

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

August 2013
Master’s Degree Thesis

A Space-Shared Scheduler in
Microkernel for Many-Core

Systems

Graduate School of Chosun University

Department of Computer Engineering

Ganis Zulfa Santoso

[UCI]I804:24011-200000263898

A Space-Shared Scheduler in
Microkernel for Many-Core

Systems

다중 코어 시스템을 위한 마이크로 커널의 공간

공유 스케줄러 구현 및 성능평가

August 23, 2013

Graduate School of Chosun University

Department of Computer Engineering

Ganis Zulfa Santoso

A Space-Shared Scheduler in
Microkernel for Many-Core

Systems

Advisor: Prof. Moonsoo Kang, PhD

A thesis submitted in partial fulfillment of the
requirements for a Master’s degree

April 2013

Graduate School of Chosun University

Department of Computer Engineering

Ganis Zulfa Santoso

- i -

Table of Contents

Table of Contents .. i

List of Tables ... iii

List of Figures ... iv

Acronyms .. vi

Abstract (Korean) .. vii

I. Introduction ... 1

A. Research Objective ... 1

B. Thesis Layout .. 2

II. Background Concept .. 3

A. Many-Core Systems .. 3

B. Space-Shared Scheduler.. 5

C. Microkernel ... 6

D. L4/Fiasco... 8

E. L4Linux... 9

F. ARM architecture.. 10

G. Freescale i.MX6 .. 11

III. Related Works .. 12

A. Tessellation ... 12

B. Corey OS ... 12

C. fOS .. 13

D. Barrelfish... 13

- ii -

E. Singularity ... 13

IV. Proposed Space-Shared Scheduler ... 14

A. Designs .. 14

B. Procedures ... 16

C. Implementation ... 18

V. Performance Evaluation .. 23

A. Many-Core Evaluation in L4/Fiasc ... 23

B. Space-Sharing Scheduling Evaluation .. 24

C. Space-Sharing Scheduling in L4Linux ... 26

D. UnixBench Parameters.. 26

E. Simulation Results and Discussion ... 26

F. Overhead in Implementing Space-Shared Scheduler 35

VI. Conclusions and Future Works .. 37

Bibliography .. 38

Abstract (English) .. 40

Acknowledgements .. 41

Appendix ... 42

- iii -

-iii-

List of Tables

Table 5-1: Emulation parameters for many-core evaluation in L4/Fiasco..24

Table 5-2: Simulation parameters for space-sharing scheduling evaluation..28

-iv-

List of Figures

Figure 2- 1: The clock frequency remains constant ..3

Figure 2- 2: Increasing number of cores on processors ..4

Figure 2- 3: Architecture of monolithic kernel vs. microkernel.7

Figure 2- 4: General architecture of L4/Fiasco. ...9

Figure 2- 5: General design of L4Linux ..10

Figure 4- 1: The proposed space-shared scheduler mechanism in L4/Fiasco.15

Figure 4-2: An example of mapping mechanism of LCPU And PCPU.16

Figure 4-3: L4Linux 1 requested a number of CPUs and told to wait by space-

shared module and received an ID to request later on.17

Figure 4-4: L4Linux 2 requested a number of CPUs and received a set of CPUs and

an ID...17

Figure 4-5: L4Linux 1 asked Fiasco again and given a set of CPUs to it 18

Figure 4-6: The relation of space-shared scheduler object with the native scheduler

object.. ..19

Figure 4-7: The communication between tasks and the scheduler object in

microkernel. ...21

-v-

Figure 5-1: Running a task in a single-core. ..23

Figure 5-2: Running a task in a multi-core. ...23

Figure 5-3: Speedup over single-core. ...24

Figure 5-4: A scenario of original L4/Fiasco without space-shared scheduler.25

Figure 5-5: A scenario of L4/Fiasco with space-shared scheduler.26

Figure 5-6: The normalized running time comparing L4/Fiasco with and without a

space-shared scheduler...26

Figure 5-7: Simulation Environment using QEMU. ..28

Figure 5-2: Simulation environment using an ARM Board.....................................29

Figure 5-9: Simulation environment for fiasco with a space-shared scheduler.29

Figure 5-10: Simulation environment for fiasco without space-shared scheduler...30

Figure 5-11: Performance operations in file operations. ...33

Figure 5-12: Performance operations in process communications.33

Figure 5-13: Performance operations in process operations.34

Figure 5-14: Performance operations in system overhead.35

Figure 5-15: Performance operations in general tests..36

Figure 5-16: Overhead of implementing our space-shared scheduler.36

 -vi-

Acronyms

CPU Core Processing Unit

GB Gigabytes

ISA Instruction Set Architecture

LCPU Logical CPU

L1 Level 1

L2 Level 2

MB Megabytes

OS Operating System

PCPU Physical CPU

RE Runtime Environment

VM Virtual Machines

- vii -

한 글 요 약

다중 코어 시스템을 위한 마이크로 커널의 공간 공유 스케줄

러 구현 및 성능평가

 산토소 가니스 술파

 지도 교수: 강문수

 컴퓨터공학과

 대학원, 조선대학교

차세대 임베디드 시스템으로 다중 코어 시스템이 산업계의 주목을 받고 있다. 베이스

칩 상의 코어의 개수 증가는 개별 코어의 메모리 접근 대역폭의 감소와 코어 당 실행

스레드 수 감소와 같은 문제들을 새롭게 야기했다. 이러한 문제를 해결하기 위해 공간

공유 일정 스케쥴링과 같은 패러다임이 프로세서 스케줄링의 한가지 방법으로 제안되

었다. 공간 공유 스케줄링의 기본적인 아이디어는 응용 프로그램에 인접한 복수의 코

어들을 할당하고 응용 프로그램이 자체 자원을 관리하도록 하는 것이다.

현재 대부분의 운영 체제는 모놀리틱 커널이 일반적이며, 공간 공유 스케쥴링 대신, 시

간 공유 스케쥴링을 기반으로 하고 있다. 이러한 형태의 운영 체제는 다중 코어에 적

합하지 않으며, 코어의 수에 따른 확장성을 가지고 있지 않다. 이러한 이유는 속도의

성능과 안정성에서 최근 주목할만한 발전을 보인 마이크로 커널이 다중 코어를 활용하

기 위한 운영체제로 주목을 받고 있다.

- viii -

본 학위 논문에서는 다중 코어 시스템을 타겟으로 하는 마이크로 커널 상에서 공간 공

유 스케쥴러를, L4/Fiasco 내부에 구현하고 그 성능은 CPU 계산 집약적인 병렬 태스크

들을 사용하여 평가하였다. 평가 결과는 L4/Fiasco의 시간 공유 스케쥴링과 공간 공유

스케쥴링의 조합이 다중 코어 시스템에 적합하며 코어 수에 따른 확장성도 뛰어나다는

것을 보여준다.

- 1 -

I. Introduction

Many-core system is something that is unavoidable due to the limit on CPU clock

frequency. To counter the problem, the industry and academic communities agreed

to increase the number of cores in a chip to increase performance. The increasing

number of cores on a single chip introduced new issues such as decrease in

memory bandwidth and less number of threads per core. A new paradigm should

be implemented on the processor scheduling.

Current Operating Systems are only employing time-sharing scheduling. Time-

sharing scheduling solely are not scalable for many-core systems. It is developed

based on the idea to optimize processor resources, in many-core however, memory

access resources are more expensive.

