

August 2013

Master's Degree Thesis

A High Speed LT Codec Processor

Design Using ASIP Implementation

Tools

Graduate School of Chosun University

Department of Information and Communication Engineering

S. M. Shamsul Alam

[UCI]I804:24011-200000263893

A High Speed LT Codec Processor

Design Using ASIP Implementation

Tools

Graduate School of Chosun University

S. M. Shamsul Alam

August 23, 2013

ASIP 구현툴들을이용한고속 LT

Codec 프로세서설계

Department of Information and Communication Engineering

A High Speed LT Codec Processor

Design Using ASIP Implementation

Tools

Thesis Advisor: GoangSeog Choi, PhD

This thesis is submitted to the Graduate School of Chosun

University in partial fulfillment to the requirements for a

Master’s degree in Engineering

S. M. Shamsul Alam

April 2013

Graduate School of Chosun University

Department of Information and Communication Engineering

Prof. Young-Sik Kim

Prof. GoangSeog Choi

 Committee Chairperson ……………………..

 Prof. Jae-Young Pyun

 Committee Member …………………………..

 Committee Member …………………………..

Graduate School of Chosun University

Gwangju, South Korea

CERTIFICATE OF APPROVAL

MASTER’S THESIS

This is to certify that the master’s thesis of

S. M. ShamsulAlam

has been approved by examining committee for the thesis

requirement for the Master’s degree in Engineering

알람 샴술 석사학위 논문을 인준함

위원장 조선대학교 교수 변 재 영 印

위 원 조선대학교 교수 김 영 식 印

위 원 조선대학교 교수 최 광 석 印

 2013년 5월

 조 선 대 학 교 대 학 원

Contents

Chapter Page

List of Figures……………………………………………………………. iv

List of Tables……………………………………………………………... viii

List of Abbreviations and Symbols…………………………………….. x

Abstract…………………………………………………………………... xiv

1 Introduction……………………………………………………………... 1

1.1 Design Goal or Motivation ……………………………………………….. 1

1.2 Thesis Organization……………………………………………………….. 6

2 Evolution of RISC Processor …………………………………………… 8

2.1 Design Automation…………………………...……………………… 8

2.2 Performance of Computer System…………………………………… 11

2.3 Overview of Architecture Developments…………………………….. 12

2.3.1 Multiple Instruction Issue……………………………………….. 15

2.3.2 Architecture Design Space……………………………………… 15

2.4 Application Oriented Architecture…………………………………… 16

2.5 Parallel Computing: Amdahl’s Law…………………………………. 19

2.6 Complexity of Instruction Level Parallel Processors………………… 20

2.6.1 Data Path Complexity…………………………………………… 20

2.6.2 Non-pipelined Processor………………………………………... 22

2.6.3 Pipelined Processor…………………………………………… 24

2.7 Implementation Detail of RISC Processors………………………….. 24

2.7.1 Superpipelined Architecture…………………………………….. 28

2.7.2 VLIW Architecture……………………………………………… 29

2.7.3 Comparative Study on VLIW and Superpipelined

Architectures………………………..

31

3 Transport Triggered Architecture (TTA)……………………………… 35

3.1 VLIW to TTA………………………………………………………… 35

3.1.1 Reducing the RF Complexity…………………………………… 36

-i-

3.1.2 Reducing Bypass Complexity…………………………………... 41

3.2 Transport Triggered Architecture (TTA)…………………………….. 42

3.2.1 Hardware aspects of TTAs……………………………………… 45

4 Luby Transform Encoder and Decoder……………………………...... 49

4.1 Coding Theory……………………………………………………….. 49

4.2 Fundamentals of Channel Coding…………………………………… 52

4.2.1 Channel Models………………………………………………… 52

4.2.1.1 Binary-Input, Memoryless and Symmetric (BIMS)

Channels………………………………………………........

53

4.2.1.2 Binary Erasure Channel (BEC)……………………………. 54

4.2.1.3 Zcha Channel……………………………………………... 55

4.3 Linear Codes…………………………………………………………. 55

4.4 Belief Propagation Decoding Algorithm…………………………….. 56

4.4.1 Binary-input MAP Decoding via Belief Propagation………… 57

4.4.2 Message-Passing Rules for Bit-wise MAP Decoding…………... 59

4.5 Fountain Codes………………………………………………………. 62

4.5.1 Properties of Fountain Codes…………………………………… 63

4.5.2 The Random Linear Fountain…………………………………... 65

4.6 Luby Transform Codes………………………………………………. 68

4.6.1 Encoding Process……………………………………………...... 69

4.6.2 Decoding Process……………………………………………...... 70

4.6.3 Degree Distribution Design…………………………………….. 73

4.6.3.1 Ideal Soliton Distribution………………………………… 74

4.6.3.2 Robust Soliton Distribution……………………………… 76

4.7 Hardware Implementation of LT Codec……………………………... 77

5 LT Codec Processor Design Using ASIP Tools………………………... 85

5.1 Proposed Architecture of LT Encoder and Decoder…………………. 85

5.1.1 HW Architecture of Encoder………………………………...... 86

5.1.2 HW Architecture of Decoder………………………………….. 88

5.1.3 Decoding Procedure Using HLL……………………………… 92

5.2 Processor Design Using ASIP Tools………………………………… 95

5.2.1 ASIP Design with TCE…………………………………………. 95

-ii-

5.2.2 Processor Design Space Exploration…………………………… 98

5.2.3 TTA Programming……………………………………………… 99

5.2.4 Code Generation Method Using TCE Tool…………………….. 101

5.2.5 Program Image and Processor Generation……………………… 105

5.3 ASIP Design Flow Using Xtensa Xplorer (XX): Tensilica Tools…… 106

5.3.1 Extension via TIE………………………………………………. 110

5.4 OpenRISC Tool……………………………………………………… 112

6 Simulation Result……………………………………………………….. 117

6.1 LT Codec Simulation Using TCE Tool……………………………… 117

6.2 Simulation Result Using Tensilica Tool ……………………………. 128

6.3 Simulation Result by Using OpenRisc Tool………………………… 131

6.4 Comparison Between All LT Codec Processors…………………….. 134

7 Conclusions……………………………………………………………... 136

7.1 Summary……………………………………………………………... 136

7.2 Future Work………………………………………………………...... 139

Appendix I………………………………………………………………...... 141

Appendix II…………………………………………………………………. 142

References…………………………………………………………………... 145

Acknowledgement………………………………………………………….. 148

-iii-

List of Figures

Figure Title Page

Figure 1: Dealing complexity of the design using Silicon IP and SoC

platform.

3

Figure 2: Hierarchy of ASIP design flow (a) Different sections of ASIP

design. (b) Basic flow of ASIP design.

5

Figure 3: Automatic ASIP design flow (a) Tool researcher’s view (b)

Designer’s view.

10

Figure 4: Data parallel operation. 14

Figure 5: Architecture design space (a) Four dimensional representation

(b) Typical values of design spaces for different architectures.

15

Figure 6: Data path and connectivity path of a simple non-pipelined

processor (a) Data path (b) Connectivity graph.

23

Figure 7: Connectivity model of a non-pipelined processor. 23

Figure 8: Connectivity model of a pipelined processor. 23

Figure 9: Four stage RISC pipelining diagram. 26

Figure 10: Data path and Connectivity graph of RISC processor (a) Data

path (b) Connectivity graph.

27

Figure 11: Connectivity graph of RISC processor. 27

Figure 12: Connectivity model of a RISC processor. 28

Figure 13: Data path of a four stage superpipelined processor. 30

Figure 14: Connectivity model of an S – stage superpipelined processor. 31

Figure 15: Data path diagram of VLIW processor with two FUs. 32

Figure 16: Connectivity graph of a VLIW processor with K FUs. 32

-iv-

Figure 17: Connectivity graph of a superpipelined VLIW processor with K

S cycle FUs.

34

Figure 18: Data path of VLIW architecture with a separate Register Unit

(RU).

38

Figure 19: Pipelining diagram of four instructions. 39

Figure 20: Connectivity diagram of VLIW processor with separate register

unit (RU).

40

Figure 21: Connectivity status of bypass register. 40

Figure 22: Architecture with visible bypass transports [4] (a) Simple view

(b) Connectivity model.

44

Figure 23: Architectural view for OTAs and TTAs. 45

Figure 24: Example of a Transport Triggered Architecture (TTA). 47

Figure 25: Three communication channels (a) memoryless symmetric (b)

binary erasure (c) Zcha channel (d) the 8-ary erasure channel.

53

Figure 26: Factor graph for the MAP decoding. 59

Figure 27: A variable node (v) with K + 1 neighbors and a check node (c)

with J + 1 neighbors.

60

Figure 28: Transmission scenario of binary fountain code over BEC. 65

Figure 29: Properties of failure probability δ against E the number of

redundant packets.

68

Figure 30: Encoding process of LT codes. 69

Figure 31: Example of decoding LT code for K = 3 and N = 4. 71

Figure 32: Ideal Soliton Distribution for K = 10, and 100. 75

Figure 33: Comparative scenario of degree distribution (a) the distribution

of)(dρ and)(dτ (b) number of degree-one checks S (c)

quantity K′ .

77

-v-

Figure 34: Hardware architecture of LT encoder. 79

Figure 35: Hardware architecture of LT decoder. 80

Figure 36: Architecture of LT decoder (a) complete decoder unit (b) output

node processing unit.

81

Figure 37: LDPC decoder architecture (left) and variable node unit block

diagram (right).

84

Figure 37.1: Architecture of LT encoder 87

Figure 37.2: Hardware architecture of the LT Decoder: (a) CNU

architecture, (b) VNU architecture, and (c) Final decoding

stage.

89

Figure 37.3: LT Codec Tanner Graph 93

Figure 37.4: Decoder structure using HLL. 94

Figure 38: TCE design flow (a) from HLL to FPGA (b) TCE custom

operation design flow.

97

Figure 39: TCE operation (a) simulation behavior of custom FU (b)

Example of TTA processor data path with 3 instructions for

three buses.

98

Figure 40: Automated Design Space Exploration. 99

Figure 41: Code generation and analysis. 102

Figure 42: Compiler structure of TCE tool (a) data flow in the ILP

compiler (b) structure and data flow in a TCE compiler.

103

Figure 43: Block diagram of processor generation technique using TCE

tool.

105

Figure 44: Configuration of Xtensa Xplorer (a) Xtensa architecture (b)

Xtensa design flow.

107

Figure 45: A simplified architecture of ConnXD2 DSP engine. 109

Figure 46: Generation of custom TIE instructions. 111

-vi-

Figure 47: Architecture overview: (a) OpenRisc core’s architecture, (b)

CPU/DSP block diagram of OpenRisc (c) OpenRISC 1200 5

stages pipeline.

113

Figure 48: Model of LT codec communication. 117

Figure 49: Structure of minimal.adf architecture. 118

Figure 50: LT codec tanner graph for understanding the algorithm of LT

decoder.

123

Figure 51: Architecture of custom function unit (DEGREE) for LT

decoding application.

124

Figure 52: Comparative performance of different architectures for

LTcodec implementation.

127

Figure 53: Processor configuration of ltcodec_tie architecture. 128

Figure 54: Different signal waveforms of instruction wishbone bus for

OpenRisc-1200 core.

132

Figure 55: Design flow of this thesis work. 137

Figure 56: Design flow of Chip design procedure. 139

-vii-

List of Tables

Table Title Page

Table I(a): Summary of Bypass and RF complexity for different

architectures.

