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초록

극부호에 기반한 새로운 공개키 암호화 방식 설계

Sujan Raj Shrestha

Advisor: Prof. Young-Sik Kim, Ph.D

Department of Information and Communications Engineering

Graduate School of Chosun University

이 논문에서는 극부호 기반의 공개키 암호 시스템을 제안한다. 제안된 시스템은 오류 

정정 부호에 기반을 둔 McEliece 암호 시스템으로, 랜덤한 선형 부호의 복호의 어려움에 

기반을 둔 시스템이다. McEliece 암호는 가장 오래된 공개키 암호 시스템 주 하나로서 30

년 이상의 암호 해독 시도에도 불구하고 적절한 파라미터를 선택하면 McEliece가 초기에 

제안한 시스템은 여전히 안전한 것으로 평가받고 있다. 그러나 공개키와 비공개키의 크

기가 너무 크기 때문에 RSA와 타원 곡선 암호 시스템에 비해서 실용성이 떨어지는 것으

로 평가받았다.

따라서 다른 오류 정정 부호를 사용해서 공개키 크기를 줄이기 위한 많은 연구들이 진

행되었다. Sidelnikov는 이진 Reed Muller (RM) 부호를 이용해서 또 다른 McEliece 암호 시

스템을 제안하였고 이것은 Sidelnikov 암호 시스템으로 알려져 있다. RM 부호 기반의 암

호 시스템은 McEliece의 초기 제안에 비해서 더 작은 크기의 파라미터를 갖고 더 효율적

인 복호 알고리즘이 존재하지만, Minder와 Skrollahi의 의해서 RM 부호의 대수적 구조를 

사용한 공격에 의해 2006년에 해독되었다.

극부호는 Arikan이 제안한 새로운 형태의 오류 정정 부호로서 정보이론적으로 주어진 

채널 용량을 점근적으로 달성할 수 있는 것으로 증명된 부호로 RM 부호와 유사한 구조
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를 갖는다. 기존의 오류 정정 부호와는 달리 극부호는 주어진 채널에 의존적이며 채널 

합성과 분리 과정을 통해서 유도되는 채널 양극화 현상을 이용한다. 채널 양극화 현상의 

결과로서 어떤 채널들은 매우 좋은 채널이 되고 다른 채널은 매우 나쁜 채널이 된다. 따

라서 나쁜 채널로는 고정된 비트가 전송되고 좋은 채널로는 사용자 데이터를 전송하게 

된다.

이 논문에서는 극부호에 기반을 둔 새로운 공개키 암호시스템을 제안한다. 극부호를 

사용해서 평문을 어떻게 부호화 하며 오류를 추가하여 데이터를 숨기는 방식을 보일 것

이다. 또한 수학적 분석을 통해 보안 수준을 평가하고 시뮬레이션을 통해서 비밀키를 알

지 못할 경우에 어떠한 데이터도 복구할 수 없음을 보일 것이다.
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Abstract

Design of New Public Key Encryption Scheme Based on 

the Polar Coding

Sujan Raj Shrestha

Advisor: Prof. Young-Sik Kim, Ph.D

Department of Information and Communications Engineering

Graduate School of Chosun University

In this thesis, cryptosystem is proposed where information is transmitted over 

the insecure channel after encoding plain-text using the public key which is 

generated using the polar code. That is, the proposed system is a class of the 

McEliece cryptosystem, the error correcting code based cryptography, whose 

security is based on the difficulty of decoding of random linear codes. The 

McEliece cryptography is one of the oldest public key cryptography scheme and 

McEliece’s original proposal is known to be secure with adequate selections of 

related parameters even with the intensive efforts of cryptanalyses on that for over 

30 years. However, since the secure sizes of public and private keys are too 

large, it has been considered as less practical suggestion than the other public 

key cryptographic schemes such as RSA or the elliptic curve cryptography, shortly 

ECC. Therefore, many researches have been carried to reduce public key size by 

using other error-correcting codes. 

Later, Sidelnikov proposed another McEliece cryptosystem which uses the binary 

Reed Muller (RM) code, also called as Sidelnikov cryptosystem. Although RM code 

based cryptosystem has smaller size of parameters and more efficient decoding 
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algorithm than McEliece’s original scheme, it was broken using the algebraic 

structure of the RM code by Minder and Skrollahi.

The polar code is a new kind of error correcting code which is information 

theoretically proved to asymptotically achieve the capacity of the given channels 

by Arikan and has similar structure to the RM codes. Contrary to the previous error 

correcting codes, the polar code depends on the given channel and utilizes the 

channel polarization which can be induced by using channel combining and 

splitting process. As a result of the channel polarization, some channels turn into 

good channels and the others into bad channels. While fixed bits are sent through 

the bad channels, user information is transmitted through good channels.

In this thesis, the polar code based public key cryptography is proposed and 

shown how polar code can be used to encode plaintext message and hide it by 

adding errors. Decoding method is shown to obtain plaintext from ciphertext using 

private keys and decoding.
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I. Introduction

Public-Key cryptosystem is widely used to encrypt and decrypt message for 

secure transmission which uses different keys for encrypting and decrypting 

messages, respectively. Among the 2 distinct keys which are known as public 

and private keys, the first is open to public and is shared via public channel 

while the last should be kept secret. That is why public key cryptosystem is 

called the ‘asymmetric key encryption’. When a plaintext is encrypted using the 

receiver’s public key, the decryption of ciphertext is computationally infeasible 

without the knowledge of the private key of the legitimate receive. Therefore, 

eavesdroppers cannot recover plaintext from the ciphertext.

                

               Fig. 1.1 Public Key Cryptosystem Block Diagram

The public key cryptography is depicted in Fig. 1.1. In Fig. 1.1, the sender 

(Alice) wants to send a secret message to the receiver (Bob) through public 

channel. The eavesdropper, Eve, tries to obtain the information sent by Alice in 

an unauthorized manner. For the public key encryption, Bob produces his public 

and private keys. Then, Bob makes his public key known to every one, but he 

keeps the private key in secret. There is mathematical relation between the 

public key and the private key. Hence if the message is encrypted with public 
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key, then it can be decrypted by using only a particular private key.

Alice encrypts a confidential information using the Bob’s public key and 

transmits the ciphertext through the public channel. After receiving the ciphertext, 

Bob decrypts it using his private key. Eve also has access to ciphertext 

transmitted by Alice. However, without the knowledge of the Bob’s private key, 

she cannot decrypt the ciphertext.

RSA algorithm was developed by Rivest, Shamir and Adleman [26] in 1977. 

RSA algorithm relies in difficulty of factoring large integer numbers. In RSA 

cryptosystem, public key is    where  is large integer n whose factors are 

2 prime numbers  and , and integer  is co-prime to Euler’s totient function 

of ,  . Private key is    where integer  is multiplicative inverse of 

 in modulus of  . Numbers  and  are related as:

                               ≡ mod   . (1.1)

Alice encrypts plaintext  into ciphertext as:

                                 ≡  mod       (1.2)

When Bob receives, ciphertext, he deciphers plaintext from ciphertext in 

following way:

                                ≡  mod (1.3)

For adequate security, the size of key in RSA is 1024 to 2048 bits.