A. Research Objective

Space-shared scheduling has been proposed. The basic idea of such scheduling is

to allocate a number of cores to an application and let the application manages its

own resources. It optimize the memory usage and latency and reducing the OS

complexity instead of traditional usage efficiency.

We implement a space shared scheduler inside a microkernel, L4/Fiasco.

Microkernel is chosen because its capability in creating a resilient and robust

Operating System. Space-shared scheduler will aid time-shared scheduler in

organizing tasks. Its performance will be evaluated using CPU-intensive tasks. The

scheduler is extended into and emulated in a Linux environment to observe how it

behaves in a popular Operating System. The results show complementing space-

- 2 -

sharing scheduling and time-sharing scheduling in L4/Fiasco is scalable for many-

core environment.

B. Thesis Layout

We first study the key concepts in scheduling for many-core environments in

literature. In chapter II, we first discuss the trends that realized many-core

concepts. The related works are discussed in chapter III. In chapter IV, we explain

and discuss our proposed space-shared scheduler. The performance evaluation is

presented in chapter V.

- 3 -

II. Background Concept

Moore’s Law predicts the number of transistors doubling approximately every two

years. This law is still held right now, but the clock frequency remains fairly

constant since 2010 shown by Figure 2-1.

Figure 2-1: The clock frequency remains constant.

A. Many-Core system

Even though we can still build transistor smaller and faster, we can’t increase the

clock frequency because it will generate a lot heat to turn on billions of transistors

in the same time. Instead of creating faster and complex processors, we are now

creating more and simpler processors. That is why the emergence of multi-core

systems cannot be evaded.

- 4 -

Many-core system is a multi-core system but it is loosely defined as having more

than 50 cores on single chip. At around 2004, the maximum clock frequency of a

single processor is around 4 GHz. In the term of economy and engineering, it is not

suitable to push the frequency of a single core even more. Rather than having one

powerful single core running at the high frequency, it is more efficient to have

multiple cores running at lower frequencies. The academic and industry agreed that

to conform to the Moore’s Law, the number of processors in a single chip should

be increased. The trend of one single core towards multiple cores was begun at

2005 with the introduction of dual cores, four cores at 2008 and the last one was

quad cores at 2010. The most obvious method of moving forward is to start

increasing the more cores to the future of chip designs. The trend of multi-core

processors can be seen in the Figure 2-2. Responding to the new trend of many-

core processors, Intel introduced Xeon Phi with number of cores is more than 60

cores.

Figure 2-2: Increasing number of cores on processors.

Many-core system, despite the similarity with multi-core system, introduced new

challenges. The current paradigm that we have on Operating Systems realized

because of the characteristic of single-core; multiplex the CPU. However, in many-

- 5 -

core system we will have much more than one core and possibly multiplexing CPU

is not necessary. Therefore the advent of new paradigm is needed.

B. Space-Shared Scheduler

In the introduction of many-core chips, there are three trends that can be seen. The

first trend is instead of fewer and bigger cores, the shifting is moving towards

simpler and more cores. Another one is heterogeneous architecture. It means each

core will have specialized capabilities and packed onto the same chip. The last

predicted trend is with the rise of memory technology, such as embedded RAM, so

there will be more memory to be placed on the chips.

These trends will introduce new problems that never had been encountered before.

But we will focus on the first trend as it is relevant with our sub section topic. The

first trend opens up the possibilities that time-sharing is no longer needed as each

process can be run in its own core, or put it another way is there will be more cores

than the number of threads. Time-sharing will become a bottleneck and

unnecessary complexity in the operating system kernel.

The idea of space-sharing computer resources is emerged to answer this challenge.

In principle, it seeks optimization in term of memory usage and reduction of OS

complexity. This is a new paradigm as we used to try to make core usage as

efficient as possible.

Space shared scheduler allocates a number of cores to one application or virtual

machine and let it manages it as it is its own resources. The scheduler will not

interfere or try to micromanage it. The concept is new and no popular OS is already

adapted to this concept. Even more, they are not suitable for this paradigm since

they are built around monolithic kernel architecture.

- 6 -

C. Microkernel

Kernel is the core component of an operating system. It resides between

applications and actual data processing at the hardware level. Early computer

systems did not have kernel but if we are going to run multiple programs on a

single computer, kernel is substantial. The most famous used of kernel architecture

is monolithic kernel which is used by Linux, BSD, and MS-DOS.

At the beginning, the size of kernel was generally small. But as the number of

features, and broad range of devices were added to the kernel, the size began to

grow. As for Linux kernel 3.8[9], currently there are more than 16 million total of

lines of code, which dominated by drivers, file system and architecture-specific

code. In that scale, it is almost impossible to avoid bugs and security leaks. It is

even worse since most of them are running in the kernel mode. Bug-prone code in

the kernel mode can corrupt the operations of the whole system.

Microkernel is architecture of kernel which provides minimum functions run in the

kernel mode. The counterpart of microkernel is monolithic kernel. Unlike

microkernel, most of the code of monolithic kernel is run in the kernel mode. The

differences of both of them can be seen clearly by the Figure 2-3.

Microkernel provides mechanisms to execute programs and enforcing isolations

between them but it does not include complex services. The other components

operate in the user mode. Therefore the size of kernel is small. As an example,

L4/Fiasco has only 20,000 lines of code. The kernel isolates the device drivers

using virtual address spaces to minimize the bug-prone code’s effects on the whole

system.

- 7 -

Figure 2-3: Architecture of monolithic kernel vs. microkernel.

The advantages of microkernel are it is more robust, more reliable and it can

provide real time operating systems for users. Therefore most of the applications of

microkernel are for reliability-sensitive markets such as military, automotive, and

aerospace industry.

The monolithic kernel architecture has an obvious advantage over microkernel

which is its superior performance. Since the entire kernel components are run in the

kernel mode, the context switch from user mode to kernel mode and vice versa are

less compared to microkernel. This characteristic was demonstrated by the poor

performance of the earliest examples of the microkernel such as Mach and Chorus

OS. The latest generation of microkernel however successfully reduces the

performance gap between these architectures.

Unlike monolithic kernel, microkernel can isolate the applications. If one of the

applications is corrupted, it will not destroy the whole systems. This characteristic

makes microkernel is very suitable to create an OS with a space-shared scheduler.

- 8 -

D. L4/Fiasco

L4 Microkernel is one of the prominent microkernels in the research and academic

community. It was created by Jochen Liedtke to address the poor performance of

the earlier microkernels. He fixed the inaccurate concepts of Mach and simplified

the concepts. L4’s concept of microkernel is a microkernel does no real work as it

only provides inevitable mechanisms and no policies implemented.

L4 Microkernel is further researched by various universities and companies. A

commercial example of L4 variant is OKL4 from OK Labs which its product has

been deployed in more than 1.5 billion devices [10]. Another notable example is

L4Ka::Pistachio which is developed together by University of Karlsruhe, Germany

and University of New South Wales, Australia.

L4/Fiasco or Fiasco.OC which is used in this thesis is developed by Hermann

Hartig's group at the Technical University of Dresden, Germany. His group also

developed operating systems such as DROPS [12] and NIZZA [11] on top of L4

beside L4Linux which will be discussed on next section. L4/Fiasco can be run a

broad range of hardware including in ARM systems such as Freescale i.MX6 board

which will be used in this thesis. L4/Fiasco is an open source project and can be

easily downloaded from the homepage [13].