34

Table I(b): TCE assembly instructions for CRC implementation with

crcfast.adf.

105

Table II: Resources of all architecture definition files (ADFs). 119

Table III: Comparison of cycle counts and resource utilization of

LTcodec for minimal, moderate and custom ADFs.

121

Table IV: Comparison of cycle counts and resource utilization of LT

encoder for Encoder and minimal ADFs.

122

Table V: Cycle counts and resource utilization of LT decoder for Decoder

ADF.

125

Table VI: Cycle counts and resource utilization of LT decoder for

Decoder_llr ADF.

125

Table VII: Comparison of cycle counts of LT decoder using two ADFs

for different iterations.

126

Table VIII: Cycle counts and resource utilization of LT decoder for

LT_CODEC ADF.

127

Table IX: Comparison of cycle counts for different configurations of

Tensilca tool.

129

Table X: Simulation for different number of iteration using Tensilica tool. 130

Table XI: Resources of OpenRisc processor for reference design. 132

Table XII: Simulation result by using OpenRisc processor encoder and

decoder.

132

Table XIII: Comparison of cycle counts for the TCE and Tensilica

processors.

135

-viii-

Table XIV: Comparison of cycle counts for the TCE, Tensilica and

OpenRISC processors.

135

-ix-

List of Abbreviations and Symbols

ADF Architecture Definition File. tcycle cycle time

ADL Architecture Description Language #Instr Number of instruction

ALU Arithmetic Logical Unit ACcompl architectural complexity

ARQ Automatic Repeat Request DPcompl data path complexity

ASIC Application Specific Integrated

Circuit

ε Erased probability

ASIP Application Specific Instruction-set

Processor

* Erasure

ASM Assembly Instruction Set µ binary message domain

ASP Application Specific Processor r likelihood ratio

BEC Binary Erasure Channel l log-likelihood ratio

BEM Binary Encoding Map δ failure probability

BIMS Binary-Input, Memoryless and

Symmetric

E

G

Excess Packet

Generator Matrix

BP Bypass)(dρ degree distribution (ISD)

BP Belief Propagation)(dτ degree distribution (RSD)

BTB Branch Target Buffer R Information rate

CFG Control Flow Graphs ⊕ XOR Operation

CG Connectivity Graph .cfg Configuration file

CISC Complex Instruction Set Computer .log Log file

CMOS Complementary Metal Oxide

Semiconductor

.vmem

H

Memory image file

parity check matrix

CNU Check Node Unit Cap(C) Channel Capacity

CPI Cycles Per Instruction Mpar amount of parallelism

-x-

DC Decode #Trans number of transistors per chip

DDG Degree Distribution Generator O number of operations

DLPP Data Level Parallel Processors I issue rate

DSE Design Space Exploration D number of operand

DSP Digital Signal Processor S superpipelining degree

DSP Digital Signal Processing e Error vector

EICT Exploiting ILP at Compile Time x Input message vector

ELF Executable and Linkable Format y Transmitted code vector

EX Execution Stage z Received code vector

FLIX Flexible Instruction Extensions

FPGA Field Programmable Gate Array

FU Function Unit

GPP General Purpose Processor

HDB Hardware Database

HDL Hardware Description Language

HW Hardware

IDE Integrated Development Environment

IF Instruction Fetch

ILP Instruction-Level Parallelism

ILPP Instruction level parallel processor

INU Input node Processing Unit

IP Intellectual Property

ISD Ideal Soliton Distribution

ISS Instruction Set simulator

IU Immediate Unit

LDPC Low Density Parity Check

LLR Log Likelihood Ratio

-xi-

LLVM Low Level Virtual Machine

LSU Load/Store Unit

LT Code Luby Transform Code

LUT Look Up Table

LDW Load Word

MAP Maximum A Posteriori

MBIST Memory Built In Self Test

MD Multiple Data

MIMD Multiple Instruction Multiple Data

MISC Multiple Instruction Stream Computers

MO Multiple Operation

ONU Output Node Processing Unit

OR 1200 OpenRISC 1200

PIC Programmable Interrupt Controller

PIG Program Image Generator

PM Power Management

RC Read Connection Port

RF Register File

RISC Reduced Instruction Set Computing

RNG Random Number Generator

ROM Read Only Memory

RR Read Register

RSD Robust Soliton Distribution

RTL Register Transfer Level

SIMD single instruction multiple data

SIP Silicon Intellectual Property

SISC Single Instruction Stream Computers

-xii-

SoC System on chip

STW Store Word

TCE TTA based Co-design Environment

TCECC TCE C Compiler

TIE Tensilica Instruction Extension

TPEF TTA Program Exchange Format

TSMC Taiwan Semiconductor Manufacturing Company

TTA Transport Triggered Architecture

VCD value change dump

VLIW Very Long Instruction Word

VLSI Very Large Scale Integration

VNU Variable Node Unit

WB Write Back

WP Write connection Port

XX Xtensa Xplorer

-xiii-

논문초록

ASIP 구현툴들을이용한고속 LT Codec 프로세서설계

오늘날 루비 변환코드는 분수 부호 영역에서중요한 역할로 사용되고 있

다. 이 논문은 응용 특정 명령어 세트프로세서 (ASIP) 디자인 툴을 사용하

여 LT 코덱의 구현을 위한 다양한 기술을 알려준다. ASIP 디자인에서 프로

세서의 성능을 향상할 수 있는 일반적인 방법은 동시 작동을 보장하기 위한

기능들을 향상하는 것이다. 이러한 이유 때문에, 지난 몇 년간의 연구에 응

용 프로그램 특정 도메인에서 프로세서의 작동을 직접하였다. 따라서이 연

구 논문에서 LT 코덱과 같은 이러한 응용 프로그램 특정 작업은 서로 다른

프로세서 플랫폼을 사용하여 구현되었다.하드웨어의 성능과 프로세서의 구

조에 따라 달라질 뿐만 아니라 입력 응용 프로그램 LT Codec의 구조에 따

라 달라진다. 따라서입력 설계 전략, 프로세서 및 컴파일러 아키텍처와같은

최적화는 응용하는 특정 프로세서의성능을 향상시킬 수 있는 매우 유용한

현상이다. 지난 몇 년 동안, 프로세서 아키텍처는RISC 가족의 영역에서 발

전되어 왔다. 교육 수준 병렬 처리 (ILP), 우회 기법 및 여러 강좌와 같은 몇

가지 주요 개념은 RISC 프로세서의 운영에 포함되어 있다. 따라서 운송 실

알람샴술

논문지도교수: 최광석

공동지도교수: 권구락

정보통신공학과

조선대학교대학원

-xiv-

행 아키텍처(TTA)는 응용 프로그램 특정 프로세서 디자인에 스타일을 기

본으로 한다.

이 논문은 LT 코덱을위한 고속 TTA 프로세서를 설계 할 몇 가지 기술을

분석한다. 이외에도 TTA 아키텍처, LT 인코더와 디코더의 설계 수정이 쉽

고 효율적인 코덱 생산을 하기 위해 수정되어야 한다. 따라서이 논문은 복

구 목적으로 소프트 디코딩으로 알려진 여러개의 제품 알고리즘을 사용하

고, 그리고매우 적은 반복작업으로 AWGN 채널을 통해 인코딩 된 비트 스

트림에서 디코딩 된 신호를 생성하였다.

TTA 기반의 병행설계 환경 (TCE) 툴(tool)은 LT코덱을 실행하는 프로

세서의 다양한 범주(category)를 개발하기 위해서 사용돼왔다. 게다가, 이

결과를 다른것들의 응답과 비교하기 위해 LT 코덱을 실행하기 위한

Tensilica 와 OpenRISC 툴들을 사용했다. TCE와 마찬가지로, Tensilica

툴에서 프로세서의 성능을 극대화 하기위해 몇몇 환경설정들이 선택(설정)

되고 수정되었다. 이러한 활동들을 기반으로, 몇몇 유용한 결과들이 생성되

었고 TTA의 LT_CODEC.adf 아키텍쳐가 TCE와 Tensilica 툴의 아키텍쳐

와 비교했을때 LT 엔코더와 디코더를 실행함에 있어서 최소의 사이클을 차

지함을 보여주었다.이런 프로세서에서 Decoder.adf 나 Decoder_llr.adf 그

리고 마지막으로 LT_CODEC.adf라 이름지어진 일반적인 기능 유닛

(function unit)들은 TTA 프로세서의 기능을 점진적으로 개선하기 위해서

사용되었다. LT_CODEC.adf는 LT코덱을 시뮬레이팅 하는데 오직 4466

사이클과 43ms를 차지 했는데, 이는 Tensilica 툴에 비하면 매우 적다.

그럼에도 불구하고 Tensilica의 시뮬레이션 스피드는 TCE 툴에 비하면 매

우 빠르다. 이런 시뮬레이션 결과로부터 100MHz 클럭을 사용하여 초당 거

-xv-

의 100K 사이클을 수행한다고 볼 수 있다. 그러나 Tensilica는 ConnX D2

엔진을 이용하여 초당 1M 사이클을 수행한다. LT 코덱의 디코딩 기술은 반

복 방식으로서 수행되었고다른 프로세서 아키텍쳐의 변화 때문에 이런 디

코딩 반복 방식은 TCE와 Tensilica 툴을 이용하여 연구되었다. 이런 결과

로부터 TCE 툴의 LT_CODEC.adf는 디코더 된 신호를 발생시키기 위해 오

직 단일 반복만을 취했다. 그러나 Tensilica의 XRC_D2MR 환경은 성공적

인 디코딩을 위해서 9 사이클을 취했다. 나중에 이 학위논문은 TCE,

Tensilica 와 OpenRICS 사이의 비교를 나타낸다. 결과는 Tensilica 툴은

OpenRISC 보다 더 많은 사이클을 취하고 TCE의 성능은 다른것들과 비교

했을때 더 좋다는 것을 보여준다. 그러나 이 비교에서 OpenRISC 프로세서

의 제한 때문에 오직 LT 엔코더만 시뮬레이션 되었다. Tensilica와 마찬가

지로 OpenRISC는 명령을 실행하기 위해서 몇몇 사이클을 사용하는데이는

OTA 클레스 프로세서 툴의 일반적인 행동이다.

-xvi-

ABSTRACT

A High Speed LT Codec Processor Design Using ASIP

Implementation Tools

Luby Transform code nowadays plays an important role in the area of fountain

code. This thesis reports the various techniques for implementation of LT codec

using the application specific instruction set processor (ASIP) design tools. In

ASIP design, a common approach to increase the performance of processors is to

boost the number of function units for ensuring concurrent operation. Due to this

reason, in past few decades researches had been carried out to dedicate the

operation of processor on application specific domain. Therefore, in this research

paper, such an application specific work like LT codec was implemented using

different processor platforms. The performance of the hardware not only depends

on architecture of the processor but also depends on structure of the input

application i.e. LT codec for this thesis. Therefore, optimizations like strategy of

input design, processor and compiler architecture are very useful phenomenon to

enhance the performance of the application specific processor. In past few years,

processor architectures had been evolved in the area of RISC family. Some key

concepts like instruction level parallelism (ILP), bypassing technique, and multiple

instruction executions are included with the operation of the RISC processor.

Hence transport triggered architecture (TTA) is promising style in application

S. M. Shamsul Alam

Advisor: Prof. GoangSeog Choi, Ph.D.