Elliptic Curve Cryptography (ECC) is based on algebraic structure of elliptic 

curve over finite fields. It was suggested independently by Koblitz [33] and 

Miller [34] in 1985. Hardness assumption of elliptic curve cryptography is based 

on difficulty of finding discrete logarithm of random elliptic curve element. The 

key size given by elliptic curve cryptography is smaller than RSA for same 
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security level. ECC with 256 bit key length provides same level of security as 

3072 bit RSA cryptosystem. Currently, the elliptic curve being used consists of 

points satisfying equation

                                    . (1.4)

The private and public keys are made from points that lie in the curve which 

is agreed upon by both Alice and Bob.

However, it was proved that the Shor’s algorithm in a quantum computer can 

solve the mathematical problems such as the integer factoring and discrete log 

problem (DLP) and elliptic curve discrete log problem (ECDLP) in polynomial 

time [27]. Fortunately, quantum computer has not yet been realized up to 

manipulating practical parameters. However, considering the significant efforts to 

build a practical quantum computers, it is considered that within 15 years, RSA 

and ECC cannot be used for the public key cryptography any more. Therefore, 

there are studies to find alternative public key cryptography which is still safe 

with the quantum computations. One of the candidates after the realization of 

quantum computers is the code-based cryptography, also known as McEliece 

cryptosystem [2].

A. Thesis Motivation and Overview

Various error correcting code based cryptosystems has been proposed. In his 

original proposition [2], McEliece constructed a cryptosystem using the binary 

Goppa codes multiplied by a random permutation matrix and a non-singular 

matrix. Even with the intensive efforts of the cryptanalysis [6], the McEliece’s 

original proposition is known to be secure with the appropriate security 

parameter sizes. However, the sizes of the security parameters of the McEliece’s 

cryptosystems are too large when comparing with other conventional public key 

cryptosystems such as RSA and elliptic curve cryptography. Therefore, many 

researches are carried out to reduce the size of public and private keys [2], 
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[7], [11], [21], [29], [30]. 

Niederreiter constructed a variation of McEliece cryptography using the 

generalized Reed Solomon (RS) codes and its parity check matrix instead of the 

generator matrix in order to reduce public key size. Although the original 

Niederereiter  cryptography was broken [19], the binary Goppa code based 

Niederereiter scheme is known to be still secure and was shown that security of 

Niederreiter cryptosystem is equivalent to McEliece cryptosystem [28].

Later, Sidelnikov proposed another McEliece type cryptosystem using the binary 

Reed-Muller (RM) codes  with the shorter security parameters and efficient 

decoding method [7]. However, the Sidelnikov cryptosystem also was broken by 

Minder and Skrollahi [4] by using algebraic structure of the RM codes.

B. Research Objectives

The primary objective of this thesis is to construct a McEliece-type encryption 

scheme based the polar code. The ordinary generator matrix is scrambled and 

permuted using a non-singular matrix and permutation matrix of suitable size.

It is shown how plain-text message is encoded using randomized polar code 

and how it is deciphered. In addition, it is shown that decoding without the 

private key cannot disclose the original plaintext by using numerical simulations. 

Investigate for the amount of operations required to reveal secrecy by the brute 

force attacks is done. Furthermore, by comparing the structure of the polar code 

with that of the RM code, it is shown that the cryptanalysis for the Sidelnikov 

cryptosystem cannot be applied to the proposed system.

 

C. Thesis Contribution

In this thesis, a new cryptosystem which is based on the polar code is 
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presented. Different generator matrix which is scrambled and permuted is used 

as the public key and non-singular matrix and permutation matrix is used as 

private keys. Thus, when the message vector is encoded with generator matrix 

and random error is added due to polarization, then we get randomized data out 

of which the eavesdropper cannot draw out any meaningful information. The 

correct decoding can only be performed when the correct private keys are 

supplied. The main contributions of this thesis are as follows:

New cryptosystem: Cryptosystem is constructed for the encryption and 

decryption of the message vector of size ×  . Decoding method and 

parameter for the correct decoding of the randomized message is presented.

Design Procedure: Design procedure is given in order to find the important 

parameters of this algorithm. Construction of generator matrix and decoding is 

carried out by method provided in [1]. Method for finding non-singular matrix is 

provided using Gaussian Elimination. For a given application with its 

specifications and requirements, an engineer can follow the steps in this 

procedure to make cryptosystem using polar code.

Simulation: Simulation code was written in MATLAB  2010 to implement the 

cryptosystem and test it without using private keys when decoding.

D. Thesis Organization

This thesis is organized as follows: In Section II, brief introduction to McEliece 

cryptosystem is presented with its hardness assumptions and existing McEliece 

cryptanalysis. Major cryptanalysis which is improvements over Information set 

decoding are described in short. This is followed by introduction of Reed-Muller 

code and Sidelnikov cryptography. Then, Sidelnikov cryptanalysis is explained in 

brief. In later part of Section II, it is discussed in detail about the polar code 

and aspects of polar coding like its properties and construction. In Section III 

proposed cryptosystem is constructed. Security Analysis is presented and 
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discussed in Section IV. Based on the security analysis, appropriate size of 

public and private key is proposed. Section V concludes this thesis.
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II. Background 

A. McEliece Cryptosystem

In this section, original McEliece cryptosystem [2] which uses the binary 

Goppa codes is explained.

1. Basic idea

McEliece public key cryptosystem is the first public key cryptosystem that uses 

the error-correcting codes for encryption and decryption of plaintext into 

ciphertext and ciphertext into plaintext respectively. Public and private key 

parameter and encoding and decoding procedures are discussed in short below.

Public Key

The public key is generator matrix     of dimension ×   and 

the integer ‘t’ which is the number of error the Goppa code C can correct.    

Here  min  . min  is minimum distance of binary Goppa code .   

is ×   dimension non-singular scrambling matrix,  is the ×    

generator matrix of    the goppa code  used for encoding and  is the 

×   permutation matrix. 

Private key

The first private key is non-singular matrix  of dimension ×  , and 
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second private key is permutation matrix,  having dimension ×  . Next 

private key is a secret decoding algorithm for binary Goppa code.

Encryption

 denotes binary goppa which is used in McEliece cryptosystem[2]. Alice 

encodes message using Bob’s public key which is scrambled and permuted 

generator matrix of Goppa code.  After plaintext message has been encoded, it 

is converted into ciphertext by addition of error vector of weight at most  at 

random positions. The cryptosystem is designed to correct at most  errors from 

the code to recover plaintext. If message  is encrypted then the ciphertext is 

shown in equation (2.1). 

                                                     (2.1)   

                                 (2.2)

Decryption

Decryption in McEliece cryptosystem is done in following way : Bob first 

reverses the permutation so that before applying the secret decoding algorithm, 

he can obtain the pseudo-message in correct order. Reversing of the 

permutation is done by applying the matrix which is the inverse of the private 

key  that was used in the encryption process. This gives expression in 

equation (2.3).

                          
                        (2.3)

Bob then uses his secret decoding algorithm to exclude out the random errors 

from ciphertext. So after decoding he obtains ’  . 

Bob uses his next private key that is non-singular matrix . From , it’s 

inverse    can be easily obtained. Multiplying ′  with    removes the 
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scrambles from the message. Finally what remains is the original plaintext itself. 

Above performed operation is    .

One thing that we have to note here is that the decoding algorithm must be 

efficient and able to correct  errors from the ciphertext. In the absence of 

efficient decoding algorithm, the correct message cannot be recovered from 

ciphertext.

Scrambling matrix

Scrambling matrix is a randomly generated ×   non-singular matrix. For 

McEliece-type cryptosystem, scrambling must always be done by non-singular 

matrix. By non-singularity it means that  must have an inverse 


 and 

product of  and    must always be equal to identity matrix. If  is the 

error-correcting code, then multiplying scrambling matrix with generator matrix of 

code  produces another code  ′  which is equivalent to code .