The general architecture of Fiasco is demonstrated on Figure 2-4. Basically there

are three components in the system of L4/Fiasco: Microkernel, Runtime

Environment and Applications. Microkernel is the only component that is run in

the kernel mode whilst others are run in the user mode. The general design of

microkernel is to make it as small as possible to make it more robust against bugs

and attacks. It only consists of simple services and does not include services for

accessing hardware, bootstrapping, etc. Therefore L4Re provides servers to help

- 9 -

the operations of Fiasco microkernel and to build applications on top of

microkernel

Figure 2-4: General architecture of L4/Fiasco.

L4Re consists of several servers: Sigma0, Moe, Ned, Io, Mag, fb-drv and Rtc. The

first two is needed to be booted beforehand. Sigma0’s task is to resolve page fault.

Moe’s tasks are to bootstrap the system and to provide resources managements. For

further on, the Fiasco.OC and L4Re will be discussed as the same entity.

E. L4Linux

L4Linux were ported to Linux kernel by treating it like another port of Linux to a

new architecture. Currently, L4Linux has been updated to the Linux Kernel 3.8.

The design overview for the L4Linux is depicted in the following Figure 2-5.

L4Linux can be run side by side with other real-time operating systems on top of

- 10 -

L4/Fiasco. The real time operating system’s proper operation will not be violated

as L4Linux is run on user mode and cannot override the operation of L4/Fiasco.

Figure 2-5: General design of L4Linux.

By having L4Linux ported to L4/Fiaso, developers are spoiled with the abundant

legacy applications of Linux. Real-time OS can be used to video or audio

applications. By running it in different OS and on top of L4/Fiasco, it is assured

that the application operations will not be interrupted.

F. ARM architecture

In the world of mobile phone and embedded devices, ARM architecture dominates

by having 95% of the industry. ARM was designed for mobile and low power

computing segment with its power efficient processors. But now with the

introduction of Cortex A9 and A15 designs, it explores a new territory of high end

desktop and server markets. The ISA (Instruction Set Architecture) of ARM is 32

bit RISC architecture. It is a fixed instruction width and dominated by single cycle

- 11 -

execution. Other vendors are trying to modify their current processor to become

more power efficient, the ARM on the other hand is trying to upgrade the

performance of their current processor from already power efficient processors. In

the term of many-core processors, it seems that ARM architecture is gaining

tractions.

G. Freescale i.MX6

i.MX series are based on ARM Cortex A9 architecture and offering from single-

core up until quad-core. The one that will be utilized in this thesis is the quad-core

version and therefore the main discussion will be around this version. The version

will running up to 1.2 GHz with 1 MB of L2 cache, and 64-bit DDR or 2-channel,

32-bit LPDDR2 support. It supports up to 1080p video playback and it has 3D

engine to perform computational tasks.

- 12 -

III. Related Works

The trend of many-core processors has piqued interests from academic and

research community. Therefore experimental operating systems have been

researched extensively in universities. But as far as the writers’ knowledge, there is

no research written to create a space scheduler mechanism on top of a microkernel,

especially L4/Fiasco. However, the creation of space shared scheduler on top of

another type of kernel is not a novelty.

Tessellation

From Berkeley University, there is Tessellation [3] which is developed at Parallel

Computing Laboratory. It is based on two fundamental ideas: Space-Time

Partitioning (STP) and Two-Level Scheduling. Some functionality of Tessellation

is similar to the hypervisor as it combines the space-sharing and time-sharing

concept. In Tesselation, the space-sharing divides cpus resources into partitions

and it can be fixed or dynamically sized. An application will be given a privilege to

modify the number of its own resources. One of the differences with our thesis is

Tessellation is using exokernel instead of microkernel.

Corey OS

Corey [6] is another exokernel-based Operating System and created by Parallel &

Distributed Operating Systems Group of MIT. The first integral idea in Corey is

cores use only local resources and share no state between them. Utilizing the

interface of the kernel, applications should create sharing whenever necessary.

Another fundamental concept is physical memory in Corey is described as address

trees. Address space of each core will be identified by an address tree. It implies

that there is no need for a global memory structure in OS. The last key method of

- 13 -

Corey is its core management and scheduling. It implements a space-share

scheduling mechanism.

fOS

From MIT there is another operating system called as fOS [8]. It is based on its

three design concepts: (i) share nothing, communicate only by messaging, (ii)

space-sharing instead of time-sharing, (iii) fault tolerance by automatically re-

routing tasks in the same group of cores.

Barrelfish

From the land of Europe, ETH in Zurich and Microsoft research collaborated to

create Barrelfish [7]. It utilized another type of kernel called as multikernel. The

three design principles of Barrelfish are: (i) making all inter-core communication

explicit, (ii) making the OS structure HW neutral, and (iii) viewing state as

replicated instead of shared. The main disadvantage of Barrelfish is its memory

management sub-system. It puts unnecessary complexity into the user-space

applications without actually gaining substantial performance improvements.

Singularity

Based on its own previous research OS called Singularity, Microsoft research

developed HeliOS [14]. It is using a so-called satellite kernel. It is embracing

heterogeneity but also using space-sharing mechanism to reduce the issues in

many-core environment. The system consists of three fundamental features: (i)

software-isolated processes, (ii) contract-based channels, and (iii) manifest-based

programs.

- 14 -

IV. Proposed Space-Shared Scheduler

The goal of the scheduler is to provide a space shared scheduler mechanism in

microkernel to overcome the challenges in many-core systems. The scheduler will

be implemented in the L4/Fiasco, a microkernel developed in TU Dresden. It will

communicate with applications on top of microkernel and provides sets of CPU

that can be used by each application.

A. Design

Current scheduler of L4/Fiasco is using time-shared scheduling with round-robin

mechanisms for tasks with the same priority. The implemented design will not

affect the time shared-scheduling, it will add the space shared scheduling to

microkernel. The scheduler is designed as small and as concise as possible. It

employs minimum modifications to the current system of L4/Fiasco.

The scheduler is implemented in the microkernel. For every application on top of

microkernel, it should communicate with the scheduler to get the physical id of

CPUs (PCPU) that can be used. Further on, the PCPU values that are given by the

scheduler is mapped to the logical CPU in each application. The scheduler inside

the application will manage its own resources by itself. Microkernel will not

override the mechanism inside the applications. Microkernel will only employ the

time-shared scheduling if there is more than one thread running in the same

physical core. The space shared scheduler is called at the booting of the

applications. The figure of Figure 4-1 provides explanation on how the mechanism

works in the initialization phase of the applications. After getting the IDs of PCPU,

- 15 -

an application does not have to communicate with the space-share scheduler every

time it runs a thread.

Figure 4-1: The proposed space-shared scheduler mechanism in L4/Fiasco.

Further on, an application can communicate with the scheduler if it needs to change

its own CPU resources. The scheduler will give the new value of PCPU to the

respective application and also other applications if there are changes as well.

The processes within an application may communicate with each other therefore

space-shared scheduler takes into account the affinity of the CPUs. The scheduler

will try to give the most optimum of CPU allocation to the applications by giving a

set of CPUs to a single application with best affinity. Once L4Linux has mapped

the PCPU and LCPU, a thread will be spawned for each of the connection. This

mechanism can be seen in Figure 4-2.

L4Linux will manage those threads just like its own CPUs. The scheduler on

L4Linux will manage on how the applications on top of L4Linux run. Scheduler on

L4/Fiasco will not interfere on the scheduler in L4Linux. The scheduler in

L4/Fiasco will multiplex if there is more than one thread accessing a PCPU with

- 16 -

the same priority. A real time operating system can be realized in this system by

giving it higher priority than non-real-time operating systems.