Department of Information and Communication

Engineering

Graduate School of Chosun University

-xvii-

specific processor design. This thesis analyzes some techniques to design a high

speed TTA processor for LT codec. Besides this modification of TTA

architecture, the design of the LT encoder and decoder should be modified to make

a simple and computationally efficient codec processor. Therefore, in this thesis,

sum product algorithm known as soft decoding had been used for message

recovery purpose and this algorithm took very less iterations for generating error

free decoded signal from encoded bit streams through AWGN channel.

TTA based co-design environment (TCE) tool has been used for developing

various category of processors in this LT codec implementation. Moreover, to

compare this result with other’s response, Tensilica and OpenRISC tools are taken

for implementing this LT codec. Like TCE, in Tensilica tool several configurations

are chosen and modified for optimizing the performance of the processor. Based on

these activities some useful results are produced and it shows that LT_CODEC.adf

architecture under TTA takes minimum cycles compared to other architectures of

TCE and Tensilica tools for implementing LT encoder and decoder. In this

processor, some processor architectures named as Decoder.adf and Decoder_llr.adf

and finally LT_CODEC.adf are generated for gradually improving the performance

of the TTA processor. LT_CODEC.adf took only 4466 cycles and 43 ms for

simulating LTcodec, which is very less compared to the Tensilica tool.

Nevertheless, the simulation speed of Tensilica is very high compared to the TCE

tool. From this simulation result, it can be shown that TCE executes almost 100 K

cycles per second using 100 MHz clock. However, Tensilica runs 1 M cycles per

second using ConnX D2 engine. It is shown that the decoding technique of LT

codec has been performed as iterative manner and the manner of this decoding

iteration due to the change of different processor architectures was investigated

using TCE and Tensilica tools. From this experiment, LT_CODEC.adf of TCE tool

took only single iteration for generating decoded signal. However, XRC_D2MR

configuration of Tensilica took 9 cycles for successful decoding. Later, this thesis

-xviii-

portrays a comparison between TCE, Tensilia and OpenRISC tool. Result shows

that Tensilica tool takes more cycles than OpenRISC and the performance of the

TCE is very good compared to others. But, in this comparison, only LT encoder

was simulated due to the limitations of OpenRISC processor. Like Tensilica,

OpenRisc takes separate cycles for executing the instructions, which is a common

behavior of the operation triggered architecture (OTA) class processor tools. On the

other hand, for TCE tool it is occurred as the side effect of data transport.

Moreover, to determine the efficiency of the LT Codec architecture, the encoder

and decoder are implemented with a core area of 9 mm
2
 in TSMC 180-nm 1-poly

6-metal and Samsung 130-nm complementary metal–oxide–semiconductor

(CMOS) technology. Therefore, an efficient trade off is required between all these

observations to design an excellent processor based on the specific input

application.

-xix-

-1-

Chapter 1

Introduction

System on chip (SoC) is a great revolution in modern era. Like integrated circuit,

SoC includes many components of digital, analog or mixed signal electronic system in

a single chip. Therefore, SoC plays a vital role in the area of embedded system. As a

result, new design tools and methodologies are required to address the design, test and

verification for SoC. In today’s SoC design, programmability, reusability and

concurrent operation ability are the most exigent challenges and these force the design

work from Register Transfer Level (RTL) to a higher abstraction level. Silicon

Intellectual Property (SIP) or Silicon IPs are used as components in silicon chip

design since mid-1990s. The important constrains for quality design of SIP became

higher after the year 2000. After that time, SIP has been accepted widely and used in

large scale [1]. Figure 1 shows the design complexity using SIP. As shown in Fig. 1,

around the middle to late of 1980s, RTL components were optimized as the lowest

level component of system design. In this stage, RTL components took a certain

degree of design complexity from the system design so that the system could be

relatively more advanced compare to the system designed on a transistor level. During

1990s, the system design became more advanced and complicated that programmable

IP has to be used as the lowest level component to relax the system design complexity

[1]. After 2005, the component design complexity was dramatically increasing which

was handled by SoC platform.

1.1 Design Goal or Motivation

The traditional RTL design and SoC design differ from the size of their basic

building blocks. Designers can use complete blocks instead of logic gates and

registers. In order to increase the productivity, hardware design reuse is vital factor in

SoC system. To build complex systems, designers can integrate the pre-designed and

-2-

pre-verified intellectual property (IP) blocks to save the time to market of a product.

Designers are working hard to meet the requirements of embedded system design

constrains like enhanced performance, less area, low power and less time to market.

General Purpose Processors (GPPs), Digital Signal processors (DSPs) and Application

Specific Integrated Circuits (ASICs) are trying to solve the SoC design problem

partially. Because of wide variety of applications, GPPs are not suitable for

application specific embedded system. Here, designers think of ultimate performance

and flexibility. Since the application and programmer’s behavior are unknown, the

instruction set must be general. As a result, for different embedded system devices,

GPPs cannot provide good performance at low power. Similarly, in ASIC there is no

post-programmable opportunity, so its reusability is very limited. On the other hand,

in spite of programmability DSPs cannot achieve high performance with low power

dissipation. Because of that, in order to get an optimistic solution for SoC design,

there is a recent interest in new flexible architectures with programmability and

instruction parallelism and probably now a days it is known as Application Specific

Instruction-set Processor (ASIP). These ASIP architectures can replace multiple chip

designs implemented as ASIC architecture [2]. Sometimes ASIP is known as SIP.

More SoC solutions use ASIP IP. For ASIP designers, the biggest challenge is the

efficiency issue. Based on the coverage of full functionality of input application, the

main target of ASIP design is to gain the highest performance over silicon and the

highest performance over power consumption as well as the highest performance over

design cost [1]. For this reason ASIP gives more impression to solve all the constrains

in SoC scheme and looks very good solution for application specific embedded

systems design. Recently, ASIPs provide enhanced performance and flexibility and

keep the benefit of post-programmability compared to custom ASICs. The extensible

use of programmable processor platforms brings the advantage of Time-to-market.

ASIPs are optimized to execute a single application or a set of applications for

focusing on the specific purpose. In ASIP, it is possible to get higher performance if

-3-

the processor resources like registers, function units and computational units are

exactly matched with the input application. For example, in input application there is

no left or right shift operation, so this shift operation can be removed from the

processor architecture. As a result, this specific processor will take less power and

area compared to general-purpose processors those include all operation instructions.

For this reason, the main instigation of ASIPs is to increase the performance of

application without implementing fixed function hardware components. On the other

hand, manual IP block design sometimes time consuming and expensive. It requires a

tradeoff between GPP software implementation and pure hardware implementation in

terms of area, power and time. ASIP implementation is perfect for this trade off and it

is capable for scalable operation in terms of performance per area and power

consumption factors [3]. In ASIP, a platform (next it is known as custom function unit

in specific processor architecture) is a partly designed application specific system that

is used to adjust to a custom design with minimum cost. Therefore, this platform

based system design requires minimum design cost during the plugging a

programmable IP on the platform.

Figure 1: Dealing complexity of the design using Silicon IP and SoC platform [1].

Design based

on transistors

Design based

ongates

Design based

onRTL Components

Design based

onIPs

Design based

onplatforms

SoC

Platform

Component design

complexity System design

complexity

D
es

ig
n

 s
ca

le
 o

r
co

m
p

le
x

it
y

year
2005 1995 1985 1975 2012

Design based on

ASIP IP reduces

the design

complexity

dramatically

-4-

Processor design is not an easy task. Without the help of advanced design flow

diagram, it is very difficult to design processor in time and even not possible to

maintain high quality. For complicated system such as ASIP, therefore the design flow

is very much essential. Figure 2 shows the state of the art ASIP design flow adopted

from ref. [1]. This ASIP design flow is divided into three parts: architecture design,

design of programming tools, and firmware design, as depicted in Fig. 2 (a).

In this thesis, I will focus on the application specific processor design techniques by

using ASIP design tools. I have selected this input application as Luby Transform

codec (LT code). The reasons for selecting this LT code as a class of fountain codes

have been discussed in the chapter 4. Now a days the ASIP design is very promising

technique due to its tremendous demands in daily applications. In order to reduce the

time to market and to improve the excellency of the processor, there are many

automated design tools developed in this area. This thesis will describe the processor

design techniques using different tools for specific application.

The instruction set design is most important step in this design flow and this is the

first step of ASIP design process. This design stage is complicated and cannot be

claimed that a certain instruction set is the best. There should be a tradeoff of

instruction set among different parameters like performance, functional coverage,

flexibility, power consumption, silicon cost, and design time etc. Figure 2(b)

represents a basic design flow for the design of an instruction set architecture. As

shown in Fig. 2(b), at the starting stage, first the input application should be specified

and then translate to functional coverage. Under functional coverage, it is required to

collect the relevant standard specifications and knowledge in order to add extra

features for future usage.

After getting the input application specification, the partitioning of

hardware/software should be decided through profiling of the source code. It is

required to meet the performance constraint by defining the functions boosted by

application specific instructions and the functions accelerated by software using

-5-

conventional instructions. This is an important design concept known as 10% - 90%

code locality. That means 10% of the instructions run by 90% of the time and 90% of

the instructions run by 10% of time. Therefore, ASIP design required to find the best

instruction-set architecture optimized for the 10% frequently used instructions and to

avoid the instructions among the 90% those are not frequently used. The next step is

to implement the instruction set that include instruction-coding, design of the

instruction set simulator, and benchmarking. Therefore, the compiler takes the

instruction set and converts into the assembly syntax and the design of the binary

machine codes. Then the Instruction Set simulator (ISS) implements the instruction-

set in forms of assembly and binary codes.

Finally benchmarking is applied to evaluate the performance of instruction-set.

Moreover, the performance of instruction-set can be modified and the usage of each

instruction will be exposed for further optimization. The ASIP design flow takes the

specific design requirements as input and deliveries the microarchitecture design as

DSP

Arch

DSP

Design

Tool

DSP

Design

(a)

Specify function coverage, performance, and cost. Conducted

the source code profiling

Specify an assembly instruction set

Implement instruction set simulator and assembler

Assembly instruction set benchmarking and usage profiling

Instruction set optimization: trade off performance and cost

Release the instruction set architecture

Microarchitecture design, RTL, and VLSI implementation

Satisfied
Yes

No

Figure 2: Hierarchy of ASIP design flow. (a) Different sections of ASIP design.

(b) Basic flow of ASIP design [1].

(b)

-6-

output. The design of an ASIP is based mostly on experience, and it is essential to

minimize the cost of design iteration. This microarchitecture in form of RTL coding

is known as the tiny processor of the specific input application. This RTL design is

ready to use for chip design.

1.2 Thesis Organization

Chapter 2 describes the evolution of different processor architectures. It presents

the improvement of the RISC processor and explains how ILP, bypassing techniques,

and FUs as well as RFs are added in the processor architectures.

Chapter 3: After discussing the basic architecture of typical processors in chapter 2,

in chapter 3, an efficient architecture of processor has been discussed. It shows why

transport Triggered architecture is more suitable for designing the custom function

unit. Finally, it represents the hardware structure of TTA.

The main ideology of this thesis is to design an efficient processor for LT encoder

and decoder. For this reason after selecting the suitable processor, we need to discuss

about Luby Transform code. Chapter 4 will be discussing about the LT codec. There

are many issues for implementing the encoder and decode of LT codec. Chapter 4

includes the basic algorithm of encoding and decoding procedure, degree distribution

and background study of the LT codec implementation. Next chapter will show the

proposed architecture of input design as well as processor design.