Permutation matrix

Permutation matrix is the matrix that changes the columns of the equivalent 

code of the . This adds further redundancy to the structure of the generator 

of code  and when the message produces the codeword, the code bits are 

not in the original systematic form. Permutation matrix is always constructed by 

random permutation of identity matrix of given size. Hence, in every rows and 

columns, there is always single ‘1’. Any matrix that doesn’t satisfy this condition 

is not considered as permutation matrix. The inverse of permutation matrix   

is constructed by taking the transpose of the matrix . And product of  and 

   must always be identity matrix.
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2. Hardness Assumption

There are two hardness assumptions of McEliece Cryptosystem. They are:- 

1. It is hard to determine exact position of  errors that are added to the 

codeword. Error is added at random positions every time ciphertext is sent. Error 

addition in fixed position allows Eve to determine position of error by some 

analysis but random error in large block length makes this process infeasible.

2. Given the public key matrix  , attacker cannot efficiently compute private 

key elements. This kind of attack is termed as Structural Attack. For McEliece 

PKC, apart from exception of some weak keys, structural attacks are ineffective 

due to large cardinality of possible permutation, generator and scrambling matrix. 

Also the number of effort required to exactly compute invertible scramble  and 

permutation matrix  surges to astronomically high values due to their large 

dimensions. 

3. Parameters

The parameters of the McEliece cryptosystem are 

  ≥    , min  . With these parameters, the size of 

the public key is 67,072 bytes. The transmission rate is 0.512.

B. Existing McEliece Crypto-analysis and Variants

Various cryptanalysis methods for the McEliece and McEliece-type 

cryptosystems have been attempted. For McEliece cryptosystem, finding error is 
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described in [6], [8], [9], [20], [31], [32]. In these algorithm, given the 

encrypted word     , error vector which is minimum weight word 

is determined.  This decoding method is known as decoding attack because it 

is equivalent to decoding a linear code. In this method and its other variants, 

basic principle is to append ciphertext into the public generator matrix. The 

generator matrix is then written as 




 




 
. 

Here, if  is the generator matrix of McEliece cryptosystem, then the new 

generator matrix shown above is represented as    . Due to the above 

transformation, minimum weight codeword is the error word  having weight at 

most  and this is the only word of such weight. The error-word is represented 

as

   
  .

Here an algorithm known as Information Set Decoding is discussed. Here, the 

assumption is that we are working in the      code .  columns out of  

columns from the generator matrix is randomly selected and generator matrix is 

diagonalized in these  positions. If the selected rows cannot be converted into 

unit matrix, then we have to choose another set of k information set and repeat 

the process.

Upon conversion, the row containing the word of weight  is found out. This 

is the minimum weight word. In this, the maximum weight of the rows is 

   . The probability of finding word of weight  is given in following 

way
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 
 



 

.

Lee and Brickell’s Method 

Lee and Brickell’s algorithm [20] works in following ways: Originally McEliece 

proposed finding codeword by applying Gaussian elimination of generator matrix 

. Then the corresponding permuted permuted ciphertext is divided into two 

parts. If the first part of the ciphertext has no error and second has error  then 

the vector  is minimum weight word. Instead of finding the weight 0 codeword 

in first part, partial error of weight less than or equal to  is found in the first 

part and another part contains the remaining weight of . This reduces the time 

of finding minimum weight error.

Leon’s Method

Leon’s algorithm [31] has two parameters σ and p. The method is as follows- 

Leon chooses random selection of S consisting of    columns and places 

it on the right end. Then he applies Gaussian elimination so that resulting matrix 

has three sub-matrix     ,       ,       

and  for some   ≤   . Then he looks for linear combination in such a 

way that codewords  has weight less than  in . This is achieved by 

considering the single matrix . In the case this weight is less than , he 

computes the corresponding  bit word and verifies its weight is less than the 

weight of the previously obtained shortest word. If  is not equal to zero, this 

test must also be performed for the codewords that include D-codewords. For 

this method, the parameters used are    and   .
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Stern’s Method

Stern’s algorithm [32] is method using the parity-check matrix so it is slightly 

different from the above two methods. According to Stern, first the set  

consisting of    columns is chosen from the parity check matrix . This 

sub-matrix is shifted to is diagonalized in the form as  ′     . 

Columns of sub-matrix  is divided into two parts  and  so that each 

columns are allowed to freely join either  or  independently. This gives the 

form  ′      . Then  rows are chosen to from set . Then Stern 

computes for each p column subset A from group  the sum of  rows to form 

 bit vector  and for each  column subset B from group  the sum of  

rows to form  bit vector . Then he checks if the two sums are equal. If 

  , then he selects the  columns ∪ and computes the 

sum of these columns from    rows. If the sum has weight   , 

then it is possible to create codeword of weight . The column    

is returned.

If this fails, then entire step has to be repeated by selecting next set of 

   columns. 

C. Reed-Muller Code And RM Cryptosystem

This Section discusses Reed-Muller code and Sidelnikov cryptosystem [7] that 

uses RM code for encoding and decoding plaintext. In first part, Reed-Muller is 

briefly presented and in second part Sidelnikov cryptosystem is presented.
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1.Reed-Muller Code

Reed Muller code is denoted by   , where length of the code is 

   and  is the degree of the Reed-Muller code. The dimension of 

Reed-Muller code is represented by  which is written as

                              

  


  (2.4)

Reed-Muller code is defined by boolean functions of degree at most m and 

consists of variables of degree 1 from   to . For every increment in ,   
rows are added to the previous dimension   . Hence from this property, it 

can be said that RM code holds the relationship 

⊂ ⊂ ⊂  . Each word of Reed Muller code is 

defined by boolean functions. The words in    consists of m boolean 

functions . For the degree , where   , boolean function  is 

product of any  boolean functions from   to  and is denoted as

                                       (2.5)

In RM code  , minimum weight word is always of degree . And the 

minimum weight word of degree  has weight   . Symbol     is dot 

operator.  is element by element product of  variables. There are total of 

  minimum weight words in the generator matrix of Reed-Muller code of 

degree . From construction of Reed-Muller code, it is clear that value of  is 

always less than or equal to m.
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In Fig. 2.1, structure of     code is shown. In this figure, the variables 

    are boolean functions of degree 1. Variable     are made 

up of boolean function of degree 2. Variable    is made of boolean 

function of degree 3. In general, when  is given, lowest weight words are 

given by equation (2.5).

Reed-Muller code can also be constructed using the generator matrix in a way 

whose construction is different from the one above. Here, we denote the 

generator matrix of   by  .

                   




       

     




 (2.6)

  is generator matrix of   and   is 

generator matrix of   .

       

               





        
        

        

        

        

        

        

        





               

                 

               Fig. 2.1 Generator matrix of R(3, 3) Reed-Muller code

2. Sidelnikov Cryptosystem

Sidelnikov cryptosystem [7] uses RM code for encoding and decoding 
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plaintext. And unlike McEliece cryptosystem, with knowledge of length and 

dimension of public generator matrix, the basis of generator matrix can be 

constructed.

 

Public Key

The public Generator matrix is   . where  is generator matrix of polar 

code having dimension ×  ,  is ×   invertible matrix, and  is 

×  permutation matrix. With knowledge of public key alone, it is not possible 

to construct private key which is matrix  and .