Figure 4-2: An example of mapping mechanism of LCPU and PCPU.

B. Procedures

Once the space-shared scheduler has been implemented, Virtual Machines (VM)

on top of fiasco have to contact the space shared scheduler module after the

booting. In the initiation, VM has to tell fiasco how much processors it needs. If the

modules have not received requests from all VMs, it will not issue CPUs to any

VM. If it has received all requests, it will issue the CPUs. The procedure is clearly

explained by following Figure 4-3 and Figure 4-4. In this example we are going to

use two L4Linuxes.

During the wait, L4Linux 1 has to sleep for few milliseconds, and it asked Fiasco

again whether a set of CPUs has been prepared for it. If Fiasco is ready, it will give

- 17 -

L4Linux 1 a set of CPUs, if not L4Linux 1 has to wait for one more time. The

procedure is presented in Figure 4-5.

Figure 4-3: L4Linux 1 requested a number of CPUs and told to wait by space-

shared module and received an ID to request later on.

Figure 4-4: L4Linux 2 requested a number of CPUs and received a set of CPUs and

its own ID.

- 18 -

Figure 4-5: L4Linux 1 asked Fiasco again and given a set of CPUs to it.

The space shared module is active throughout the time waiting for any further

requests from VMs to change its number of CPU sets.

C. Implementation

To efficiently implement the module we need to now the architecture of

processors. A characteristic such as CPU affinity is unique for all processor

architectures. Having investigated the manual of ARM Cortex A9 [15], we can see

the layout and cache hierarchy of this architecture. Each CPU has its own L1

cache. L2 cache is shared among all CPUs. The CPUs are laid serially, not in form

of a rectangular. We have to take into account these characteristics while

implementing a space shared scheduler.

There are two layers between hardware and Virtual Machines in Fiasco

architecture. Thus the implementation should be done in each layer. The

- 19 -

modifications are cross-platform and are not dependent on the implemented VMs.

However, since it is a paravirtualization, the VMs layer is also need to be modified

to adjust to the module. And different VMs have different modifications. In

example, the implementation in Linux will be different with the implementation of

another open source OSs. In this thesis we will show how the implementation is

done in Linux, or more specifically L4Linux.

Fiasco Layer

The scheduler in Fiasco is implemented in this layer, so our modification is largely

located in here. The space-shared scheduler is regarded as an additional feature so

we are not changing anything on the main class of Scheduler in fiasco. We add a

variable and a function which is connected to the space shared scheduler. The

details of the space-shared module and the relation with the scheduler object of

Fiasco are explained in Figure 4-6.

Figure 4-6: The relation of space-shared scheduler object with the native scheduler

object.

Space Shared Scheduler Class

- 20 -

VM Count: It tracks how many VMs will connect to the Fiasco and once it is

fulfilled it runs the Processing Requests method.

VM Data Table: It contains the data of VMs ID, requested number of CPU, and

given CPU sets.

Initialize Module: It sets the initial value of variables in the module,

Add VM Request: A method to get the request of a VM and add it to the VM Data

Table.

Update VM Request: It accepts the request of a VM to change its request.

Get CPU Sets: It returns the CPU sets of a VM.

Processing Requests: This method calculates the most optimum CPU Sets for each

VM given the data in VM Data Table.

Native Scheduler Class:

Space Shared Module: The interface to the space shared object.

Processing VM Request: It is actually only passes the request of VMs to the space

shared module. The method itself does not do anything.

L4Re Layer

In L4Re layer, the scheduler is only an abstraction object. Therefore the only added

implementation is a function called l4_scheduler_req_cpu. It is a function that

connects the VMs and Kernel and provides no specific operations at all.

L4Linux Layer

- 21 -

The implementation in this layer has only three specific jobs:

(1) Tell space share module how much processors it needs,

(2) Get the physical id of CPU that is given by the space shared module, and

(3) Insert the values to the native mapping of physical and logical CPU.

Specific to L4Linux, these three jobs can be added in the

l4x_cpu_virt_phys_map_init() function. We implemented the code that calls

l4_scheduler_req_cpu() in L4Re in this function. L4Linux has its own system of

mapping the physical and logical CPUs, hence we do not need to create one and

only added values that will be used by the mapping. In conclusions, the tasks or

L4Linuxes communicate with the scheduler objects trough the abstraction in the

L4Re layer and then it invokes the object in the microkernel. The mechanism is

shown in Figure 4-7.

Figure 4-7: The communication between tasks and the scheduler object in

microkernel.

- 22 -

The details of modifications are explained line by line in the appendix. How to run

along with the configurations are also stated there.

- 23 -

V. Performance Evaluation

A. Many-Core Evaluation in L4/Fiasco

First one we are going to observe the scalability of L4/Fiasco in many-core

systems. In here we are going to run a CPU-intensive task on a single core as a

baseline as shown in Figure 5-1. It is compared to how fast the tasks are run in a

multi-core or many-core architecture as describe in Figure 5-2.

Figure 5-1: Running a task in a single-core.

Figure 5-2: Running a task in a multi-core.

- 24 -

The parameters for this simulation are summarized in table 5-1. In this emulation,

we are using a popular open source emulation tool called as QEMU.

Table 5-1 Emulation parameters for many-core evaluation in L4/Fiasco

Parameter Value

Emulation Tool QEMU 0.14

L4Re Version February 2013 release

L4Linux Kernel Version Linux 3.7

Host

Machine Intel Xeon® E5606

Host CPU Architecture x86 64 Bit

Number of Processor 8

Memory 12 GB

Guest

Architecture i386

Number of Cores 8, 16. 32. 64

Memory 383 MB

Number of VMs 8, 16. 32. 64

The evaluation results are shown in Figure 5-3. Even though the performance is

increasing when we are using more cores, but it does not scale well with the

number of cores.

Figure 5-3: Speedup over single-core.

- 25 -

In a multi-core environment the increase of cores is expected to be linear with the

performance increase, of course we have to considering the constraint which are

posed by the Amdahl’s law. The speed up parameter which is used by the

following figure is calculated by the dividing the execution time of single core by

execution time of N core. With N is 8, 16, 32 and 64. From 8 to 16 and 16 to 32 we

can see that the speed up is almost doubling just like the number of cores. But from

32 cores to 64 cores, the increase is not double. This is an indication that the

current scheduling is not scalable for many-core systems.

B. Space-Sharing Scheduling Evaluation

We are going to evaluate our implemented space-sharing scheduler. For this we are

going to compare the performance of our Fiasco/L4 with the addition of space-

sharing scheduling against the original Fiasco/L4. The original Fiasco/L4 is

described in Figure 5-4 while our modification is shown in Figure 5-5. The figures

are only example with 4 cores; in the emulation we are going to use 8, 16, 32, and

64 cores.

Figure 5-4: A scenario of original L4/Fiasco without space-shared scheduler.

- 26 -

Figure 5-5: A scenario of L4/Fiasco with space-shared scheduler.

The emulation parameters are identical with table 5-1. The result from our

evaluation is shown in Figure 5-6. In our scenario, all tasks are equally in high

load. On the opposite, if one of the tasks is idle then the CPUs given to it will be

not used optimally thus the whole system’s performance is decreasing for space-

sharing scheduling.

Figure 5-6: The normalized running time comparing L4/Fiasco with and without a

space-shared scheduler.