For this reason chapter 5 surely discusses about the ASIP design tools. Moreover, our

proposed LT codec architectures are explained in this chapter. This architectures have

been implemented by using ASIP design tool.

In this thesis work TCE, Tensilica and OpenRisc processor tools have studied and

proposed processor of LT codec has been developed. This chapter represents the basic

theories for developing processor using these tools. By using these concepts, LT codec

program has been simulated which is shown in simulation chapter.

-7-

Chapter 6 shows these simulation results generated by three tools. First of all

individual result generated by specific tool has been displayed. Here mainly cycle

counts and simulation time are taken as reference parameters for comparing the

performance of the tool. After simulating using all these thee tools, then a comparison

table is portrayed to get the overall scenario of these tools.

Finally, in chapter 7, the whole work of this thesis will be summarized including

the limitations as well as different diversified optimization levels of these tools.

Besides this, an effective discussion are reported to make trade off between input

design and optimization level of the processors. However to get the ultimate goal,

some future works have been proposed with few ideas.

-8-

Chapter 2

Evolution of RISC Processors

In the previous section, we have discussed about the general concept of ASIP

design goal that includes the instruction-set generation, ISS execution and

microarchitecture formation technique. In this chapter, we will be discussing about the

step-by-step evolution of processors. The main theme for selecting processor platform

is to take a processor class that has concurrent operation strategy, good flexibility in

terms of use and more automated working functionality. Therefore, design automation

is very important to reduce the time to market. For complex input deign, it is difficult

to design the instruction-set manually. So, in order to make the ASIP work user-

friendly it requires an automated design tool for improving the efficiency and reducing

the research time. For this reason for selecting ASIP design tool, that exploits good

design automation.

2.1 Design Automation

Figure 3 (a) shows the overview of ASIP design automation in point of research

view. This design automation is divided into three major parts: architecture

exploration, modeling and generation-verification. In first step, architecture and

assembly instructions are generated according to the input application analyses. Here,

researchers design different profiles like control flow graph. The tool will merge

different control flow graphs. Architecture Description Language (ADL) is required to

model the instruction-set and architecture which is shown in second stage of Fig. 3 (a).

ADL is little bit difficult to understand. It should have sufficient information

regarding the modeling of instruction-set, data path, control path and

microarchitecture. If the ADL carries sufficient information for generating tools and

architectures, the ADL will not be readable and cannot be used by ASIP designers [1].

The third stage includes the generation and verification of processor. Some ASIP

-9-

design tools like Xtensa, LISA, OpenrRISC, TCE etc are extensively used for this

generation and verification purposes. However, in designer’s point of view this ASIP

design flow is different compared to research point. The designer’s should give focus

on on how to use the tool to generate instruction set, architecture, and assembly

programming tools, as well as support for design verifications. Figure 3 (b) shows the

ASIP design flow in point of design view. Architecture and assembly instruction set

exploration are first and most important part in ASIP design flow in point of design

view. Because there is a huge gap between CFGs (control flow graphs) of multiple

applications and an ASM (assembly instruction set) and many choices are possible to

select different instruction set architectures. So to reduce the effect of this large gap

another design step (constraint specification) might be needed. Designers will propose

the instruction-set architecture of a processor and this instruction set and architecture

will be the inputs of processor modeling. The processor model will be used for

generating the instruction set simulator, the compiler, assembler, and the architecture

behavior model. After benchmarking of the instruction set and architecture, RTL code

will be finally generated by the ASIP automation design tools [1].There are many

kinds of ASIP design tools developed by different research institutes and universities

over the years. Those are MIMOLA, Cathedral-II, Target, ARC, Xtensa, LISA,

MESCAL, PEAS-III, NOGAP, TCE, OpenRisc etc. In this thesis, I have used Xtensa,

OpenRisc and TCE tools to simulate my input application. Xtensa configurable

processor is used as ASIP design tool that is developed under Tensilica IP core

company in Silicon Valley. Similarly, OpenRisc is developed under the project of

OpenCores community. It’s purpose is to develop a series of general purpose open

source RISC CPU architectures. TTA based Co-design Environment (TCE) tool

developed by Tampere University of Technology, Finland. TCE is a toolset for

designing ASIP based on the Transport Triggered Architecture (TTA). This toolset

provides a complete design flow from C program to synthesizable Hardware

Description Language (HDL) and parallel program binaries. Besides the discussion on

-10-

Xtensa and OpenRisc, this thesis mainly focused the extensive use of TCE tool. After

getting the design automation idea, we need to give focus for selection of processor

class based on some benchmarks like cycle counts, simulation time, architecture

structure etc.

(b)

Figure 3: Automatic ASIP design flow (a) Tool researcher’s view. (b) Designer’s view [1].

(a)

Design a tool to analyze and specify

product and project constraints

Expert lib:

Reference

architectures

and assembly

instruction sets

Merge CFGs

for multiple

applications

Design a

profiling tool

for multi

source code

profiling, CFG

for each

application

Design a tool to generate or select an instruction

set and architecture

Design an ADL to model the instruction set and the

architecture

C
o

m
p

il
er

g
en

er
at

o
r

A
ss

em
b

le
r

g
en

er
at

o
r

S
im

u
la

to
r

g
en

er
at

o
r

D
at

ap
at

h

g
en

er
at

o
r

C
o

n
tr

o
l

p
at

h

g
en

er
at

o
r

R
T

L
 c

o
d

e

g
en

er
at

o
r

Design tools for a formal verifications and test pattern

generations

G
en

er
at

io
n

-v
er

if
ic

at
io

n

M
o
d

el
in

g

A
rc

h
it

ec
tu

re
 e

x
p

lo
ra

ti
o
n

Application profiling, requirement

specification, and assembly instruction set

exploration

Specify an assembly instruction set

and processor architecture

Generation of

assembly instruction

set simulator

assembler, and

compiler

Generation of

executable

processor

architecture model

HW-SW

co-design

Assembly

Instruction

set

optimization

Architecture

optimization

Benchmarking and evaluation process

ASM

modification
HW

modification
satisfied

RTL code and test bench generation

yes

no no

-11-

2.2 Performance of Computer System

The performance of the computer system depends on the real time taken to

accomplish a certain task or application by the system. This time is known as the

elapsed or wall clock time. This elapsed time includes 1) the user time, 2) the system

time, and 3) the time swapping and executing other processes [4]. In user time, the

system executes instruction specified by the application and the system time required

to handle operating system calls as requested by the application. In this thesis, I

mainly interested to decrease the user time. There are some standard benchmarks like

Dhrystone, SPECint and SPECfp used to estimate the performance of a computer. The

performances of different GPPs are listed in ref [4]. If we see the performance of

SPECint and SPECfp, a tremendous improvement in terms if issue rate was found in

these benchmarks [4]. This was happening because of the factors determine user time

of an application. So this time can be calculated from [4]

cycleuser tCPIInstrt # ××= (1)

where #Instr is the number of instructions executed, CPI is the average number of

cycles per instruction (CPI) and tcycle is the cycle time. So order to increase the

performance we need to decrease the factors contributing to the user time: #Instr, CPI

and or tcycle. There are three main developments which influences these factors [4]:

1. The improvement of VLSI technology, decreasing tcycle and increasing number

of transistors per chip.

2. There should be developments in pipelining instructions, instruction level

parallelism, influencing tcycle, #Instr and CPI.

3. Compiler developments, especially the exploitation of instruction level

parallelism which influences #Instr and CPI.

These kind of developments are strongly related to VLSI improvements. The gradual

progressive manner of VLSI revolution offers the possibility to put much more

hardware on a single chip. This was allowing the implementation of multiple function

units (FU) on a single chip. As a result, the CMOS feature size scaled down almost

-12-

20% per year. Therefore, chips are getting larger and the number of transistors per

chip #Trans is increasing more than 50% annually. The achievable cycle time tcycle,

which is determined by the critical timing path of circuit and roughly estimated by [4]:

delaypaddelaywiringlevelsgatett gatecycle ___# ++×≈ (2)

The pad_delay can be avoided by using the single chip fabrication and depending on

the dimensions of mask-layers scale with the minimal feature size (mfs), the switching

time of a gate tgate reduces at least linearly with mfs [4]. It is possible to reduce the

effective number of gate levels, #gate_levels using pipelining.

2.3 Overview of Architecture Developments

In the evaluation of VLSI technology, CISC was dominating in the decade of

seventies. It is necessary for computer architecture to maximize the performance, or

performance-cost ratio, through the perfect exploitation of VLSI capabilities. As it is

mentioned in Eq. (1) that the performance of architecture will be improved by

reducing the parameters of right hand side of Eq. (1). So, there are three techniques to

improve the performance of the processor [4]: (Super)-pipelining, Powerful

instructions, and Multiple instruction issue. Super-pipelining reduces the CPI and

tcycle. Pipelining is related to the execution of an instruction. So there are several steps

are required for execution of an instruction. Those are fetching the instruction from

memory, decode it, get the required operands, execute the specific operation and

finally write back the result of the operation. These steps are known as the well-

known Von Neumann cycle. For implementation of every instruction these steps are

repeatedly occurred. In early of the seventies, CISC architecture took very long cycle

time because of missing pipelined. If it is possible to overlap or pipeline the execution

of instructions, then the throughput of instructions increases and therefore CPI

decreases. However, this requires a streamlined instruction set, that means each

instruction can be split into the same number of stages and each stage takes the same

time and different hardware. So, this concept of execution is not possible in CISC;

-13-

therefore RISC evolved. RISCs have a reduced instruction set and support a very

limited number of addressing mode like instructions fits well in a sample pipeline

scheme. In principle, RISCs can issue one instruction each cycle and giving a

theoretical CPI of one. There is another pipelining concept to reduce the cycle time.

This is known as superpipelining. Using superpipelining #gate_levels can be reduced

in critical path [4]. The result of RISC pipelining is interpreted as to reduce the CPI

close to one but superpipelining decreases tcycle and in fact superpipelining lead to

increase of CPI. Besides using the pipelining and superpipelining concept, the

processor configuration can reduce the number of instructions by adding more

powerful instructions to the processor’s instruction set. Powerful instructions are

performing more work per instruction. There are two techniques for applying

powerful instructions. The first one is MD-technique results in data parallel

architectures and the second one is MO-technique results in operation parallel

architectures. CISC architectures already applied both techniques in limited extend.

The MD-technique is multiple sets of data operands per operation. That means one

operation is applied to multiple set of data operands. In MD-technique, vector and

SIMD (single instruction multiple data) processors both exploit the use of multiple

data operands per specified operation. Both configurations implement the data

parallelism differently. For example, vector processors execute a vector operation by

applying this operation to a vector of data elements sequentially in time. In SIMD

processors, it applies the operation concurrently to all the data elements. Figure 4

shows the execution method of vector and SIMD execution. This figure portrays both

types of data parallel execution and shows how instructions are executed on a vector

processor with K FUs and on a SIMD processor with K nodes. In the vector processor,

each instruction uses only one FU and has a very long execution time. If the required

resources are available then the next instruction can be issued even the previous

instruction is still executing on different FU. Similarly, an SIMD processor executes

instructions one at a time and each instruction may require all the available nodes. The

-14-

later case MO-technique is multiple operations per instruction. MO-technique is

exploited by VLIW processors that have horizontally encoded instructions. Each

instruction consists O fields, where O is the number of operations which can be

executed concurrently. VLIWs have much in common with SIMDs. Both

architectures accept a single instruction stream and each instruction specifies many

operations. Although it seems more complex but it may reduce the #Instr. The

following properties show the basic difference VLIWs and SIMDs architectures [4]:

• VLIWs can implement any mixture of FUs.