Private Key

Private key of the receiver is ×  matrix  and permutation matrix  with 

dimension × .

Encryption

Encryption is done using the same technique as in the McEliece cryptosystem. 

Message has to be of length . This message is encoded using randomized RM 

code  and error of pre-determined weight is added. 

Size of error is determined by the minimum distance min. Number of error that 

RM code can correct is at most  min  . But in [10] Sidelnikov proposed 

new decoding algorithm that can almost always correctly decode error whose weight 

is  min . Hence if the decoding algorithm proposed by Sidelnikov [10] 

is used, then more error bits can be added to increase security. Therefore the 

ciphertext       is sent to the receiver through unsecured channel with 
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added security.

Decryption

In decryption, the Bob receives the message . Bob has complete knowledge of 

private keys so from the permutation matrix, its inverse permutation    is easily 

computed by transposing matrix . This matrix removes the permutation that was 

applied in the encoding. Removal of permutation is done by multiplying  with   . 

From this, Bob obtains ′ 


. In the next step, error-correcting algorithm that 

almost always correctly decodes error is applied. In [7], the decoding algorithm in 

[10] is applied. This is because the algorithm in [10] is able to decode higher 

number of errors than the min  .  

From the above step, only scrambled message ′   is obtained. For the 

extraction of actual plaintext the randomized scrambler also has to be removed. This 

is done by inverse of matrix S which is matrix 


. When matrix 


 multiplies 

′ , the real information is extracted. Obtaining message  is written mathematically 

as    ’  .

3. Attack Against Sidelnikov Cryptosystem

Sidelnikov Crytosystem was broken by Minder and Skrollahi  in [3] and [4]. They 

have shown in [3] and [4] that there is structural weakness in Reed-Muller code 

that makes Sidelnikov cryptosystem unsuitable for cryptographic purpose. In [7], 

Sidelnikov proposed using     as the encoding matrix. This is a very low rate 

code. Altogether, there is total of only 176 rows. This feature also makes ideal 

situation for applying low weight word finding algorithms to decode minimum weight 

word.
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Another structural weakness of RM code is that the higher order basis is built from 

low order word which is already mentioned in the description of Reed-Muller code. 

This property is utilized in breaking Sidelnikov cryptosystem. Below, description of 

attack against Sidelnikov cryptosystem is discussed in detail.

When attacking Sidelnikov cryptosystem, main goal is to find a permutation  and 

when this permutation is applied to the permuted and scrambled matrix    , 

resulting matrix has to be the generator of   code. The method of attack 

can be summarized below:

1. Find minimum weight words from random basis of given permuted    order       

   Reed-Muller code using low weight word finding algorithm. For this purpose, the  

   algorithm used in [3] and [4] is Canteaut and Chabaud algorithm from [9]. Total  

   number of codewords of degree  is  
 

. Hence this operation has to   

   be done  
 

 times to find all such words.

2. Find a codeword in    that belongs to the subcode   .    

  When this is found out, other codewords belonging to this subcode also has to    

   be found out. There are   such words that has to be found out.

3. When all codewords of   are found, same process is repeated again by     

   decreasing the value of  by 1 and finding codewords that belong to the         

   subcode of that lower dimension. This must be repeated until    is         

   reached. All codewords words of     must be found out.

4. Then find permutation . When permutation  permutes columns of    ,  

   it should be equal to  . 
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Finding factors of minimum weight words is the hardest part of this algorithm. It 

is known that the RM code of high degree are created by multiplication with low 

degree variables. Hence the words can be split into its factors. Once the factors are 

found out, it is almost done. Here,  is the minimum weight word. So 

       . For this   must be determined.   is the subcode of 

  that contains only those words which are zero on support of  and these 

positions are punctured later. For supposition,  is the codeword in the shortened 

code  . Then  can be written as :

                       
∈    

  
∈ 

   (2.7)

For ⊆       ,  is the codeword of degree    , and variable 

       . From the previous assumption, the condition for this word  to be 

on the support of minimum weight word is 

                                
∈  

   (2.8)

The shortened code is now the concatenated code and this shortened code 

satisfies condition ⊆   × ×    . The 

inner codes or block decomposition of the support of shortened codes is found out 

using the Sendrier’s Algorithm which is described in [17]. The product 

   continues    times. Since Lorenz’s method shortens on the 

set        , there are    such sets and each has 

length 
 

. To find the sets, the description is provided in [3] that uses 

Sendrier’s algorithm [17]. In [4], Lorenz has used different technique.  He used 

technique that works on the code itself.

The inner codewords that are recovered have the property as follows: each of 
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the codewords lie in the set         or the support of 

minimum weight word and the set S which is the block decomposition of 

concatenated codes. An example from [4] is presented. Let one of such set  

be                    .  The 

codeword that satisfies this condition is 

  .

Here deg    . So in fact, a word of degree    has been 

constructed.

After finding permuted codewords of  , next step is to find permutation  

which rearranges the columns of matrix into orderly form. This is shown as

                              

For this, simple procedure described in [3] is followed. Codeword containing all 1 

is discarded and only m variables are taken. When  variables are in order, then by 

construction of  variables, reading from column 1, each column  is     in 

binary equivalent. Permuted columns of  boolean variables are rearranged so that 

they can be in the above form.
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D. Polar Code

1. Overview

Polar code discovered by Arikan [1] is the first code that is proven to achieve 

capacity of the binary-memoryless symmetric channel (B-DMC). If  channels 

are polarized, then as  a result there are a fraction of channels whose capacity 

tends to 1 and are reliable channels. And there is another set of channels 

whose capacity tends to 0. Those channels whose capacity tends to 1 is near 

to     while those that has capacity close 0 tends to     . 

Performance of these codes increases with the increase in the number of 

channels. Hence for achieving near perfect polarization, greater length is always 

favored.

If    is the channel capacity of binary symmetric channel, then assuming 

that 1 and 0 occur with equal probability, channel capacity can be written in 

terms of transition probability of  and  as :  

              ∑∑


 




  


 

 
             (2.9)

Here, the term    is conditional probability of  given . Reliability is 

given by Bhattacharya parameter and is : 

                      
∈

                      (2.10) 

The summation is carried out over all the possible values of output symbols 
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. Higher value of    indicates that there is high chance the sent symbols 

is likely to be corrupted and therefore capacity of that channel is bound to be 

low. On the other hand, lower value of    indicates that sent symbol is less 

likely to be corrupted when received. Similarly, it is shown in [16] that rate can 

also be similarly manipulated. But the reason why channel capacity is more 

favored is because rate can be created but channel capacity cannot be created.

2. Channel Polarization

Channel polarization is the process of transforming  number of channel in 

such a way that after transformation, each of them has different capacity and 

reliability parameter when viewed independently. Therefore, we can view channel 

polarization as a step that manipulates identical channels to create another set 

of channels, some of which has higher capacity than the original channel while 

others has capacity that is degraded than the original channels. Since the 

capacity of the channels are improved as well as degraded, uncoded bits can 

be sent through the good channels and none of the bits can be sent through 

the bad channels. And the method of achieving this is called polar coding.

In the following section, description of steps necessary for creating the 

channel polarization phenomenon is given.

Channel Combination

In channel combination, channel is combined with another identical channel. 

But here, both the channels must possess equal capacity.  When this is done 

for large number of channels, this process becomes recursive.  When the two 

channels are combined, the transition probability of combined channel is equal 

to expression shown in equation (2.11).



