

procedures on Bayer images are Np= 10^3.3 which gives DM>0.7 for procedure I 

and Np= 10^5.3 which gives DM>0.7 for procedure II. Similarly, demosaiced 

multispectral images provide good recognition results at Np=10^3.6 for 

procedure I (i.e., DM>0.7) and Np=10^5.4 for procedure II provides DM>0.7. The 

corresponding intensity nonlinear cross-correlation outputs (the sharp peak 

over noisy background) for both the procedures based on Bayer images when the 

parameter value k=0.3 (applied nonlinearity) are depicted in Figures 10&11. 
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Additionally, to validate the discrimination capability of the proposed 

systems, different and non-authorized multispectral image have been tested. 

Figure 12 (a-c) shows the non-authorized multispectral images and Figure 12 

(d-f) shows corresponding Bayer images, a plane with noisy background is 

obtained without any remarkable peak (Figure 12 (g-h) and (i-j)) in the 

nonlinear cross-correlation when these images correlated with the authorized 

images. Figure 13 (a-c) and 14 (a-c) shows the nonlinear cross correlation 

values calculated between primary and decrypted images for both the 

procedures. As depicted, the intermediate values of parameter k,   

provides satisfactory results in terms of good correlation values. Hence, in 

our experiments, we select the intermediate nonlinearity value (i.e., k=0.3), 

which offers an intense correlation peak and good discrimination results. 

Besides, we also tested the robustness of the proposed procedures by partial 

encryption. In this approach, we have arbitrarily selected and kept some 

percentages of encrypted pixels for the decryption process. Figure 15 shows 

the computed nonlinear correlation values for both the procedures when the 

partial encryption values were used in the decryption. The procedure I (PCI + 

DRPE) gives some satisfactory results when the portion of encrypted pixels was 

larger than 25%. Similarly, for the procedure II (DRPE + PCI) the retrieved 

image was recognizable when the 35% of original encrypted information is being 

kept for decryption process. It’s very clear from the graph that the 

correlation increases as the encrypted pixels increased. Figures 16 (a-c) and 

17 (a-c) shows retrieved images (1%, 5% and 10% respectively) when the partial 

encryption values were used in the decryption process. Besides, we also have 

examined the key sensitivity by changing a single phase key value in the 

encryption process. It is well known fact that the ideal image encryption 

scheme is key sensitive with respect to the secret phase key and should also 

produce totally different encrypted image when the secret key has been changed 

or damaged.  Table 1 show the cross correlation value between the cipher image 
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with original phase key and with the phase key perturbed. These results would 

guarantees the security of the proposed method against Brute-force attacks. 

Additionally, we have estimated the proposed system’s strength in HSI (Hue, 

Saturation and Intensity) color spaces. The input and decrypted images are 

first brought to the HSI color spaces and then the correlation carried out 

individually for all three channels. Figure 18 (a-b) shows the computed 

nonlinear correlation values in HSI color space. Since the photon-limited 

image has less color information and correlation values than the original 

(RGB) one the Hue (color) values provided lower correlation results and thus 

the averaged correlation value in HSI space is lesser than in RGB color space. 

We also have compared and analyzed the superior technique to convert our Bayer 

retrieved images into multispectral retrieved images. From our experiments 

(Table 2 and Figure 19), we have found that the adaptive algorithms provide 

good results than the non-adaptive algorithms. Especially, Hamilton-Adams 

interpolation algorithm and Laroche-Prescott algorithm, that uses similar 

algorithms to interpolate the Bayer CFA images, considerably reduces the 

artifacts and enhances the image quality of interpolated retrieved image. It 

is clear from the figure 19 that the Malvar’s interpolation technique 

consistently provides better results for both the procedures. Besides, the 

computational time is one of the important factors for demosaicing algorithms 

when implemented in the real-time systems. Hence, we also have measured the 

computational time required for interpolation of Bayer CFA samples. Among all 

the methods, the Malvar’s technique takes the reduced computational 

advantages. On the whole, thence, Malvar’s demosaicing technique would be an 

adequate technique (both in accuracy and computational time) to convert our 

retrieved Bayer images into multispectral decrypted images. Hence, we have 

implemented the Gradient Corrected Linear Interpolation technique to estimate 

the missing pixels from the Bayer CFA images.

 These results are in accordance with the fact that integration of PCI and 
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Encryption   Procedures Cross   Correlation

PCI + DRPE 9.55X10-7

DRPE + PCI 9.52X10-7

DRPE systems are robust and it would produce additional layer of information 

security, by not allowing the intruder for direct image visualization, as 

compared to the conventional approaches also it is capable of discriminating 

the decrypted images from other similar and non-authorized images. In our 

experiments, the maximum nonlinear correlation and DM values are considered as 

one (i.e., unity) to make comparison simpler. Additionally, the nonlinear 

correlation and discrimination metrics are computed from 10 numerical 

simulations, in order to select most appropriate results. By using our 

experiments, not only the image verification have been achieved also the 

retrieval of an original image has been demonstrated based on correlation 

output values.  

Table 1. Cross correlation between original & perturbed key encrypted image
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        (a)                         (b)                        (c) 

         (d)                        (e)                       (f) 

Figure. 7. Decrypted images (Lena, Parrots, Flowers)(Np=10^3.5); (a-c) 

decrypted Bayer images.(d)-(f)Corresponding decrypted multispectral images.
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      (a)                         (b)                       (c) 

        (d)                           (e)                        (f) 

Figure .8. Decrypted images (Lena, Parrots, Flowers) (Np=10^4); (a)-(c) 

decrypted Bayer images(d)-(f)Corresponding decrypted multispectral images
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                (a)                                       (b)

                (c)                                        (d) 

Figure.9. Discrimination Metric (DM) Values 

(a) Procedure I (PCI + DRPE) & (b) Procedure II (DRPE + PCI) on Bayer Images 

(c) Procedure I (PCI + DRPE) & (d) Procedure II (DRPE + PCI) on RGB Images.