- 27 -

L4/Fiasco is employing time-sharing scheduling if there is more than one thread on

the CPU with a round-robin mechanism [17]. In time-sharing scheduling, there is

more than one thread in a CPU. Hence the fiasco is time multiplexing the threads.

Meanwhile, in space-sharing scheduling, since there is only one thread per CPU,

time multiplexing the thread is not necessary. This is decreasing the OS

complexity. Better usage of non-chip memory which is user-controlled rather than

OS-dictated also improving the performance of space-sharing scheduler [2]. It has

to be noted again that in Figure 5-6, we combine time-sharing and space-sharing

scheduling, not solely space-sharing scheduling.

C. Space-Sharing Scheduling in L4Linux

In here we extended our space-shared scheduler into a Linux environment. Linux

has been ported into L4/Fiasco under the name of L4/Linux. We evaluated our

modification and expecting our performance increase from previous emulation is

inherited by L4Linux. For the benchmark application we are using UnixBench. It

tests several parameters that are highly related to the system performance

benchmarking. The complete emulation parameters are summarized in table 5-2.

Figure 5-7 shows relation between the host machine and guest machine. ARM

Versatile Express board is chose because it is the most similar with our i.MX board

that is available on L4/Fiasco simulation. Both of them have the same CPU

architecture. If we are using the real board, the procedure of debugging and

analysis is shown in Figure 5-8. On using the real ARM board we are going to

utilize a hardware debugger from Lauterbach called as Trace32.

- 28 -

Table 5-2 Simulation parameters for space-sharing scheduling evaluation

Parameter Value

Simulation Tool QEMU 0.14

L4Re Version February 2013 release

L4Linux Kernel Version Linux 3.7

Host

Machine Intel Xeon® E5606

Host CPU Architecture x86 64 Bit

Number of Processor 8

Memory 12 GB

Guest

Machine ARM Versatile Express

CPU Architecture ARM Cortex A-9

Number of Cores 4

Memory 256 MB

Number of VMs 2

Real Board

Machine FreeScale i.MX6 Quadcore

CPU Architecture ARM Cortex A-9

Number of Cores 4

Memory 1 GB

Debugger Lauterbach Trace32

Figure 5-7: Simulation Environment using QEMU.

On measuring the performance effects of space-shared scheduler on L4/Fiasco, we

are going to use the scenario in Figure 5-9 against L4/Fiasco in Figure 5-10.

- 29 -

Figure 5-8: Simulation environment using an ARM Board.

Figure 5-9: Simulation environment for fiasco with a space-shared scheduler.

Basically, fiasco without space-shared scheduler will allow all VMs to use all

available PCPUs. On the other hand, fiasco with space-share scheduler tries to

isolate PCPUs of one VM to another.

- 30 -

Figure 5-10: Simulation environment for fiasco without a space-shared scheduler.

D. UnixBench Parameters

In this thesis, we used UnixBench. The parameters that are used are explained in

this subsection.

· Dhrystone

Reinhold Weicker developed Dhrystone in 1984. This benchmark is used to

calculate and compare the performance of computers. It tries to characterize the

result more meaningfully than MIPS (million instructions per second) because

instruction count comparisons between different instruction sets (e.g. RISC vs.

CISC) can confound simple comparisons.

· Process Creation

This assessment calculates the number of times a process can fork and reap a

child that instantly exits. Process creation refers to essentially creating process

control blocks and memory allocations for fresh processes, so this relates

- 31 -

directly to memory bandwidth. Typically, this benchmark would be utilized to

compare numerous applications of operating system process creation calls.

· Pipe Throughput

It is used to simulate the simplest form of communication between processes.

Technically it is the number of times (per second) a process can write 512 bytes

to a pipe before reading them back. However, in real-world programming, the

pipe throughput actually test has no real equivalent applications.

· Pipe-based Context Switching

It is used to simulate the number of times that two processes can exchange an

increasing integer through a pipe. Unlike pipe throughput, this simulation is

relevant to a real world application. This benchmark spawns a child process

with which it carries on a bi-directional pipe conversation.

· File Operations

The file operations test calculates the rate at which data can be transported from

one file to another, using numerous buffer sizes. The file operations included in

this test are file reading, file writing, and file copying. The tests capture the

number of characters that can be operated in a specified time. In this

simulation, we used two types of size; the big one and the small one. The sizes

of each type are 1024 for buffer size, 2000 for maximum blocks and 256 buffer

size and 500 maximum blocks respectively.

· Shell Scripts

This test measures the number of times per minute a process can

simultaneously start and reap a set of various copies of a shell scripts. The

- 32 -

script itself applies a series of transformation to a data file. In this test we create

a set of one, two, four and eight copies of shell scripts.

· System Call Overhead

This measures the cost of entering and leaving the kernel, i.e. the overhead for

executing a system call. It contains of a simple program constantly calling the

getpid (which returns the process id of the calling process) system call. The

time to perform such calls is used to calculate the overhead of entering and

exiting the kernel.

E. Simulation Results and Discussion

In this section, we present the simulation results obtained and comparison of

L4/Fiasco with space-shared scheduler against L4/Fiasco without a space-shared

scheduler. Both are using L4Linux. The results of the simulation are shown in here.

· File Operations

In Figure 5-11, we can observe how applying a space-shared scheduler will

influence the file operation performance. From the graphic, we can

conclude that the addition of the module increase the performance in file

operations with the average increase around 4% until 7%. The small size

slightly has better performance than the bigger one.

- 33 -

Figure 5-11: Performance operations in file operations.

· Process Communication

In process communication, we look how effective the communication

through the pipe. In Figure 5-12, the results from pipe-based context

switching and pipe throughput tests are displayed.

Figure 5-12: Performance operations in process communications.

- 34 -

· Process Operations

The result from the process operations is displayed in Figure 5-13. The

small performance increase can be seen. The shell scripts tests are having

performance increase when only 1 concurrent is used. One of our concerns

is that when the number of concurrent process is increasing, as the

characteristic of many-core systems, the performance is decreasing.

Figure 5-13: Performance operations in process operations.

· System Overhead Call

Using the space-shared scheduler, the cost of entering and leaving operating

system kernel is reduced as can be seen by Figure 5-14. The exec operation

has the most significant increase compared to others.

- 35 -

Figure 5-14: Performance operations in system overhead.

· General Performance Test

In general tests, we conduct Dhrystone 2 and Hanoi Test. Both tests include

some of operations from previous tests. The inherited performance gains

from micro operations made these two tests show notable performances.

The reason that the performance is increased while employing space-shared

scheduler is suspected that cache invalidation in processors is decreasing as

shown by our result in Figure 5-15.

F. Overhead in Implementing Space-Shared Scheduler

In here we are calculating the overhead that is gained due to the addition of space-

shared scheduler. We vary the number of VMs from 1 to 10. The result of our

evaluation is shown in Figure 5-15.

- 36 -

Figure 5-15: Performance operations in general tests.

Figure 5-16: Overhead of implementing our space-shared scheduler.

- 37 -

VI. Conclusions and Future Works

In this thesis, we showed the current trends in processors architecture and the

problems that may arise because of it from software perspective. The new approach

to the scheduling design has also been discussed. Responding to these trends we

argue that the addition of space-shared scheduler in Operating Systems is

necessary.

We presented modifications to implement space-shared scheduler in L4/Fiasco. We

benchmarked our modifications using CPU-intensive tasks and UnixBench to

measure the performance improvements of our modifications. The scheduler

automatically assigns CPUs to VMs. It tries to isolate the CPUs of one VM to

another VM. Our simulation results show that the addition of space-shared

scheduler into L4/Fiasco is beneficial as the performance outperform L4/Fiasco

without a space-shared scheduler.