- 23 -

                       ⊕           (2.11)

The above expression is for the combination of 2 independent channel. The 

operator ⊗ is called as Kronecker product which is used for calculating the 

kronecker product of any two matrices.

Equation (2.11) can be generalized to any number N which is a power of 2. 

Generalized form is expressed as shown in equation (2.12)

                                              (2.12)

The   is called as Generator Matrix.

Channel Splitting

In channel splitting the combined channels shown above is split into different 

channels. Channel splitting is necessary because without splitting the channels, 

we cannot get the independent transformed  channels that were combined in 

the previous Section. These split  channels now have different capacity from 

the original channels. After splitting, transition probability of any  channel 

expressed in [1] is given by equation (2.13) as 

             



 

 


 

   

  
               (2.13)
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3. Rate And Reliability Analysis

In this section, we see  how channel capacity and the Bhattacharya parameter 

transforms under the channel polarization. The measure of rate is channel 

capacity and the measure of reliability is the Bhattacharya parameter. In case of 

BEC, the rate and reliability parameters can be computed recursively. For the 

rate, the expression from [1] are given by equations (2.14) and (2.15) as:

 

                     
  

                    (2.14)         

                        
  

 
                  (2.15)  

  

Here, the recursive process stops when we reach at  
  which is the 

capacity of the untransformed channels. Its calculation varies depending upon 

the kind of channel that we are considering. For BEC,  
   . 

Similarly, the reliability transformation happens in the following way as shown in 

equations (2.16) and (2.17) from [1] :

                       
≤  

   
 (2.16)

                               
 ≤ 

 (2.17)

Fig. 2.2 below shows the reliability of polarized channels for 

       . Fig. 2.3 (a) and 2.3 (b) shows channel capacities of 

individual channel after they are polarized. This graph is for  = 256 and      

 = 1024 channels. From this we can make conclusion that as the block length 

increases, more channels tend to polarize perfectly.
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          Fig. 2.2 Rate and reliability for block length 10, 15, 20            

               (a)                                 (b)

       Fig. 2.3 Channel capacities for block length (a) 256 and (b) 1024

4. Polar Coding Method

In this section, we see how the polar encoding is done in order to achieve 

the channel polarization as it was originally shown by Arikan [1]. These frozen 

vectors are known beforehand to the decoder and will be used in the decoding 
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procedure. But we have must know one thing that the choice of the frozen bits 

does not affect the decoding procedure. Hence, we are free to choose any 

random vector as frozen vector. In polar encoding, information bits and frozen 

bits are encoded by different set of generator matrix. In the next section some 

of the important terminologies for the polar codes are described in short.

Information Set

Information set consists of those indices of the polarized channels that have 

capacity greater than or equal to the threshold value that are chosen for sending 

the information bits. These constitute reliable channels. When we send 

information from them, probability that the bit is corrupted is very small. The 

generator matrix that encodes the information bit is constituted by selecting the 

rows from information set. 

Information Vector

Information vectors represent the bits that we have to transmit. It is 

represented as . These are sent through the reliable channels via information 

set. Therefore, they have to be encoded using the sub-matrix of the generator 

matrix whose rows are selected in certain fashion that is described below.

Frozen Vectors

Frozen vector are the pre-determined values or the bits that are sent through 

the unreliable channels which are not part of the information set. It is 

represented as . 
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Generator matrix

Generator matrix encodes information bits and the frozen bits separately. The 

generator matrix in polar codes can be divided into two types :

1. Generator matrix for the Information bits

This is represented as . This is the sub-matrix of the generator matrix 

 and it encodes the information bits.

2. Generator matrix for the Frozen vectors

This is represented as  
. This contains the row of  which are not 

present in . This encodes the frozen vectors.

Likelihood Ratio (LLR)

Likelihood ratio is the ratio of the probability of the bit being zero to the 

probability of the bit being one. The state of the current bit is estimated 

depending upon the value of the LLR. If LLR is ∞, then the bit is 0. If the LLR 

is 0, then the bit is 1. When  LLR is 1, state is determined by fair coin flip.

Likelihood ratio for   bit is given in equation (2.18)

                     
   


   


    

(2.18)
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a. Encoding operation

Encoding is done in the way shown below:

                             
   

 (2.19)

The equation (2.19) is equal to encoding the information bits by generator 

matrix consisting of good channels and encoding frozen bits with part of 

generator matrix consisting of bad channels. By performing this operation, we 

can justify that the information is transmitted from channels having capacity 

close to symmetric capacity of channel.

b. Successive Cancellation decoding

Successive cancellation decoding or SC decoding in short relies on the 

calculation of LLRs for estimating the information bits. Assuming that calculation 

of ith LLR is already done, the decision of the bit is made as :

                        i f 
   

 

≥ 

 

This decision is taken only for the information bits. Frozen bits are set to 

frozen value regardless of the value of the obtained LLRs.

Calculation of LLR:

Equation (2.18) shows LLR expression. In this Section it is shown how the LLR 

value is calculated recursively as it was done originally in [1]. Recursion is in a 
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sense that first the LLR value in level two is computed given LLR of level 1. LLR 

of level 2 is used to find the LLR value at level 3 and so on until log  

level. 

As in the case of channel splitting, there are two expressions of LLR. One is 

for even index and other is for the odd index. Here we show only the 

expression. For the proof, the reader is advised to read [1]. Equation (2.20) is 

for calculating LLR of odd index channel and equation (2.21) is for calculating 

LLR of even index channel.

      



 


 


⊕




 
 




 


⊕




 
 


(2.20)

    



  

 


⊕




∙
 

 
 (2.21)

 

When the calculation reaches to block length 1 i.e at level 0, the LLR is 

calculated as:

                          
  

  
(2.22)

The above LLR calculation at the block 0 level is simply the ratio of conditional 

probability of  when  is 0 to the conditional probability of  when  is 1.

5. Generator Matrix Construction

In this section, description for constructing generator matrix is shown. First, 

we have to keep one thing in mind that this generator matrix is responsible for 

combining the channels with equal channel probabilities. Therefore, its 
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construction is also coherent with this underlying principle. The generator matrix 

 is represented as

                                 
⊗

 (2.23)

For combining 2 channels only, matrix used is




 


 

 
. 

This generator matrix combines the two channels as shown in the Fig. 2.4. 

When constructing Channel , we use two independent unpolarized channels. 

However, after the construction of  we have to be careful while combining  

the next level or  because only similar channels can be combined. For this, 

there has to be criss-crossing as shown in Fig. 2.5. 

                            Fig. 2.4 Channel W2

This criss-crossing is performed by the matrix . Criss-crossing to add 

similar channels has to take place as we proceed to every next level of channel 

combination. Construction of   is done using kronecker product. The kronecker 

product ⊗ is written as  shown in equation 2.24

                          ⊗ 


 


× ×

× ×
(2.24)
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               Fig. 2.5 Channel W4 and Bit Index Reversal by B4

The   power of F is the kronecker product of F with itself taken  times. So 

the   kronecker power of F is mathematically written as ⊗ ⊗  .   is 

called Bit Reversal Permutation matrix that rearranges the rows of  ⊗ matrix. 

This matrix can be constructed using equation (2.25).

                               ⊗ (2.25)

This iteration continues until   because at this point     . The 

matrix  is the reverse shuffling matrix. This matrix is constructed by using the 

identity matrix of dimension ×  . After that, the first  rows are 

replaced by the rows with odd indices. And the last  rows are filled by the 

even index rows. 

If 
             is vector consisting of  elements, then  
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
 gives output as 

                   .