• VLIW instructions allow the different types of operation within a single

instruction.

• VLIWs exploits fine grain parallelism i.e. parallelism that exists in a very

small scale signal operation.

• In order to exploit a very fine grain parallelism, VLIWs requires a large

communication bandwidth between FUs. In general, FUs use the register file

to communicate.

• VLIW instructions are large compared to SIMD

The former three characteristics are very useful properties of VLIW and suitable for

designing application specific processor.

In
st

ru
ct

io
n

 1

In
st

ru
ct

io
n

 2

In
st

ru
ct

io
n

 3

In
st

ru
ct

io
n

 n

FU1 FU2 FU3 FU-K

ti
m

e

Vector execution method

Node 1 Node 2 Node 3 Node-k

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction k

ti
m

e

SIMD execution method

Figure 4: Data parallel operation [4].

-15-

2.3.1 Multiple Instruction Issue

In order to gear up the processor speed, multiple instruction techniques are very

powerful idea, which means multiple instructions per cycle. Multiple Instruction

Multiple Data (MIMD) processor has the capabilities to look ahead in the stream in

order to detect multiple instructions which can be issued concurrently. Recently,

multiple instruction issue architectures have attempted to improve processor

performance by fetching and dispatching more than one instruction in each processor

cycle. This capability is known as superscalar. In MIMD processors, communication

between two instructions is extremely specified by the instruction themselves.

2.3.2 Architecture Design Space

The former explanations presented the different techniques to enhance the

performance of the computer architecture. In this section, I will present the design

spaces to explain the processor architecture. Each architecture of the processor can be

specified as four variables like : I is the issue rate (instruction per cycle), O is the

number of operations specified per instruction, D is the number of operand pairs to

which the operation is applied and finally S is the superpipelining degree. Figure 5

shows the four dimensional representation of processor architecture [4].

Architecture K I O D S Mpar

CISC 1 0.2 1.2 1.1 1 0.26

RISC 1 1 1 1 1.2 1.2

VLIW 10 1 10 1 1.2 12

Superscalar 3 3 1 1 1.2 3.6

Superpipelined 1 1 1 1 3 3

Vector 7 0.1 1 64 5 32

SIMD 128 1 1 128 1.2 154

MIMD 32 32 1 1 1.2 38

Dataflow 10 10 1 1 1.2 12

(b)
Figure 5: Architecture design space (a) Four dimensional representation

(b) Typical values of design spaces for different architectures[4].

100 10

Dataflow

Instruction/cycle ‘I’

Data/operation ‘D’

Operations/instruction ‘O’

Superpipelining degree ‘S’

10

100

(1,1,1,1)

0.1

CISC

Superscalar

RISC

Superpipelined

RISC

VLIW

MIMD

SIMD

Vector

(a)

-16-

From the figure 5 (a), RISC architectures are very close to the center (1,1,1,1) of

the architectural design space. That means for RISC processor, the potential issues are

consisted like one instruction per cycle (I = 1), where each instruction specifies one

operation (O = 1), each operation applies to a single or a single pair of operands (D =

1), and the superpipelining degree equals to one (S ≈ 1). Figure 5 (b) shows a table

that represents the typical values of (I,O,D,S) for different processor configuration.

Here, the amount of parallelism Mpar and values of K, the number of FUs are also

calculated for every processor architecture. This amount of parallelism Mpar is

calculated as the following equation defined by [4]:

SDOIM par ×××= (3)

As portrayed in figure 5, to achieve a high Mpar these four orthogonal techniques can

be combined to create a hybrid architectures. One question can be raised that what

should be the best combination of design space parameters (I,O,D,S)-tuple for getting

maximum benefit of parallelism? The answer of this question depends on the

application domain. Therefore, processors for different application domain have

different architectures and amounts of parallelism.

2.4 Application Oriented Architecture

To satisfy the high requirement demands from users, it is necessary to increase the

performance of hardware system. There are some issues that cause these requirements

to increase the demand of application oriented architectures. Those issues are

described as below[4]:

Functionality: That means, the functionalities of user applications are increasing day

by day.

Larger data sets: In order to get better accuracy or more compatibility with physical

reality programs are applied to larger data sets.

-17-

Merging with new domains: Sometimes, the processor configurations should be

required to compatible with new eras like neural networks, expert systems, genetic

algorithm based applications and so on.

Real time requirements: Several applications require making analysis with real time

signals like real time image and signaling processing, control systems etc.

In order to meet the above requirements, it requires for computer architect to increase

the degree of parallelism Mpar. However, all times a parallelism Mpar does not

guarantee a speedup of architecture. So target speed is largely application dependent.

The following discussion shows the difference between different application domains:

Scalar domain: This is considered as the general purpose computing domain where

the compilers, text formatters and symbolic programs are mainly used. In this scalar

domain, programs may use many pointers, allocate heap area, and spend a lot of time

in the operating system. In these program most of the operations are 32 bit integer

based operations rather than floating point operation.

Vector domain: Programs in this vector domain use many operations like scientific

and highly numeric applications based functions. Typical operation in this domain is

is the dot-product on double precision floating point vectors.

Application specific domain: The performance of the processor configuration greatly

depends on the specification of input application. For example, signal processing

applications fit into this domain. The nature of operations in this domain may be

integer based and also floating point as well.

From the above discussion, it can be said that the processor configurations supporting

these three domains are called general purpose, super or vector and application

specific processor respectively. Among them, application specific processor domain

has more exploitable parallelism as compared to scalar or vector processor domain.

There are two types of exploitable parallelism as below:

Operational parallelism: This kind of parallelism occurs between different

operations of a single threaded program.

-18-

Data Parallelism: This parallelism exists when one or more operations can be applied

to many data elements in parallel. It focuses on distributing the data across different

parallel computing nodes. In a multiprocessor system, data parallelism is achieved

when each processor performs the same task on different pieces of distributed data. In

some situations, a single execution thread controls operations on all pieces of data. In

others, different threads control the operation, but they execute the same code.

To explain the difference of operational and data parallelism, let us take a function F

to a vector b and assigns the result to array vector a :

for i from lower_limit to upper_limit

do a[i]= F(b[i])

If the vectors a and b does not overlap then operation F can be applied to all set of

data in parallel. That all iterations in this loop can be executed concurrently.

Therefore, this is called as data parallelism. On the other hand, operation level

parallelism depends on the number of operations executed during the compilation of

F. In general, all programs contains limited amount of operation parallelism besides

the data parallelism in scientific and application specific domain.

According to the characteristics of the Single Instruction Stream Computers (SISCs),

the parallelism can be described as per the orientation of processor. So this types of

parallelism can be written as below:

Instruction level parallel processors (ILPPs): The main aim of ILPPs is to support

the exploitation of operational parallelism. Under this category, processors have

multiple FUs those are usually used to support different types of operations. Besides

this ILPPs apply the superpipeling technique that means I, O, or S are greater than

one. Superscalar, VLIWs, superpipelined, dataflow processors and processors using

TTA are usually belonged to ILPPs category.

Data level parallel processors (DLPPs): This kind of processors supports data

parallelism. In DLPPs, the value of D is in the range from tens to thousands and I and

O are usually one. SIMD and vector processor are the example of DLPPs.

-19-

Operational parallelism is not much easy like data parallelism. Operational

parallelism is limited but it is available in every processor operation. Therefore, this

technique being exploiting the parallelism will always increase performance of

processor. As it is mentioned earlier that ILPPs use operational parallelism but it also

gets benefit from data parallelism as well [4]. However theoretically, ILPPs are more

powerful than DLPPs. Nevertheless, there are some complexities in current ILPPs like

VLIW and I will discuss in next chapter regarding this complexity. For this reason,

this current ILPPs do not allow a very high degree of parallelism. The solution of this

problem is to bring the concept of transport triggered architecture (TTA) which will

be discussed in later.

On the other hand, depending on the supported application, application specific

processors (ASPs) can exploit both types of parallelism. In ASPs it is possible to

eliminate unnecessary features like, virtual memory, high precision integer to floating

point support cache memory etc. For this reason ASPs require less power, reduce

complexities and allow to support higher Mpar values or same Mpar value at lower cost.

In case of SISCs, it becomes also powerful by exploiting both types of parallelism.

But it creates problem when the control flow of a program is strongly data dependent.

To answer this problem multiple instruction stream computers (MISCs) may be the

solution to the high power demand. It contains many nodes, which exploit operation

or data parallelism. In this thesis, I will mainly exploit the TTA architectures and its

implementation tool, so the discussion on MISC is not further explained.

2.5 Parallel Computing: Amdahl’s Law

Amdahl's law is also known as Amdahl's argument and people who practice the

parallelization of code all experienced Amdahl’s law. This is used to find the

maximum expected improvement to an overall system when only part of the system is

improved. It is often used in parallel computing to predict the theoretical maximum

-20-

speed up using multiple processors. So, Amdahl’s law states that the speedup achieved

when parallelizing an application using N processor is limited by [4]:

fNf
Speedup

−+
≤≡

1/

1

 timeprocessing parallel

 timeprocessing serial
 (4)

where f is the fraction of program that can be parallelized and the serial function 1 – f

cannot be parallelized. So, from the equation 4, it will give a relationship between

number of processors and overall speedup. It is not true that if we apply parallel

processors or increase the value of N then no matter speedup will be increasing

linearly with respect to N. There should be a certain point after that the speedup will

be independent with respect to N. The speedup of a program using multiple processors

in parallel computing is limited by the time needed for the sequential fraction of the

program. For example, making a microprocessor twice does not mean that the

computer system shows a speedup of two. It depends on the number of parallel

portion of the executed program.

2.6 Complexity of Instruction Level Parallel Processors

In previous sections, I have discussed about the instruction level parallel processors

but it has several limitations. Due to the complexities of design, it will take long time

to market and high cost. Therefore, in this chapter, I will discuss the nature of

complexities for implementing the ILPPs. The VLIW and superpipelined processors

are traditional ILPPs. In these processors, they clearly illustrate what happens to the

data path complexity when adding function units or increasing pipelining.

2.6.1 Data Path Complexity

In general there are several steps required to execute an instruction and as it is

mentioned earlier that these steps are known as Von Neumann Cycle. These steps are

explained as below:

-21-

Instruction fetch: Instructions are fetched from the instruction or cache memory.

Fetching instructions is a main bottleneck due to the relative slow access times. This

slow access time can be reduced by perfecting instructions before the processing unit

requires them. The prefetched instructions are loaded into a prefetch buffer where they

are retained until needed by the processor.

Instruction decode: The instruction decode unit decodes and sequences all

instructions and depending upon processor, it also includes debug control coprocessor,

instructions and system control coprocessor etc. For example, in ARM cortex

architecture, the instruction decode unit handles the sequence of exceptions, debug

events, and memory built in self test (MBIST) etc.

Issue the instruction: If the required resources are available and possible data &

control hazards are resolved then an instruction can be issued.

Operand fetch: It fetches the required source operands and each operation may

require zero or more source operands. It may require complex address arithmetic to

fetch operands from data memory.

Execute: This stage performs the operations specified in the instruction. For example

in ARM cortex, the instruction execute unit consists of two symmetric Arithmetic

Logical Unit (ALU) pipelines, an address generator for load and store instructions,

and the multiply pipeline. The execute pipelines also perform register write back.

Write-back: This stage writes the results of the operation to the locations specified by

the destination operand.