For future works, we want to run our modifications directly on our ARM board.

The results are expected to be similar with the results from our simulations.

Another future works, is to make the scheduler automatically able to adapt to the

status of running VMs. For example, if one VM does not use given CPUs due to its

load, the scheduler may give the CPUs to another VM with heavier load.

- 38 -

Bibliography

[1] Härtig, Hermann, Michael Hohmuth, and Jean Wolter. "Taming linux."

Proceedings of the 5th Annual Australasian Conference on Parallel And

Real-Time Systems (PART’98). 1998.

[2] Vajda, András. Programming many-core chips. Springer, 2011.

[3] Liu, Rose, et al. "Tessellation: Space-time partitioning in a manycore client

OS." HotPar09, Berkeley, CA 3 (2009): 2009.

[4] byte-unixbench - A Unix benchmark suite - Google Project Hosting.

[online] Available at: https://code.google.com/p/byte-unixbench/

[Accessed: 22 May 2013].

[5] Perumalla, Kalyan S. "μsik-a micro-kernel for parallel/distributed

simulation systems." Principles of Advanced and Distributed Simulation,

2005. PADS 2005. Workshop on. IEEE, 2005.

[6] Boyd-Wickizer, Silas, et al. "Corey: An operating system for many cores."

Proceedings of the 8th USENIX Symposium on Operating Systems Design

and Implementation. 2008.

[7] Schupbach, Adrian, et al. "Embracing diversity in the Barrelfish manycore

operating system." Proceedings of the Workshop on Managed Many-Core

Systems. 2008.

[8] Wentzlaff, David, and Anant Agarwal. "Factored operating systems (fos):

the case for a scalable operating system for multicores." ACM SIGOPS

Operating Systems Review 43.2 (2009): 76-85.

[9] torvalds (n.d.) linux. [online] Available at: https://github.com/torvalds/linux

[Accessed: 30 May 2013].

[10] Ok-labs.com (2013) Home : Open Kernel Labs. [online] Available at:

http://www.ok-labs.com/ [Accessed: 30 May 2013].

- 39 -

[11] Hartig, Hermann, et al. "The Nizza secure-system architecture."

Collaborative Computing: Networking, Applications and Worksharing,

2005 International Conference on. IEEE, 2005.

[12] Hartig, Hermann, et al. "DROPS: OS support for distributed multimedia

applications." Proceedings of the 8th ACM SIGOPS European workshop on

Support for composing distributed applications. ACM, 1998.

[13] Os.inf.tu-dresden.de (2012) L4Re -- The L4 Runtime Environment. [online]

Available at: http://os.inf.tu-dresden.de/L4Re/ [Accessed: 30 May 2013].

[14] Nightingale, Edmund B., et al. "Helios: heterogeneous multiprocessing with

satellite kernels." Proceedings of the ACM SIGOPS 22nd symposium on

Operating systems principles. ACM, 2009.

[15] The ARM Cortex-A9 Processors Manual.

[16] Qingguo, Zhou, et al. "A case study of microkernel for education." IT in

Medicine & Education, 2009. ITIME'09. IEEE International Symposium

on. Vol. 1. IEEE, 2009.

- 40 -

ABSTRACT

A Space-Shared Scheduler in Microkernel for Many-Core Systems

 Ganis Zulfa Santoso

 Advisor: Prof. Moonsoo Kang, Ph.D.

 Department of Computer Engineering

 Graduate School of Chosun University

The industry is running toward many-core systems. The increasing number of cores

on a single chip introduced new issues such as decrease in memory bandwidth and

less number of threads per core. To counter this, space-sharing scheduling

paradigm has been proposed on the processor scheduling. The basic idea of such

scheduling is to allocate a number of cores to an application and let the application

manages its own resources.

Current Operating Systems are not employing space-sharing scheduling and also

based on monolithic kernel. Time-sharing scheduling and monolithic kernel are not

scalable for many-core systems. Another architecture of kernel called as

microkernel gained attention lately because of its notable improvement in speed

performance and its robustness.

This thesis implements a space shared scheduler inside a microkernel, L4/Fiasco,

and performance will be evaluated using CPU-intensive tasks. The scheduler is

extended and emulated in a Linux environment. The results show combination of

space-sharing and time-sharing scheduling in L4/Fiasco is scalable for many-core

systems.

- 41 -

ACKNOWLEDGEMENTS

I offer my sincerest gratitude to my supervisor Prof. Moonsoo Kang for his

excellent guidance, caring and patience and providing me with comfortable

research environment. His encouragement to pursue my master's degree at NAA

(Network Architecture and Analysis Lab) and his continuous support have been a

great assistance to achieve a milestone in my career. Without his help, this thesis

would not have been completed. He is the best advisor that anyone could wish.

I would like to show appreciation to all members of the thesis examining

committee Prof. Sangman Moh and Prof. Jaehong Shim for their treasured advices

and insight. I would also like to express my gratitude to Dr. Joongsoo Lee, Dr.

Youngwoo Jeong, and Timothy Anzaku from ETRI (Electronic and

Telecommunication Research Institute) for valuable discussions and guidance. In

addition, I would like to thank Department of Computer Engineering, Chosun

University, to provide me the atmosphere to extend my knowledge.

My family in Indonesia has always supported me with their love. I would like to

thank my mother Nenen Haryati and my father Dedi Soeprijadi, my brother Teguh

Hadi Susilo, my sisters Popy Prihardani and Putik Seska Utami.

During my life in Korea, I have been supported by friends. I am thankful for Shelly

Salim, Ivan Christian, Christian Oey, Irvanda Kurniadi, Adrianto Tejokusumo,

Rico Hartono, Muhammad Bilal, Jeonghwa Park, Kelzang Tashi, Donggeun Cha,

Junghun Kim, Jannies Lee, Karina Pramnanto, Youngim Kim, Donghun Kim, and

others to be in my life.

- 42 -

Appendix

1. Code Modifications

As explained in the previous section, the modifications need to be done in

three layers specifically in microkernel layer. We will explain the

modifications along with the purpose in each layer.

A. Fiasco Microkernel Layer

In here the modification is done in [FIASO_DIR]/src/kern/scheduler.cpp.

The objective in this layer is to create space shared scheduler object with

the specification in the figure 2.

#ifndef CONFIG_NUM_VM
#define CONFIG_NUM_VM 1

Its objective is to take the configuration from the configuration file. If it is

not defined, it sets to 1. The macro is defining how many VMs that will be

used in this configuration.

class Space_shared
{
 unsigned vm_cnt; // counter to calculate VM
 unsigned based_num; // to encode the value to VM
 bool pairing_done; // indicate whether the pairing is
completed
 unsigned total_req; // calculate the total requested CPUs
 struct vm_t { // to record data for each VM
 unsigned id; // given ID to respected VM

- 43 -

 unsigned req; // requested CPU of respected VM
 unsigned cpu_sum; // given total number of CPUs to
respected VM
 unsigned long cpus; // value of given CPUs
 } vm[CONFIG_NUM_VM]; // create data as much as loaded VMs
};

Create Space_shared class along with its members. The explanation for

each member is stated in comment next to it. Next, in the scheduler object

we call the class in its class declaration by following line.