6. Inverse of matrix using Gaussian Elimination

Here, we will discuss how inverse of a square matrix is found out. The 

method we are using is called as ‘Gaussian Elimination Method’. This is done in 

two iteration. They are forward and backward elimination. It is done in following 

way.

1. In the forward elimination, an identity matrix of size ×   is cascaded to  

  the right size of the square matrix  whose matrix inverse has to be found   

  out. Then the new matrix  ′  has the size ×  .

                                 ′     

2. In the next step, matrix  has to be diagonalized using elementary row       

  operation. This means that using the elementary row operation on             

  matrix  ′ , matrix  must be converted into identity matrix. For this, in the    

  first column of first row, we have to look if there is 1. If there is one, then   

  second row can be proceeded. If there is no 1, nearest row that contains 1  

  has to be found and swapped with pivot row.                             

3. Then the first row is added to all the successive rows which contains 1 in    

the first column. This way all the row except first row has 0 in first column.   

 

4. In the   row, 1 is searched in the   column. In case there is no 1, any    

  row below  that has 1 is searched and add the entire row to   row.        

  Then   row is added to all the successive rows which contains 1 in         
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   column. This way all the rows below   row has 0 in   column. This step   

  is done for all the  rows of  matrix  ′ .

5. If there is any row  in the matrix consisting of only 0’s then matrix  does   

  not have inverse. If this is not the case, step 6 is followed.                   

   

6. Then for the backward elimination, same step is done but this time at right   

  bottom. Last row is taken and added to any row that has 1 in last  column.  

                                              

7. Above process is repeated from  row to second row.                    

8. Then the matrix will transform as

                                 ′     .

9. If first ×    submatrix is an identity matrix, then matrix  is inverse of  

   . If first ×    submatrix of ′  is not an identity matrix, then  does  

   not have an inverse.
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III. Proposed System

This section describes the proposed cryptosystem based on the polar code. 

A. Construction

The polar code is mathematically proven to achieve channel capacity in [1]. 

By repeatedly combining  independent channels, next set of channels is 

obtained out of which some channels have capacity close to 1 with probability 

   and some channels have capacity close to 0 with probability 

  . But, there are few channels which are not perfectly polarized and their 

capacity lie in between 0 and 1. If the length of polar code is very high, then these 

intermediate channels also vanish asymptotically. From [1], it is known that 

probability of block error when using successive cancellation decoding method has 

complexity of   . 

This gives idea that polar code with large block length can be used for 

cryptosystem. So, taking advantage of this feature parameter    is used. 

Case that is being considered is binary erasure channel (BEC). In [1], Arikan gave 

analysis of rate in terms of channel capacity and reliability in terms of Bhattacharya 

parameter for binary erasure channel. Analysis of the Bhattacharya parameter and 

channel capacity by  recursive method is much easier for the BEC. Considering the 

Binary Symmetric Channel (BSC) same method cannot be applied because number 

of calculations required to calculate channel capacity for BSC grows by large extent 

as number of channels is increased. Capacity of BSC is a function of base 2 

logarithm of error probability . Due to these arguments, channel capacity cannot be 

calculated from equations (2.14) and (2.15) for BSC and equations (2.16) and (2.17) 

also cannot be used for calculating Z-parameter. However equation (2.16) gives 
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Z-parameter upper bound for BSC. In [18] and [25] a different approach is used 

for polarizing BSC.  

Generator matrix  of size ×    is created by following the 

description of Section II-D and then selecting  out of   channels that have 

highest channel capacity. There can be many other constructions of generator 

matrix. Matrix  which is described in [1] is used. In [15], Korada, and 

Sosaglu has given explanation on the class of matrix that can polarize channels. 

For polarization, according to [15] the generator matrix must be constructed 

from lower triangular matrix. The matrix  from [1] satisfies this condition.

After generator matrix is created, ×   non-singular matrix and ×    

permutation matrix must be constructed. Non-singular matrix and permutation 

matrix are generated randomly and multiplied to . Then    

can be constructed. When this randomized generator matrix encodes plaintext 

message, straightforward decoding becomes useless. Only the correct set of private 

keys,  and , can recover plaintext message from the ciphertext.

B. Private key

Private keys are  ×   matrix  and ×   permutation matrix . For 

the construction of invertible matrix , random number of dimension  ×   is 

generated in binary field  . In order to check its invertibility, Gaussian 

Elimination method is applied that has already been discussed in Section II-D.6. 

If this matrix can be reduced into identity matrix using elementary row operation, 

then its inverse exist else its inverse does not exist. In case inverse does not 

exist, whole process has to be repeated.

As for ×   permutation matrix it is created by random column shuffling 

of ×   identity matrix. When the receiver receives the encrypted message, 
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first he has to inverse the permutation in the message so that they are correctly 

decodable. To obtain the inverse of permutation matrix, it is not necessary to 

perform Gaussian Elimination. By taking transpose of matrix , its inverse can 

be obtained.

C. Public key

Public key is the matrix  . Alice has knowledge of  of 

Bob who is receiver, but does not have any knowledge about the factors  and 

 of Bob’s public key . 

D. Encryption

Message  of  bits is encoded by following process:

                                 (3.1)

Fig. 3.1 Encoding in Polar code

Alphabet  is error which occurs mostly in bad channels due to channel 
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transformation. Fig. 3.1 shows encoding method. This figure shows how bits are 

encoded according to polar code. Fig. 3.1 does not represent encryption of 

proposed system.

                        

E. Decryption

In this section two decryption methods are described which is correct 

decryption and brute force decryption method.

Correct Decryption

Here decryption by the true recipient (Bob) is discussed. In later section, 

description of decryption method that Eve is likely to follow is presented. In 

order to extract hidden information, decryption is done in the method described 

below.

First, private key  is used to find inverse permutation   . This matrix 

multiplies received ciphertext  and data which is shown in equation (3.2) is 

obtained.

                                   ′ 


 (3.2)

Having removed permutation, bits of  ’  can be decoded in an orderly manner 

using successive cancellation decoding. By calculating the values of likelihood 

ratios recursively using equations (2.20) and (2.21), likelihood ratio of any bit  

can be obtained if previous    bits are known. Then by setting the value of 

bit to either 0 or 1 by using the decision rule of bits based on likelihood ratio, 

the estimate of    bit is obtained. Then this bit along with all the other 
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previously decoded bit is used to decode future bits until this process is 

completed for entire block length. During decoding process, decision has to be 

made only on the information set. In frozen set pre-fixed bits are inserted. In 

this case, pre-fixed bits are set as  vector. After decoding, only those bits 

belonging to information set are chosen. The block diagram of successive 

cancellation decoding method is shown in Fig. 3.2. Bits represented by short 

arrows are discarded frozen bits and the bits represented by long arrows are 

estimation of information bits. All the calculations and decision making 

mechanisms takes place in the box labelled as “Successive Cancellation 

Decoder”. Even after the bits from information set are obtained, correct 

message is not yet obtained yet. The obvious reason for this is that  scrambles 

has to be removed from this information. The information that is obtained from 

successive cancellation decoder is message ’  shown in equation (3.3)

                                   ′  (3.3) 

In order to obtain correct information , another private key  must be used. 

From , its inverse    is calculated. Matrix    multiplies ′  and from this, 

finally we get our desired message  which is shown in equation (3.4). 