Using two source operands, most operations deliver only one result value. But for

preparing the result value, it may require multiple succeeding operations. This section

I discussed the basic steps for executing one instruction. In next section, I will explain

the data path flow of a non pipelined processors.

-22-

2.6.2 Non-Pipelined Processor

The above steps are executing in a sequential manner for non-pipelined processor.

For example, the instruction fetch stage has to wait for the next instruction until the

write-back of the current instruction has been completed. Figure 6 shows basic data

path of a simple non-pipelined processor. In this data path, a general purpose register

file (RF) is used for the operand and result values, and the task of specified FU is to

perform the required operations fixed by the instruction set of this processor. A simple

FU contains one output port and two input ports. To make this data path simple I did

not include the immediate register and special purpose register like program counter in

Fig. 6. So these RFs are also used as source and destination registers. Figure 6 (b)

shows connectivity graph (CG) of the a simple non pipelined processor. The CG of

processor is a bipartite graph required to mention the data transport in data path. The

definition of CG is discussed in Appendix I. Therefore, this CG has a related

architectural complexity. For the given data path showed in figure 6 (b), the

architectural complexity is [4]

)43,5,5()pipelined-non(+++= NNNAC compl
 (5)

where N equals to the number of general purpose register. Although the connectivity

graph shows the connection between source and destination, it does not tell how to

implement this connectivity. Since, there are many options for the data path to

implement this connection, so this architectural complexity fails to indicate the real

measurement of complexity. It requires another quantities of complexity: the bus

complexity and data path complexity those are described in Appendix I. As

implementation of any connectivity graph requires at least one shared read write bus.

This causes in a non-pipelined processor, because a maximum of only one data

transport per cycles is supported. Figure 6 shows such an implementation of data path.

Therefore, the data path complexity for this non-pipelined processor can be

determined from figure 7 that shows a different view of the data path including all the

-23-

necessary read and write connections. It can be known as the connectivity model of

the processor. Therefore, the data path complexity for this non pipelined processor is

given by:

)4,1,3,4,4()pipelinednon(+++=− NNNDPcompl
 (6)

where DPcompl means the data path complexity. From figure 7, equation 6 can easily

be derived and in which the maximum number of read connections to any bus and

maximum number of write ports to any register is N + 2 and 1 respectively. So there

is no register with more than one write port.

If I analyze figure 7, it has four buses and among them three are very simple: they

only serve to connect FU and outputs to corresponding to source operand and result

registers.

Figure 8: Connectivity model

of a pipelined processor [4].

(a) (b)

Figure 6: Data path and connectivity path of a simple non-pipelined processor

(a) Data path (b) Connectivity graph [4].

Immediate Op-2

FUout BP-wb

Op-1 FUin-1

Op-2 FUin-2

Ri Rj

result Op-1

Figure 7: Connectivity model of a non-pipelined processor [4].

-24-

2.6.3 Pipelined Processor

There should be changed in connectivity model if we apply the pipelined feature in

processor. Figure 8 shows the connectivity mode for pipelined processor. Figure 8

shows that it has 6 buses: the source operands and the FU result value have to be read

concurrently from and written to the RF. Its architectural complexity is same as the

non-pipelined architecture. Nevertheless, its data path complexity can be written as

below:

)4 ,3 ,3,42 ,6()pipelined(+++= NNNDPcompl
 (7)

If I compare equation 7 with equation 8 that means compared to the non-pipelined,

pipelining contributes the following DPcoml.:

)0,2,0,,2()pipelinednonpipelined,(NDPcompl =−∆ (8)

From equation 8, the complexity of the pipelined processor is addition of extra buses

and the corresponding to the register ports.

2.7 Implementation Details of RISC Processors

The pioneer development in designing computing system is the change of

architectural design from CISC to RISC principles. This change shows that the extra

functionality does not always decrease the execution time. On the other hand, CISC

may increase the execution time. Sometimes, the extra functionality may add critical

timing path within a processor, which increases the cycle time. It requires complex

pipelining scheme for complex instructions. Similarly, this complex hardware will

increase the design time. Hence, product cost & time-to-market will be increases [4].

RISC processors have only a small number of instructions compared to a CISC. The

instructions are also smaller in size with a smaller number of fields and usually fixed

length. Most instructions have the same format with limited number of addressing

modes, which are executed by hardware. RISC processors have an instruction cache, a

data cache, only load and store instructions reference memory [5]. The main

bottleneck of RISC is to pipeline the execution of instructions, which reduces the CPI.

-25-

RISCs pipelined the Von Neumann Cycle and performed each step in a single cycle.

As a result, the execution of each step has to be time balanced and the complexity of

each step should be reduced. RISC has done pipelining through different ways:

caching, uniform instruction format, large RF, one simple operation per instruction.

On chip, caching for data and instruction reduces the time for instructions and data to

single cycle. Due to the single instruction size, RISC reduces the instruction decoding

time and complexity. RISC has large RF and most operations use operands located in

registers only. Operand fetch and write back steps are performed very easily in a

single cycle. For this reason in RISC the instruction set can easily be pipelined. Figure

9 shows the pipelining diagram of the simple RISC processor. It has four pipeline

stages: IF, DC, EX and WB stages. During the decode stage the instruction is

decoded, issued, and concurrently the source operand values are fetched from the RF.

During the execution stage all operations including the memory access operations are

performed. In RISC processor, the data move instructions support only one additional

addressing mode; besides the register-direct addressing mode supported by all

operations, data moves may address one memory operand, using the resister indirect

addressing mode [4]. Using the pipeline showed in figure 9, for a RISC architecture

CPI equals to 1. However, absence of precautions the value of CPI may increase

because of hazards and cache misses. There are three types of hazards: structural,

control and data hazards. Because of insufficient hardware to fulfill the requirements

of all instructions in the pipeline, structural hazard may occur. For example, a separate

memory access path required to avoid the structural hazard between execute and

instruction fetch stage. Instructions changing in the program counter can create the

control hazards. For example, the address of the next instruction is not known at the

end of the current instruction fetch stage. To solve this problem, branch target buffer

(BTB) can be well known solution. A BTB is not visible to the architectural level.

Instructions from specified address can be fetched and executed without changing the

state of the processor. If the processors are strongly depending on the data dependent

-26-

operations then data hazards may occur. For example, in figure 9, instructions i and i +

1 have data dependency condition. That means instruction i +1 uses the result of

instruction i. Therefore, the decode stage of i +1 has to be locked until cycle 5. Here 2

cycles are lost and the effective latency of an operation is 3 cycles. The result of

instruction i would not be available until instruction i + 3. Therefore, in this case the

instruction i has two delay slots. The compiler can solve this latency problem by

putting the two independent instructions between this dependent time. This is not all

time very easy task for compiler and this problem is getting worse to exploit the

instruction level parallelism.

This data hazard problem can be solved by implementing so-called bypass circuit in

the configurations. This bypass circuit can directly forward the result value to the

execution unit. Therefore, it is bypassing the RFs hence known as bypass circuit. In

figure 9, this direct forwarding is shown by indicating the arrow mark. Figure 10

shows the data path and figure 11 represents the connectivity graph including bypass

circuit for simple RISC processor [4]. The FU executes all the arithmetic, logic and

memory operations including load and store operations by using ALU (arithmetic

logic unit) and memory unit.

The FU takes data from two registers: op-1 and op-2, which can be fed by data

from the RF or bypass circuit. The BP-wb (bypass write back) register is used to hold

the result value for one cycle. After applying the bypass circuit, the architectural

complexity for this RISC processor is equal to:

IF Instruction Fetch

DC Decode

EX Execute

WB Write Back

Bypass circuit

Figure 9: Four stage RISC pipelining diagram [4].

-27-

)83,5,5()RISCsimple(+++=− NNNAC compl
 (9)

For applying, the bypass four extra connections are required without changing the

number of source and destination nodes.

Figure 12 shows the connectivity model of this RISC processor. It has divided into

three parts: FU, Bypass and RF. Bypass circuit contains source operand registers,

Figure 11: Connectivity graph of RISC processor.

Figure 10: Data path of RISC processor [4].

Immediate Op-2

FUout BP-wb

Op-1 FUin-1

Op-2 FUin-2

Ri Rj

BP-wb Op-1

-28-

bypass write back register and their connectivity. From figure 12, the data path

complexity can be written as below:

)4,3,8,42,7()RISCsimple(+++=− NNNDPcompl
 (10)

So, the differential data path complexity between bypassing and without bypassing is

given by [4]

)0 ,0 ,5 ,0 ,1()bypasswithout bypass,(=∆ complDP (11)

where maximum read connection and write port are RCmax = N and WPmax = 4

respectively. The real difference is restricted to four write connections.

2.7.1 Superpipelined Architecture

In order to reduce the execution cycle time, superpipelined architectures extend the

pipeline concept like instruction fetch, execute and memory stages are pipelined in its

configuration. In superpipelined architectures, the execution stage is divided into S

sections and depending on S there are two types of latencies: equal latency and non-

equal latency. In execution stage, for equal latency, all operations require S execution

cycles. The connectivity model for superpipelined architecture is same as simple RISC

processor and therefore the data complexity is also same as RISC processor.

For non-equal latency, the FU supports operations having different latencies upto S.

Let us assume that FU of superpipelined processor supports operations of all possible

latencies SLL ...,3 ,2 ,1 , ∈ . The data path of superpipelined processor is shown in Fig.

Figure 12: Connectivity model of a RISC processor [4].

-29-

13. Figure 14 showed the connectivity model for S-stage superpipelined processor. So

the data path complexity for this processor is given by [4]:

)3,3,37,25,8()inedsuperpipel(SNSNSNSDPcompl +++++++= (12)

Therefore, by differentiating equation 12 with respect to S it is possible to calculate

complexity added in each extra pipelining stage.

)1 ,0 ,3 ,1 ,1(/)inedsuperpipel(=∂∂ SDPcompl
 (13)

The bypass network complexity grows linearly with the number of superpipelined

stages but it does not increase the complexity of RF unit.

2.7.2 VLIW Architecture

As it is mentioned in previous section that superpipelined processors exploit internal

FU concurrency mentioned in figure 13 for reusing its hardware multiple times.

Instead of internal FU concurrency, VLIWs exploit external FU concurrency where it

contains multiple FUs and each FU supports RISC style operations. So, each VLIW

instruction specifies multiple RISC operations. Figure 15 shows the data path of

VLIW processor for two single cycle FUs. From Fig. 15, FUs share a bus for

immediate values. That means only one immediate can be specified per instruction.

Figure 16 shows the connectivity model for K single cycle FUs. The data path

complexity for VLIW processor is given by [4]:

)31,3,44,231,61()(2 KNKKNKKNKKKVLIWDPcompl +++++++= (14)

Differentiating equation 14, the additional complexity for each extra FU is given by:

)3,3,84,23,6(/)(KNNKVLIWDPcompl +++=∂∂ (15)

where RCmax = N, WPmax = 2 +2K, and #BPcmp = 4K
2
.

Therefore, the bypassing network complexity equals to the square of the number of

FUs. The bypassing time is linearly proportional to the function of K. So, adding more

FUs will increase the complexity of the VLIW processor.

-30-

Register file
Immediate

Op-1 Op-2

intermediate

stage

 Combinatoric logic

intermediate

stage

 Combinatoric logic

intermediate

stage

 Combinatoric logic

Bp-1

Bp-2

Bp-3

 Combinatoric logic

Bp-4

mux

Function

unit

4-stage

pipelined

Figure 13: Data path of a four stage superpipelined processor[4].