    



- 29 -

Figure. 10. Nonlinear Cross-Correlation output on Bayer images.

Figure.11. Nonlinear Cross-Correlation output on Multispectral images. 
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        (a)                         (b)                        (c)

   

     (d)                         (e)                         (f)

Figure.12. Discrimination Test. (a-c) Multispectral Non-authorized images, 

(d-f) corresponding Non-authorized Bayer Images.  (g-h) and (i-j) Nonlinear 

Cross Correlation output on Bayer images and Multispectral images 

respectively, for both the procedures.
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                (g)                                         (h)   

                  (i)                                       (j) 
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        (a)                       (b)                        (c)

Figure.13. Nonlinear Cross-Correlation output on Bayer images with different 

k values, Procedure I (PCI + DRPE) (a) Lena (b) Parrots (c) Flowers.

        (a)                       (b)                        ©

Figure.14. Nonlinear Cross-Correlation output on Bayer images with different 

k values, Procedure II (DRPE + PCI) (a) Lena (b) Parrots (c) Flowers.
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Figure 15. Nonlinear Correlation value versus partial decryption data.

       (a)                       (b)                        (c)

Figure 16. Retrieved Lena image when the portion of the encrypted image used 

in the procedure I (PCI + DRPE). (a) 1%, (b) 5%, and (c) 10%.
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      (a)                       (b)                        (c)

Figure 17. Retrieved Lena image when the portion of the encrypted image used 

in the procedure II (DRPE + PCI). (a) 1%, (b) 5%, and (c) 10%.

                        (a) 
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                                      (b) 

Figure 18. Nonlinear Correlation Values in Hue, Saturation and Intensity (HSI) 

Color Space.(a) Non linear Correlation Value in Procedure I (PCI + DRPE) and 

(b) Non linear Correlation Values for Procedure II (DRPE + PCI).
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                         (a)

                                     (b)

Figure 19. Demosaicing Comparisons (a) Procedure I and (b) Procedure II
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DRPE 

+

PCI

MALVAR
HAMILTON 

ADAMS

LAROCHE 

PRESCOTT
COK

NEAREST 

NEIGHBOR

3
R 0.0723 0.0711 0.0676 0.0657 0.0551
G 0.0741 0.0716 0.0689 0.0664 0.0592
B 0.0769 0.0731 0.0712 0.0680 0.0627

5
R 0.4436 0.3914 0.3881 0.3605 0.2754
G 0.5669 0.5277 0.5041 0.4803 0.4388
B 0.5979 0.5587 0.5490 0.5244 0.5161

5.6

R 0.8015 0.6953 0.6835 0.6789 0.5864
G 0.9606 0.8474 0.8419 0.8408 0.6327
B 0.9951 0.9917 0.9859 0.9329 0.9134

Time in 

Seconds
0.0297 0.1239 0.1195 0.1117 0.0524

PCI

+

DRPE

MALVAR
HAMILTON 

ADAMS

LAROCHE 

PRESCOTT
COK

NEAREST 

NEIGHBOR

3

R 0.0619 0.0609 0.0573 0.0478 0.0445

G 0.0685 0.0669 0.0595 0.0531 0.0458

B 0.0696 0.0672 0.0605 0.0535 0.0486

5

R 0.5090 0.5038 0.4865 0.3830 0.3175

G 0.5497 0.5430 0.5250 0.5140 0.4047

B 0.6153 0.5835 0.5664 0.5332 0.4566

5.6

R 0.8144 0.7308 0.7267 0.5473 0.4699

G 0.8619 0.8351 0.7982 0.7607 0.5958

B 0.9471 0.9055 0.8535 0.8119 0.7924

Time in 

Seconds
0.0311 0.1321 0.1210 0.1144 0.0531

(a)

                        (b)

Table 2. Demosaicing Comparison between adaptive and non adaptive algorithms.
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9. Conclusion

Conventional optical image encryption algorithms based on double random 

phase encoding are vulnerable to an organized chosen-cipher text attack. 

Recently proposed integration of Photon Counting Imaging (PCI) systems with 

cryptographic algorithms (DRPE), although it fails to achieve better 

visualization, it has demonstrated the additional layer of security against 

intruder attacks. In this paper, we have proposed two possible combinations of 

integrating PCI and DRPE systems for multispectral images authentication based 

on Bayer CFA images. In the procedure I, the primary down sampled Bayer images 

first photon-counted and the resultant sparse distributed data encrypted by 

DPRE techniques, eventually it decrypts sparse distributed Bayer images. The 

procedure II, the Bayer images are first encrypted by DRPE and the encrypted 

complex samples are photon-counted eventually produces noisy-like images, both 

the decrypted images do not reveal any information of the original content by 

the direct visual recognition. It’s worth mentioning the fact that, the 

photon number reduction gives more satisfactory results in procedure I (i.e., 

PCI + DRPE) but no compression could be achieved in this case, whereas 

bandwidth reduction is only achieved by procedure II (DRPE + PCI) however it 

requires larger amount of photons to authenticate the retrieved images. 

Further, the decrypted image authentication demonstrated by statistical 

nonlinear cross-correlations. In our experiments, we also calculated 

discrimination metric in order to measure the proposed system’s 

discrimination capacity. The proposed system was shown to be more sensitive to 

an error in encryption data. Experimental results are displayed using three 

standard authorized and non authorized test images. The proposed system shows 

the robustness against intruder attacks by producing the decrypted information 

as sparse distribution and a noisy appearance, which makes direct visual 

recognition impossible. 
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