                              ′  (3.4)

                   

In Fig. 3.3 correct sequence of decoding to extract information from ciphertext 

 is shown. In this figure, it is shown in which order, the private key namely 

 ,   and successive cancellation decoding algorithm should be applied. In 

the encoding block, message of size ×   is multiplied by public key 

  . Multiplication is done in block which is labelled as “Encoder”.
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                Fig. 3.2 Decoding Operation using pre-fixed bits

       Fig. 3.3 Encoding and Decoding Operation in proposed method

In decryption block, first random permutation is removed by multiplying    

with ciphertext. This operation is done in the block labelled “Removal of 

Permutation”. After removing permutation, size of data is still ×  . In the 
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next step this data is decoded by successive cancellation method. Choosing the 

bits from information set, scrambled message of size ×   is obtained. To 

remove scrambles, it is multiplied with inverse of . Scrambling matrix is 

multiplied with decoder output in block labelled as “Removal of Scrambles” in 

Fig. 3.3. In this figure, block diagram for determining the inverse matrices   

and    is not shown because they are secondary. After this is complete, 

plaintext sent by Alice is obtained.

Brute Force Decoding

This section describes another situation where Eve (intruder) tries to decode 

plaintext without having any knowledge of private keys. Fig. 3.4 shows the 

decoding process that Eve uses. In this scenario, Eve has knowledge of correct 

information set so she assumes that she can remove all the errors from 

ciphertext  by using successive cancellation decoding method and correctly 

decrypt the information bits without removing scramble  and permutation .

Due to the permutation applied in order to garble the encoded bits, positions 

of frozen bits and information bits are mixed. Hence, it is common for some 

frozen bits to lie in the position of information bits and some information bits to 

lie in place of frozen bits. Eve decodes message directly without applying 

inverse permutation to encoded message  into the successive cancellation 

decoder. Decoding them without pre-processing causes incorrect decoding. 

Error is propagated to other bits also so Eve cannot decode bits with knowledge 

of only correct information set of polar code.
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Fig. 3.4 Brute Force Decoding by Eve
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IV. Security Analysis

In this section, security analysis of the proposed model is presented. 

A. Brute Force Decoding Result

In this Section, brute force decryption method described in Section III-E is 

analysed. If message bits are decoded in exact manner as they were or bits are 

decoded with acceptably low error rate, then proposed encryption method 

cannot be used for concealing messages from unauthorized access. In this 

Section, three different types of scenarios are described when attacker tries to 

decode under Eve’s assumption. They are - very low error rate which is near to 

, error rate which is approximately  and very high error rate  

 .

Below, results of attacking method that attacker would perform in order to 

decode message bits is presented. First, data is encoded by using scrambled 

and permuted generator matrix or the public key   . Then successive 

cancellation decoding method is used. Simulation was performed on block length 

  = 1024, 2048, and 4096 where    and   = 10, 11, and 12 with code 

rates starting from 0.3 to 0.8 and with erasure probabilities 0.2 to 0.7. Result of 

simulation is shown in Table. 3.1, 3.2, and 3.3.

Table. 3.1 Simulation result for decoding without private keys for length 1024

rate e=0.2 e=0.3 e=0.4 e=0.5 e=0.6 e=0.7

0.3 154.3 153.5 153 154.1 152 152
0.5 257 256.4 256.5 244

0.6 308.3 308 304.8
0.7 359 357.5

0.8 412.1



- 43 -

     

Table. 3.2 Simulation result for decoding without private keys for length 2048

     

rate e=0.2 e=0.3 e=0.4 e=0.5 e=0.6 e=0.7

0.3 303.8 311 306.8 305.4 306 303
0.5 508 511.7 507.9 508.3

0.6 613.1 617 614
0.7 714 714.2

0.8 821

Table. 3.3 Simulation result for decoding without private keys for length 4096

     

rate e=0.2 e=0.3 e=0.4 e=0.5 e=0.6 e=0.7
0.3 612.3 614.9 613.4 610.9 614.1 619.5

0.5 1017 1014 1007 1035
0.6 1176 1219 1225

The table was obtained by repeating the process many times and then 

averaging their values. In the simulations, the position of error was observed. 

When comparing the position of error during simulation, it was found that the 

position of error varied with each iterations.

Analysis of obtained data

Here, results from the simulation is analyzed for each of the block lengths and 

data rate. Looking at number of error bits for each different block lengths in 

different data rates, error is approximately . 

When the error rate is  or near to , it implies that there is 

chance that the decoded bits are correct and  chance that decoded bits 

are not correct. When we analyze this result, it is in favor of Alice because error 
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Fig. 4.1 Number of errors for code rate 0.3

Fig. 4.2 Number of errors for code rate 0.5
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Fig. 4.3 Number of errors for code rate 0.6

Fig. 4.4 Number of errors for code rate 0.7



- 46 -

Fig. 4.5 Number of errors for code rate 0.8

is not biased towards high error rate or low error rate. Hence Eve cannot infer 

with full confidence whether any of the decoded bits are correct or not.

If the number of incorrect bits is much less than  and almost near to , 

then it means that even without knowing private keys, the decoder can obtain 

almost all of the information correctly. Due to the low error rate, attacker can be 

quite sure that the data she has decoded is almost correct. If error occurs on 

same positions, then it makes intruder easy to decode information because by 

repeatedly decoding, she can find out the position of error and so for later 

decoding procedures, she can guess the error location and obtain almost 

error-free plaintext.                                                

If the number of error is much higher being at around  or closer to  

then this condition also pose a serious disadvantage to our cryptosystem. If all 

of the decoded bits has error when compared to originally sent message then it 

implies that those bits error are just the opposite of message bits and therefore 

by flipping the bit states that is obtained from decoding, attacker can recover 

the true message bits with simple logic. In case all the decoded bits does not 



- 47 -

contain error but most of the decoded bits contains errors at around , then 

by flipping the state of bits, the attacker can recover most if not all of the bits 

correctly and by observing the nature of information, attacker can guess the 

errors.                      

From Figs. 4.1, 4.2, 4.3, 4.4, and 4.5, it can be seen that error rate is 

approximately 50% hence it can be concluded that the proposed system is safe 

from the above discussed insecurities. The position of error also varied at each 

iterations.

In Fig. 4.1 to Fig. 4.5, decreasing bar indicates less erasure probability for 

increasing rates. In Fig. 4.1, simulation was carried out for code rate 0.3 and 

erasure probability of 0.2 to 0.7. In Fig. 4.5, simulation is carried out for only 

erasure probability 0.2 and code rate 0.1. This is because data rate must always 

be less than capacity of channel   . In erasure channel, if erasure probability 

is denoted by alphabet , then capacity of that channel is   . Hence for 

code rate 0.3, erasure probability is 0.7. So simulation is started by setting rate 

to 0.3. In Fig. 4.2, code rate is 0.5 and erasure probability varies from 0.2 to 

0.5. This implies channel capacity varies from 0.8 to 0.5. In this case, if erasure 

probability was greater than 0.5, then channel capacity  would have to be less 

than 0.5. And simulation for rate less than 0.5 has already been performed. In 

Fig. 4.3, code rate is 0.6. Hence, here erasure probability has to be from 0.2 

and not greater than 0.4. Likewise in Fig. 4.4, simulations were performed for 

erasure rates 0.2 and 0.3. Under these erasure rates, minimum channel capacity 

is 0.7. And the code rate is 0.7. For code rate 0.8, simulation was carried out 

for erasure probabiity 0.2. 