-31-

2.7.3 Comparative Study on VLIW and Superpipelined

Architectures

From the discussions of the previous sections, a VLIW and superpipelined

architectures have similar nature of behavior. For example, for both architectures the

compiler has to search for independent operations which can be scheduled into one

VLIW instruction or pipelined fashion. The characteristics of superpipelined processor

are given below:

• It uses the hardware resources efficiently.

• There is no classification of FU. So, for similar types of operational

executions, there is no chance of FU conflicts.

• It has scheduling advantage [4].

• Additional latency occurs during the operations of non-numeric scalar code.

• In superpipelined architecture, its performance is limited by clock and data

skew and its bypassing complexity is linearly proportional with S [4].

VLIW architectures are characterized by instructions that each specify several

independent operations. This is compared to RISC instructions that typically specify

one operation and CISC instructions that typically specify several dependent

operations. The characteristics of VLIW architectures are given below:

Figure 14: Connectivity model of an S – stage superpipelined processor [4].

-32-

• For using the scalar code applications, VLIW configurations are suitable

processor because it has no latching overhead.

Figure 15: Data path diagram of VLIW processor with two FUs [4].

Figure 16: Connectivity graph of a VLIW processor with K FUs [4].

-33-

• It uses different concurrency operation of FUs like integer adders, floating

point adders, shifters (left and right) etc.

• Number of FUs K is strongly limited by hardware constraints.

• Bypass and RF complexity are defined as O(K
2
) and O(K) respectively.

From the above characteristics, the combination of superpipelined and VLIW

principles leads to a very powerful processor. It will support both vector and scalar

code based on the specific applications. Figure 17 shows the connectivity model for

combined processor technique of VLIW and superpipelined principles with K S cycle

FUs. So the data path complexity is given by [4]:

() () () ()
() 











+++

+++++++++
=−

KSN

KKSKSNKSNKS
DPcompl

21

,3,123,221,51
)VLIWinedsuperpipel(

2

 (16)

Differentiating equation 16, the additional complexity for each extra FU is given by:

)2,3,)1(43,22,5()VLIWinedsuperpipel(SKSSNSNSDPcompl ++++++++=−∂

(17)

RCmax = N, WPmax = 2 + (S + 1) K and the number of bus complexity #BPcmp =

2(S+1)K
2
. Though the superpipelined VLIW has high performance but it is suffering

of bypassing network complexity for larger value of K or S.

From the evolution of processor from CISC to superpipelined VLIW, for exploiting

the large amount of concurrency, the complexity of bypass and RF components

depends on the number of external FUs supported by the processor. For this

superpipelined VLIW architecture, the area and timing parameters are a function of S

and K during the fabrication process. The bypass complexity can be defined as

following equation:

BPcompl ≡ (#Bus, #RC, #WC, WPmax, #Regs, #BPcmp) (18)

-34-

Table I(a): Summary of Bypass and RF complexity for different architectures [4].

Architecture Name
Bypass Complexity Register file

#Bus #RC #WC WPmax #Regs #BPcmp #RP

Simple RISC 2 1 5 2 3 4 3

Advanced RISC 3 2 11 3 5 9 3

Superpipelined S+1 S 3S+2 S+1 S+2 2S 3

VLIW 2K K 4K
2
+K 2K 3K 4K

2
 3K

Superpipelined VLIW K(S+1) KS 2K
2
(S+1)+KS K(S+1) K(2+S) 2K

2
(S+1) 3K

Table I (a) shows the bypass and RF complexities for different architectures. From

this table I (a) it can be said that VLIW and superpipelined processors have several

good features like capability to exploit instruction level parallelism and suited for

application specific operations by tailoring their functionality.

However, they are not fully scalable for large number of FUs. In next chapter, I

will be discussing the different architecture to solve this problem and fully scalable to

huge number of FUs.

Figure 17: Connectivity graph of a superpipelined VLIW processor with K S cycle FUs [4].

o
p
-1

,1

o
p
-1

,2

o
p
-K

,1

B
p

-1
,1

B
p

-1
,S

B
p

-K
,1

B
p

-K
,S

FUs Bypass Register file

 FU-1

 FU-K

s-
st

ag
es

s-

st
ag

es

o
p
-K

,2

im
m

-35-

Chapter 3

Transport Triggered Architecture (TTA)

In the previous chapters, I have discussed that how the instruction level parallelism

becomes one of the major architectural methods to increase the execution speed of

single processing nodes. Superpipelined VLIW and VLIW are the main processors for

exploiting this type of parallelism. VLIWs are more dominating because they avoid

the large run-time control overhead of superscalar and dataflow processors. The

performance of VLIWs is high because it has multiple FUs for executing operation

concurrently. Moreover, VLIWs exploit pipelining and their FUs can further

superpipelined.

3.1 VLIW to TTA

To improve the execution speed of processor, exploiting concurrent execution of

instructions which is known as Instruction Level Parallelism (ILP) is very important.

This is an attractive approach to satisfy the high performance requirements. There are

two main categories for exploiting the ILP. First category is like traditional CPU, such

as superscalar processor and it can exploit the ILP at run time. This type of

architecture is known as EIRT (exploiting ILP at run time) architecture [6]. The

second category is VLIW and TTA based processors that exploit the ILP at compile

time. It is known as EICT (exploiting ILP at compile time) architectures [6]. In this

category the programmer or compiler finds the parallel instructions statistically before

run time. Due to the flexibility and scalability behavior of VLIW architecture, it is an

interesting choice for the design of ASIPs. VLIWs are constructed from multiple,

concurrently operating function units (FUs) where each FU supports RISC style

operations. That means, a VLIW processor does not need to include a complex

instruction dependency detection hardware logic which simplifies the processor

implementation. In contrast, the scalability of a traditional VLIW processor is

-36-

seriously affected by the structure of the architecture. In VLIW, the reason to limit its

scalability is the complexity of the connectivity of required data path especially for

register file (RF) and bypass circuit. The data bandwidth between registers and FUs

depends on the number of selected FUs. Similarly, the instruction bandwidth also

depends on it. However, when all FUs are utilized, the available data bandwidth is still

rarely utilized. So, a new architecture is required to reduce this underutilization of RF

and bypass bandwidth. The concept of this new architecture is Transport Triggered

Architecture (TTA) [4]. The three step process of this transport triggering concept is

1) reducing the RF complexity, 2) reducing the bypass complexity and 3) the

mirroring the programming paradigm [4].

3.1.1 Reducing the RF Complexity

Generally, in VLIWs with K FUs need 3K ports from RF. 2K ports required for

reading and K ports required for writing. These 3K ports are utilizing in worst case

situation when each FU needs to perform two reads and one write operations on the

RF simultaneously. This amount of traffic can be reduced because there are some

reasons that not all these 3K ports of K FUs are required to keep the FUs busy. The

following scenarios may occur during the operations or sequence of operations [4]:

Source operands: Every operation does not require two RF source operands. For

examples, register to register copies, operations with immediate operands, loads with

direct, indirect or displacement (offset) addressing, jumps, and calls etc these

operations only one source operand. Similarly not all operations like jumps, calls, and

stores produce a result for the RF.

Bypassing: During the execution of FUs, FUs take values from RFs. But, in case of

bypassing circuits are applied then bypassing values between FUs is needed when

operations need operand values which are not yet available in the RF. Once the

operations for which the results are not yet written back to the RFs, but some FUs are

going to use of that result value then bypassing circuits bypass that value to the FUs.

-37-

For that reason when all usages of a value can be bypassed, it is not needed to write

this value in the RF; in that case, the result value is said to be dead.

Operand sharing: Sometimes, an operand value may be used multiple times by the

following operations. If the operand value is still in the bypass, the RF read traffic can

be further reduced by operand sharing. Similarly, a RF read port is shared by multiple

read operations in case of reading the same register in same cycles during the multiple

operations.

Depending on the above explanation, it is possible to reduce the number of RF

ports and number of RFs hence, RF complexities will be reduced. So, it is necessary to

know the technique of how to control a RF with a limited number of ports. There are

two control techniques for this option: 1) dynamic or run time control, and 2) static or

compile time control [4].

Dynamic control: In this technique, the hardware will assign operands to port on

basis of availability. In order to multiplex the available ports between the operands,

hardware locks the ports for one or more cycles when there are many operands. So,

the locking ports should be chosen such that locking does not contribute much to the

CPI.

Static control: it is very difficult for hardware to determine which RF operands are to

be read and written by using dynamic control. Because at compile time this

information should be preciously necessary. In static control technique, a separate FU

named as register unit (RU) is implemented and it has a limited number of read and

write ports. Figure 18 shows the data path of a VLIW with 2 FUs and one RU. This

RU has one write port and two read ports. So remarkable changes can be found

between two data path of VLIW: one is using RU and another one is without RU. So

in Fig. 18, BP-1 and BP-2 bypass registers and their associated bypass busses are

disappeared. Because, this bypassing unit is localized within one unit.

an architecture operates and programmed. Let us consider the following instructions

and scheduled with the architecture explained in figure 18.

(r5

RISC processor because of its limited ALU functionality. The pipelined execution of

this schedule i

stage (RR), execution stage (EX), and write back stage (WB). From figure 16 it shows

that the timing concept of RU is different. Register fetch, execution and write back are

still pipel

RU. That means it is used only within the bypass circuit. That

of

internally

But it is possible to optimize this schedule. For example, the third instruction is

Here the bypassed values are saved in RU. The following exampl

an architecture operates and programmed. Let us consider the following instructions

and scheduled with the architecture explained in figure 18.

In third instruction,

r5) and 0. So it is just an activity of register copy. This kind of instruction is used for

RISC processor because of its limited ALU functionality. The pipelined execution of

this schedule i

stage (RR), execution stage (EX), and write back stage (WB). From figure 16 it shows

that the timing concept of RU is different. Register fetch, execution and write back are

still pipelined.The corresponding value of

RU. That means it is used only within the bypass circuit. That

of r10 is not written in the register. Similarly, the value of

internally within the RU. So it requires 6 cycles to execute all the four instructions.

But it is possible to optimize this schedule. For example, the third instruction is

Figure 18: Data path of VLIW

Here the bypassed values are saved in RU. The following exampl

an architecture operates and programmed. Let us consider the following instructions

and scheduled with the architecture explained in figure 18.

In third instruction, register 6 (

) and 0. So it is just an activity of register copy. This kind of instruction is used for

RISC processor because of its limited ALU functionality. The pipelined execution of

this schedule is shown in figure 19. This schedule has three stages: reading register

stage (RR), execution stage (EX), and write back stage (WB). From figure 16 it shows

that the timing concept of RU is different. Register fetch, execution and write back are

ined.The corresponding value of

RU. That means it is used only within the bypass circuit. That

is not written in the register. Similarly, the value of

within the RU. So it requires 6 cycles to execute all the four instructions.

But it is possible to optimize this schedule. For example, the third instruction is

Figure 18: Data path of VLIW

Here the bypassed values are saved in RU. The following exampl

an architecture operates and programmed. Let us consider the following instructions

and scheduled with the architecture explained in figure 18.

1. add r10,r1,#8

2. sub r3,r10,r2

 3. add r6, r5, #0

 4. nor r8,r3,r4

register 6 (r6) stores the addition result between the value of

) and 0. So it is just an activity of register copy. This kind of instruction is used for

RISC processor because of its limited ALU functionality. The pipelined execution of

s shown in figure 19. This schedule has three stages: reading register

stage (RR), execution stage (EX), and write back stage (WB). From figure 16 it shows

that the timing concept of RU is different. Register fetch, execution and write back are

ined.The corresponding value of

RU. That means it is used only within the bypass circuit. That

is not written in the register. Similarly, the value of

within the RU. So it requires 6 cycles to execute all the four instructions.