Space_shared ss;

On Operation enumeration, we add the following code. It is used so the

abstraction layer in L4Re is going to use this code if it is communicating

with the space shared scheduler object.

Req_cpu = 3,

Adding the initialization method for Space_shared class.

PUBLIC void Space_shared::init()
{
 vm_cnt = 0;
 pairing_done = false;
 total_req = 0;
 int i;
 for (i = 0; i < CONFIG_NUM_VM; i++) {
 vm[i].req = 0;
 vm[i].cpus = 1;
 vm[i].cpu_sum = 1;

- 44 -

 }
}

Adding the method for Space_shared class if there is a request from VMs:

PRIVATE void Space_shared::add_to_db(unsigned req, unsigned
vm_id)
{
 if(vm[vm_id-1].req!=req)
 {
 vm[vm_id-1].id = vm_id;
 total_req-=vm[vm_id-1].req;
 vm[vm_id-1].req = req;
 total_req+=req;
 pairing_done = false;
 }
}

Adding method for Space_shared class if it is ready to pair VMs and

PCPUs:

PRIVATE void Space_shared::pair(unsigned active_cpu)
{
 unsigned used_cpu = active_cpu;
 unsigned cpu_cnt = total_req;
 unsigned i, j, multiplier, x;

unsigned long ret;

[Continued from above], set the values for each VMs.

 for (i = 0; i < CONFIG_NUM_VM; i++) {
 multiplier = 1;

- 45 -

 ret = 0;
 vm[i].cpu_sum = 0;
 for (j = 0; j < vm[i].req && j < active_cpu; j++) {
 x = cpu_cnt%used_cpu;

[Continued from above], value added 1 by default, so we can send PCPU 0.

Since the architecture of the ARM board that we use is in serial shape, the

pairing algorithm is simple.

 ret+=(1+x)*multiplier;
 multiplier*=based_num;
 --cpu_cnt;
 vm[i].cpu_sum++;
 }
 vm[i].cpus = ret;

}

[Continued from above], set to true so we don’t need to run this again.

 pairing_done = true;
}

Adding method for Space_shared class to get the total of given CPUs for a

VM:

PRIVATE unsigned long Space_shared::get_sum(unsigned vm_id)
{
 return vm[vm_id-1].cpu_sum;
}

Adding method for Space_shared class to get given CPUs for a VM:

- 46 -

PRIVATE unsigned long Space_shared::get_cpu(unsigned vm_id)
{
 return vm[vm_id-1].cpus;
}

Adding method for Space_shared class to process the request of a VM:

PUBLIC Utcb
Space_shared::req_cpu(Utcb const *iutcb, Utcb *outcb)
{

[Continued from above], get the values from utcb.

 unsigned req = iutcb->values[1];
 unsigned vm_id = iutcb->values[2];

 if(!vm_id) // if vm_id is 0, it means it has not been set
 {
 vm_id = ++vm_cnt; // get the new id
 }

 add_to_db(req, vm_id); // request! put it to db
 outcb->values[0] = vm_id; // return the id

 if(vm_cnt<CONFIG_NUM_VM)

{

[Continued from above], if all VMs have not contacted Scheduler, it means

the calling VMs have to wait.

- 47 -

 outcb->values[1] = 0; // not all vm requests are
received. Wait for more.
 return *outcb;
 }

 if(!pairing_done)

{

[Continued from above], if all VMs have contacted Scheduler, and the

pairing has not been done, call the the pairing function.

 unsigned i;
 unsigned active_cpu = 0;
 for (i = 0; i < Config::Max_num_cpus; ++i) {

[Continued from above], calculate how many CPU is online.

 if (Cpu::online(i))
 active_cpu++;
 else
 break;
 }
 based_num = active_cpu+1;
 pair(active_cpu);
 }

[Continued from above], if pairing has been done, no need to call pairing

again.

 // cpus sets total
 outcb->values[1] = get_sum(vm_id);
 // cpu sets

- 48 -

 outcb->values[2] = get_cpu(vm_id);
 outcb->values[3] = based_num; // will be used to decode the
cpu_set

 return *outcb;
}

Call the initialization method of ss in the scheduler object:

ss.init();

Adding method for Scheduler class to call req_cpu function in

Space_shared class:

PRIVATE
L4_msg_tag
Scheduler::sys_req_cpu(unsigned char, Syscall_frame *f,
 Utcb const *iutcb, Utcb *outcb)
{
 *outcb = ss.req_cpu(iutcb, outcb);
 if(!outcb->values[0])
 return commit_result(0, 2);

 return commit_result(0, 4);
}

In kinvoke method of the Scheduler, we add this line of code:

case Req_cpu: return sys_req_cpu(rights, f, iutcb, outcb);

- 49 -

B. L4 Runtime Environment Layer

The modification in this layer is basically just adding abstract functions to

communicate with microkernel. The main function is:

L4_INLINE l4_msgtag_t
l4_scheduler_req_cpu_u(l4_cap_idx_t scheduler, l4_umword_t
req,
 l4_umword_t *cpu_set, l4_umword_t *cpu_set_sum,
 l4_umword_t *vm_id, l4_umword_t *mul, l4_utcb_t *utcb)
L4_NOTHROW
{
 l4_msg_regs_t *m = l4_utcb_mr_u(utcb);
 l4_msgtag_t res;

[Continued from above], the next lines of codes pass the message through

IPC. L4_SCHEDULER_REQ_CPU_OP is set in the next line.

 m->mr[0] = L4_SCHEDULER_REQ_CPU_OP;
 m->mr[1] = req;

m->mr[2] = *vm_id;

[Continued from above], the next lines of codes call the object of scheduler.

 res = l4_ipc_call(scheduler, utcb,
l4_msgtag(L4_PROTO_SCHEDULER, 3, 0, 0), L4_IPC_NEVER);

 if (l4_msgtag_has_error(res))
 return res;

- 50 -

[Continued from above], if there is no error, the return values set by the

space shared object in microkernel will be used.

 *vm_id = m->mr[0];
 *cpu_set_sum = m->mr[1];
 if(*cpu_set_sum)
 {
 *cpu_set = m->mr[2];
 *mul = m->mr[3];
 }

 return res;
}

Another modification is adding another operation code in

L4_scheduler_ops enumeration. The value is needed to match with the

operation code in scheduler object.

L4_SCHEDULER_REQ_CPU_OP = 3UL

C. Task Layer

The modifications in task layer are specific for each VMs, for example the

modifications in L4Linux may be different from the modifications in

another Operating Systems. Regardless of the differences, the modifications

should be able to do these specific jobs:

· Inform space share module how much processors it needs,
· Acquire the physical id of CPU that is given by the space shared

module, and
· Insert the values to the native mapping of physical and logical CPU.

- 51 -

Specific to L4Linux, these three jobs can be added in the

l4x_cpu_virt_phys_map_init() function. We implemented the code that

contacts L4Re in this function. L4Linux has native mapping of physical and

logical CPUs, hence we do not need to create one and only added values

that will be used by the mapping.