B. Brute Force Attack

This section analyses security of public key  . For known  and , 

direct computation of matrix  and  is not feasible. For non-singular matrix  



- 48 -

of dimension ×  , cardinality of  is given as

 

                                (4.1)

On simplifying equation (4.1) and substituting values of , for block length 

  , and   , number of possible invertible matrices are 

                            



 

.                  

For block length   , and   , number of possible invertible matrices 

are

                          



 

.

Cardinality of permutation matrix for block length 1024 is (1024!).            

Cardinality of permutation matrix for block length 2048 is   . With this 

many number of possible invertible matrix  and total of   number of 

permutation matrix, it is impossible to find out correct  and  by hit and trial 

method as number of trials needed would be on average      .

C. Information Set Decoding Analysis

In this section, analysis of information set decoding is presented. Information 

set in this context is different from information set in the polar code. In this 

context, information set refers to the bits that are randomly selected under 

assumption that they are error free. Then from these bits, the plaintext is 

estimated by solving the public generator matrix   consisting only of those 
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columns which correspond with the information set.

In previous McElice-type public key cryptosystem number of errors is limited 

by the minimum distance of the code. But when polar code is used, number of 

error is not constrained by minimum distance but it depends on the capacity of 

the particular channel. Due to this reason, analysis by information set decoding 

may not be as efficient as in other McEliece type cryptosystems.

The analysis presented is the worst case for security with assumption that 

there is error only in worst channels (channels whose capacity is less than 0.1). 

In general there may be many more errors than that. For block length 2048 and 

erasure rate 0.5, number of such channels is 907. Therefore there are 907 error 

in unknown positions. For block length 1024 and erasure rate 0.5, number of 

such channels is 445. Error is denoted as . Picking  out of   channels 

assuming that there is no error, probability of obtaining error free data is

  

                                 
 



Then from this set using the  columns of public generator matrix, sent 

message has to be estimated. Equation (4.2) has to be solved

              






     
     
     
     
     





           (4.2)

This gives  equations which is then solved using Gaussian Elimination.  

Number of operations required for solving  equations is 








 


 

 


 . 
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For   = 1024, and  = 128, number of operation required is  . For      

  = 2048, and  = 256, number of operation required is .

Therefore, using this information set, average operations required before 

finding appropriate data in worst case is 

                      

 


 

  
 



For   , and   , number of operation required is 


. For   

  , and   , number of operation required is 


.

For McEliece cryptosystem with binary goppa code with   .    

and   , number of operations is .

For Sidelnikov cryptosystem with   ,    and   , number of 

operations required is  .

D. Sidelnikov Attack

Structure of Polar code and Reed-Muller code look alike because they both 

are constructed by choosing words from  ⊗  which is shown in Fig. 2.1 for 

   . But there is significant difference between them. In this Section, 

difference between Reed-Muller code and Polar code is discussed and 

subsequently shown that cryptographic attack against Reed-Muller codes  

cryptosystem does not apply to the case of Polar code cryptosystem.

It is known that in Reed-Muller code  , only those basis having 
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maximum weight are selected from  ⊗  for generator matrix. The number of 

words with equal weight is 

                                    , i = 0 to m.

Adding all    is equal to number of rows in  . Hamming weight of 

codes is equal to   . 

Degree 2 codewords of   is equal to product of 2 codewords of 

 . This is true for all   combinations. And this also applies to any 

degree . So all functions generating words in     is also present in 

 . Equation (4.3) holds true for RM code.

         ⊂⊂ ⊂ ⊂ (4.3)

Attack against Sidelnikov cryptosystem use equations (4.4) and (2.5) as basis to 

find  permutation  of the public generator matrix   . Equation (2.5) makes 

factoring possible. Factoring minimum weight words of   gives 

  . This process continues with decreasing  in every iteration until 

enough factors are found to finally construct basis of permuted  . 

For given  and , generator matrix of Reed-Muller code consists of only 

those rows having high hamming weight. This is not the case in polar code. 

Rows are selected according polar code rule set by Arikan in [1]. Due to this 

all the functions generating high weight word are not present. This is one of the 

difference in comparison to RM code. For smaller code size, the generator 

matrix for polar and Reed-Muller code may be same but for larger dimension, 

the generator matrix varies. Generator matrix constructed in this way are in some 

sense not systematic and do not follow equation (3.2) also. 

In    , minimum weight of codeword is 256 but for (2048, 256) polar 
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code, minimum weight is 64. Therefore, for polar code equation (4.4) holds true.

                          ≠                 (4.4)

In (2048, 256) polar code, minimum weight is 64. Number of such words is 

14. From these words, only 35 words with weight 128 were found out. 

Remaining words of total 113 words could not be found.

All the words of weight 128 were not found from the low weight words of 

   . This shows that Sidelnikov attack cannot be used against the 

proposed method.

E. Key-size and Rate Analysis

In this table, number of operation required for finding the error word and the 

key-size of different polar code rate is shown for block length 1024 and 2048 

for erasure rate 0.5..

Table. 3.4 Number of operation and key-size for length 1024

k No.of operation Key-size (Bytes)

128  16,384

192  24,576

256 
 32,768

384  49,152

512 
 65,536
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Table. 3.5 Number of operation and key-size for length 2048

k No. of operation Key-size (Bytes)

128  32,768

192  49,152

256  65,536

384  98,304

512  131,072

768 
 196,608

1024  262,144

The figures in number of operation is accurate upto 3 decimal digits. 

F. Comparison Table

Here security and key-size of polar code cryptosystem is compared with 

McEliece and Sidelnikov cryptosystem for block length 1024 and 2048. Based on 

the comparison, proposed parameter for polar code cryptosystem is    

and   .

Table. 3.6 Comparison table for length 1024

     

Cryptosystem Security Key-size (Bytes)

(1024, 524, 50) McEliece  67,072

(1024, 176, 200) Sidelnikov  22,528

(1024, 128) Polar  16,384
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Table. 3.7 Comparison table for length 2048

     

Cryptosystem Security Key-size (Bytes)

(1024, 1751, 34) McEliece  65,006 (CCA2-variant)

(2048, 232, 200) Sidelnikov   59,392

(2048, 256) Polar   65,536



- 55 -

V. Conclusion

In this thesis it is shown how polar code can be used for public-key 

encryption. By using properties of polar code for encoding and decoding, it is 

show that using polar codes can be one of the alternative for McEliece-type 

cryptosystem. Method for constructing public generator matrix from polar code is 

described. Then method which is used to encrypt plaintext by making it random 

using non-singular matrix and permutation matrix is described. And method of 

decrypting plaintext from them correctly is also described.  

Apart from this, analysis of security by considering decoding without using 

private keys for different data rates is presented. And brute force method to 

break it is also analyzed. It is shown that polar code is different from 

Reed-Muller code. And it is this very dissimilarity from where advantages lies. 

From this, it is shown that Sidelnikov cryptanalysis cannot be used against the 

polar code.

In this thesis, polar code for BEC is implemented while analysis for BSC still 

remains an area of further research and it is a limitation of this thesis. 

Nevertheless, we can predict that implementation over BSC also shows similar 

behaviour as polarization is a general phenomenon and is not restricted to any 

specific channel. In polar code, the number of errors that can be added is 

much higher than for goppa code or RM code. And by mathematical analysis it 

is shown that McEliece cryptosystem information set decoding is also not 

feasible for polar code based PKC. Number of errors is always greater than 

lowest weight word of polar code and this feature makes low weight word 

finding attacks useless against polar code based PKC. 

Hence in this thesis a new method for encryption and decryption of message 

using polar code is presented.  
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