In l4x_cpu_virt_phys_map_init() function, instead of the native code that

will only map the PCPU and LCPU from 0 up to the maximum number of

maximal CPUs, we replace it with this code:

 unsigned cpu_set[NR_CPUS];
 vm_request = l4x_nr_cpus;
 l4_umword_t req = vm_request;
 l4_umword_t cpu_set_v, cpu_set_sum, mul;
 cpu_set_v = 0;

 // cpu_set_sum: total number of cpu given by the
scheduler
 // it can be bigger or smaller than the requested value

 //communicate with scheduler
 while(!cpu_set_v)
 {
 // get the value from scheduler
 l4_scheduler_req_cpu(l4re_env()->scheduler, req,
&cpu_set_v,
 &cpu_set_sum, &vm_id, &mul);
 //check if the requested is actually bigger
 if(req > mul-1)
 {

- 52 -

 req = mul-1; // substracted by 1 since mul is
always added 1 so we can pass cpu id 0
 vm_request = req;
 //request again if it is
 l4_scheduler_req_cpu(l4re_env()->scheduler, req,
&cpu_set_v,
 &cpu_set_sum, &vm_id, &mul);
 }
 if(!cpu_set_v)
 l4_sleep(100);
 }

[Continued from above], the value given by the Scheduler object is not a

plain value, it needs to be decoded by following code. This is realized

because the number of CPUs for each VMs may be different and it is

difficult to allocate memory. Therefore the value is encoded. The

mechanism will be explained in the section E.

 //decode the value
 unsigned div = 1;
 for (i = 0; i < cpu_set_sum-1; i++) {
 div*=mul;
 }
 unsigned cnt = 0;
 while(cpu_set_v)
 {
 cpu_set[cnt] = (cpu_set_v/div)-1;
 cpu_set_v = cpu_set_v%div;
 div/=mul;
 ++cnt;
 }
 // done decoded

- 53 -

 // update according to the given value by the scheduler
 l4x_nr_cpus = cpu_set_sum;

 for (i = 0; i < cpu_set_sum; ++i) {
 if (i >= NR_CPUS) {
 LOG_printf("ERROR: vCPU%d out of bounds\n", i);
 return 1;
 }
 unsigned pcpu = cpu_set[i];
 if (!l4x_cpu_check_pcpu(pcpu, max_cpus)) {
 LOG_printf("ERROR: pCPU%d not found\n", pcpu);
 return 1;
 }
 l4x_cpu_physmap[i].phys_id = pcpu;
 for (j = 0; j < i; ++j) {
 overbooking |=
 l4x_cpu_physmap[j].phys_id == pcpu;
 }
 }

2. Execution

A. Compiling

After the modifications, compile all the codes in all layers just like

usual. Just don’t forget to set the number of CPUs in kernel

configuration.

B. Module List

1: entry L4Linux ARM with SS

2: roottask moe rom/l4lx_with_ss.cfg

- 54 -

3: module l4re

4: module ned

5: module l4lx_with_ss.cfg

6: module io

7: module fb-drv

8: module mag

9: module vmlinuz.arm

10: module ramdisk-arm.rd

Line 2: set the root task to our configuration files.

Line 3-10: load all relevant modules.

C. Configuration Files

In this example, we are going to run two ARMs concurrently.

 1: local lxname = "vmlinuz";

 2: if L4.Info.arch() == "arm" then

 3: lxname = "vmlinuz.arm";

 4: end

 5:

 6: L4.default_loader:start(

 7: { caps = {

 8: shmns = shmns:mode("rw"),

 9: log = L4.Env.log:m("rws"),

 10: },

 11: l4re_dbg = L4.Dbg.Warn,

 12: log = { "l4lx 1", "yellow" },

- 55 -

 13: },

 14: "rom/" .. lxname .. " mem=64M console=ttyLv0 l4x_cpus=2

l4x_rd=rom/ramdisk-arm.rd root=1:0 ramdisk_size=4000 init/linuxrc");

 15:

 16: L4.default_loader:start(

 17: { caps = {

 18: shmns = shmns:mode("rw"),

 19: log = L4.Env.log:m("rws"),

 20: },

 21: l4re_dbg = L4.Dbg.Warn,

 22: log = { "l4lx 2", "RED" },

 23: },

 24: "rom/" .. lxname .. " mem=64M console=ttyLv0 l4x_cpus=2

l4x_rd=rom/ramdisk-arm.rd root=1:0 ramdisk_size=4000 init/linuxrc");

Line 16 – 24, is calling another instance of L4Linux ARM.

In line 14 and line 24, in the command line, we add another variable

called as l4x_cpus. It is a native variable that is used to pass the number

of CPUs for the respective VM.

D. Run using Qemu

qemu-system-arm -kernel bootstrap.elf -M vexpress-a9 -cpu cortex-a9 -

m 256 -smp 4 -serial stdio

-kernel: loaded kernel for the machine, adjust the directory to your

kernel file.

-M: the machine that is going to be emulated

- 56 -

-cpu: the cpu architecture

- m: number of allocated memory (in MB)

-smp: number of cpu

-serial: redirect the serial port

E. Encoding Mechanisms

As stated before, the IDs of PCPUs that are given from the scheduler

object to the tasks are not in form of arrays or lists, instead in a single

number. To realize it, an encoding system is needed.

For example, if the scheduler gives PCPU with IDs of A1, A2,…, An-1,

AN. And there is an M number of CPUs in the machine. So the

scheduler will encode the IDs with this method:

(1+ A1) * P0 + (1+A2) * P1+ … + (1+AN-1) * PN-2 + (1+AN) * PN-1

With P = M + 1. The tasks receive the encoded code and decode it with

the value M that is also passed. The ID is added by 1 to prepare if the

scheduler wants to pass the value 0 with the PN-1. We use the P instead

of M so we can accommodate the addition in ID.

In a single number, the value can hold up to 15 CPUs at the worst case

due to the limitation of memory.

	I. Introduction
	A. Research Objective
	B. Thesis Layout

	II. Background Concept
	A. Many-Core Systems
	B. Space-Shared Scheduler
	C. Microkernel
	D. L4/Fiasco
	E. L4Linux
	F. ARM architecture
	G. Freescale i.MX6

	III. Related Works
	A. Tessellation
	B. Corey OS
	C. fOS
	D. Barrelfish
	E. Singularity

	IV. Proposed Space-Shared Scheduler
	A. Designs
	B. Procedures
	C. Implementation

	V. Performance Evaluation
	A. Many-Core Evaluation in L4/Fiasc
	B. Space-Sharing Scheduling Evaluation
	C. Space-Sharing Scheduling in L4Linux
	D. UnixBench Parameters
	E. Simulation Results and Discussion
	F. Overhead in Implementing Space-Shared Scheduler

	VI. Conclusions and Future Works
	Bibliography
	Abstract (English)
	Acknowledgements
	Appendix

<startpage>15
I. Introduction 1
 A. Research Objective 1
 B. Thesis Layout 2
II. Background Concept 3
 A. Many-Core Systems 3
 B. Space-Shared Scheduler 5
 C. Microkernel 6
 D. L4/Fiasco 8
 E. L4Linux 9
 F. ARM architecture 10
 G. Freescale i.MX6 11
III. Related Works 12
 A. Tessellation 12
 B. Corey OS 12
 C. fOS 13
 D. Barrelfish 13
 E. Singularity 13
IV. Proposed Space-Shared Scheduler 14
 A. Designs 14
 B. Procedures 16
 C. Implementation 18
V. Performance Evaluation 23
 A. Many-Core Evaluation in L4/Fiasc 23
 B. Space-Sharing Scheduling Evaluation 24
 C. Space-Sharing Scheduling in L4Linux 26
 D. UnixBench Parameters 26
 E. Simulation Results and Discussion 26
 F. Overhead in Implementing Space-Shared Scheduler 35
VI. Conclusions and Future Works 37
Bibliography 38
Abstract (English) 40
Acknowledgements 41
Appendix 42
</body>