But it is possible to optimize this schedule. For example, the third instruction is

Figure 18: Data path of VLIW architecture with a separate Register Unit (RU)

-38-

Here the bypassed values are saved in RU. The following exampl

an architecture operates and programmed. Let us consider the following instructions

and scheduled with the architecture explained in figure 18.

1. add r10,r1,#8

2. sub r3,r10,r2

3. add r6, r5, #0

4. nor r8,r3,r4

) stores the addition result between the value of

) and 0. So it is just an activity of register copy. This kind of instruction is used for

RISC processor because of its limited ALU functionality. The pipelined execution of

s shown in figure 19. This schedule has three stages: reading register

stage (RR), execution stage (EX), and write back stage (WB). From figure 16 it shows

that the timing concept of RU is different. Register fetch, execution and write back are

ined.The corresponding value of r10 is never written back or fetched

RU. That means it is used only within the bypass circuit. That

is not written in the register. Similarly, the value of

within the RU. So it requires 6 cycles to execute all the four instructions.

But it is possible to optimize this schedule. For example, the third instruction is

architecture with a separate Register Unit (RU)

Here the bypassed values are saved in RU. The following exampl

an architecture operates and programmed. Let us consider the following instructions

and scheduled with the architecture explained in figure 18.

1. add r10,r1,#8

2. sub r3,r10,r2

3. add r6, r5, #0

4. nor r8,r3,r4

) stores the addition result between the value of

) and 0. So it is just an activity of register copy. This kind of instruction is used for

RISC processor because of its limited ALU functionality. The pipelined execution of

s shown in figure 19. This schedule has three stages: reading register

stage (RR), execution stage (EX), and write back stage (WB). From figure 16 it shows

that the timing concept of RU is different. Register fetch, execution and write back are

s never written back or fetched

RU. That means it is used only within the bypass circuit. That’s why in

is not written in the register. Similarly, the value of r3

within the RU. So it requires 6 cycles to execute all the four instructions.

But it is possible to optimize this schedule. For example, the third instruction is

architecture with a separate Register Unit (RU)

Here the bypassed values are saved in RU. The following example shows how such

an architecture operates and programmed. Let us consider the following instructions

) stores the addition result between the value of

) and 0. So it is just an activity of register copy. This kind of instruction is used for

RISC processor because of its limited ALU functionality. The pipelined execution of

s shown in figure 19. This schedule has three stages: reading register

stage (RR), execution stage (EX), and write back stage (WB). From figure 16 it shows

that the timing concept of RU is different. Register fetch, execution and write back are

s never written back or fetched

s why in Fig. 19, value

r3 has to be bypassed

within the RU. So it requires 6 cycles to execute all the four instructions.

But it is possible to optimize this schedule. For example, the third instruction is

architecture with a separate Register Unit (RU) [4]

e shows how such

an architecture operates and programmed. Let us consider the following instructions

) stores the addition result between the value of

) and 0. So it is just an activity of register copy. This kind of instruction is used for

RISC processor because of its limited ALU functionality. The pipelined execution of

s shown in figure 19. This schedule has three stages: reading register

stage (RR), execution stage (EX), and write back stage (WB). From figure 16 it shows

that the timing concept of RU is different. Register fetch, execution and write back are

s never written back or fetched from

19, value

has to be bypassed

within the RU. So it requires 6 cycles to execute all the four instructions.

But it is possible to optimize this schedule. For example, the third instruction is

[4].

-39-

independent from other and can be scheduled in cycle two on FU-2. The fourth

instruction is scheduled in cycle three such that r3 need not to be stored in the RU.

By this way, it will require less cycle to schedule these instructions. This frees a write

port, which is needed in order to optimize the schedule.

Figure 20 shows the connectivity graph of VLIW architecture with separate RU.

From figure 20, the data path complexity can be written as:












++++

+++++++++++
=

WRWKN

WNWRKKRNWKWRK
DPcompl

 ,12

 ,1)12(2 ,12 ,13 2

(19)

Therefore, the extra FU adds a complexity as following equation:

()0 ,2 ,124 ,2 ,3/ +++=∂∂ WRKKDPcompl
 (20)

where RCmax = N and WPmax= max(W, K + R + 1)

If I compare this connectivity diagram with connectivity diagram diagram (without

RU) then we notice a remarkable change I mean reduction in connectivity complexity.

Still there is a major problem in this architecture like huge number of comparator.

This is shown in following equation in terms of bypass complexity.

)()2(RKWKBPcompl +×+= (21)

This can be modified by applying bypass complexity reducing technique.

Instruction
r1,#8 add -

Cycle

r2 sub r3

r5,#0 add r6

r3, r4 nor r8

1 2 3 4 5 6

1

2

3

4

Figure 19: Pipelining diagram of four instructions [4]

-40-

Figure 20: Connectivity diagram of VLIW processor with separate register unit (RU).

Figure 21: Connectivity status of bypass register

 (a) Fully (b) Limited read and (c) Limited write connectivity [4].

O
p
-R

U
-1

o
p
-1

,1

o
p
-1

,2

o
p
-K

,2

o
p
-K

,1

im
m

FU-1

FU-K

O
p
-R

U
-W

Bypass Fuction units

Register Unit

N register

Read port 1

Read port R

Write port 1

Write port W

(a)
(b) (c)

-41-

3.1.2 Reducing Bypass Complexity

Bypass complexity of VLIW processor depends on the operand identifiers, number

of read and write connections and number of bypass buses or global buses. In case of

placing RF as a separate FU, the compiler exactly knows which input the multiplexer

should be read from. Therefore, it is possible to make the bypass circuit visible at the

architectural level. There are several options for this data path visibility: fully

connected, limited read connectivity and limited write connectivity. Figure 21 shows

these visibility connections for bypass circuit.

For fully connected network like figure 21 (a), all the read and write ports are

connected with bypass network. Here, this is not an actual solution because the bypass

is now considered as a shared registered file and this register file has to be bypassed as

per the pipelining access by using separate stages for RR, EXE and WB. Therefore, to

reduce this complexity, these connections (read and write ports of FUs in bypass

network) should be limited. In order to do this, there are two possible options: one is

to reduce the read connections and another one is to reduce the write connections.

Figure 21 (b) shows the limited read connectivity for only one read connection per

bypass register. For figure 21 (b), the bypass complexity can be written as [4]:

),,1,,2,3()#,,#,#,(# NKKNKKRegsWPWRBusBP maxCCcompl = (22)

where N is equivalent as the number of operand registers (≈ 2K). If N = cK, c is a

constant value, then the bypass complexity per FU increment is given below:

) ,1 ,0 ,2 ,2 ,3(/ ccKKBPcompl =∂∂ (23)

From equation 23, it can be said that 3 buses are added per FU.

Limited write connectivity

Figure 21 (c) shows the limited write connectivity of the FUs for VLIW processor.

Therefore, the bypass complexity can be written as [4]:

),1,,,2,3()#,,#,#,(# NNNKNKRegsWPWRBusBP maxCCcompl = (24)

-42-

where N is the number of bypass registers, N ≥ K. Again N = cK, c is a constant value,

and then the bypass complexity per FU increment is given below:

) ,0 , , ,4 ,3(/ ccccKKBPcompl =∂∂ (25)

According to the equation 25, the incremental complexity is more in limited write

connectivity compared to limited read connectivity. Because, this limited write

connectivity leads to 2K non-local bypass buses for reading operands.

In VLIW architectures, still there is a problem. For example, the number of bypass

buses is linearly proportional to the number of FUs. This number cannot be chosen

independently. For example, suppose ALU is split into three major components:

adder, shifter, and logical units. From a concurrency point of view, this splitting is

very good but from a bypass complexity point of view, VLIW structure is not more

attractive. It is trying to solve this problem in transport-triggered architecture (TTA).

3.2 Transport Triggered Architecture (TTA)

The connectivity diagram of bypass registers mentioned in figure 21 is not fully

utilized during the execution time of FU. Because, it is necessary to design the bypass

transport capacity for worst case traffic conditions. When the number of FU outputs is

larger than the communication requirements, then it is required to reduce the bypass

capacity. Number of FUs may increase in the following situations [4]:

FU splitting: any FU can be split upon its different functionality. For example, an

ALU has different execution units: adder/subtractor, a shifter and a logical unit. These

units are split to reduce the FU resource conflicts during the operation mapping. So it

allow more concurrency without a large increase of hardware.

FUs with multiple outputs: sometimes FUs are generating multiple results. In this

case, multiple outputs may share a single bypass bus.

Superpipelined FUs: as it is mentioned earlier, in superpipelined architecture FUs are

split into different stages and it may contain multiple outputs with different latency.

Like FUs with multiple outputs, it may share a single bypass bus.

-43-

As per the previous discussion, it is required to reduce the number of busses for

improving bypass utilization. A FU may write single or multiple buses depending on

scheduling requirements. There are two types of scheduling activities: scheduling of

operation and scheduling of transport. Based upon the scheduling of register port,

scheduling of transport can be done either at run time or at compile time. As discussed

earlier that run time scheduling is very expensive so, it was proposed to schedule these

buses at compile time [4]. Besides reducing complexity, compiler intellectually

handles the transport priority in more transport than available buses situation. These

transports are separated from operations. Figure 22 shows these two different views of

the resulting architectures for full connectivity on bypass buses.

There are two types of views showed in figure 22. In the simple view the read and

write connections are drawn as seen from the FU point of view. In this architecture,

the bus connections are in cascade form that means a FU first writes its result on a

local result bus the result is distributed to one of the operand register via global bypass

buses. To avoid this cascade problem, the connectivity model is developed shown in

figure 22 (b). For this connectivity model the the bypass complexity is given below

[4]:

()KMKMKMKMKBPcompl 2,,),21(),2(,3 +++= (26)

M is number of bypass buses. M is a constant value, and then the bypass complexity

per FU increment is given below:

()2,0,1,21,2,3/ MMKBPcompl ++=∂∂ (27)

From equation 26, among the total number of buses 3K + M only M of them are used

for global inter FU communication. For constant value of M the bypass complexity is

linearly proportional to the number of FUs. In practical equation 26 may be reduced as

below

 ()KMKKKKBPcompl 2,1,/,3,3,3= (28)

The bypass complexity per FU increment is:

-44-

()2,0,/1,3,3,3/ MKBPcompl =∂∂ (29)

Therefore, this complexity is extremely low. This connectivity as well as the

complexity is highly application dependent. The transport is visible at the architectural

level that implies that the specification of operation can be hidden. Here the data

transport can trigger the operation as a side effect of operation. So no extra instruction

required for triggering.

According to ref [4], this newly developed architecture is known as transport

triggered architecture (TTA) and the traditional architectures are known as operation

triggered architectures (OTA).

TTAs are broader classification of VLIW architecture and it requires fewer

constrains for scheduling data compared to VLIWs. By considering the conditions like

having the same FUs, choosing the proper connectivity and selecting proper compiler

schedules, TTAs become VLIW processor. Figure 23 represents the traditional VLIW

architectures [4].

M buses

FU-1 FU-K

Operand

registers

B
y
p

a
ss

F

U
s

(a)

(b)

Figure 22: Architecture with visible bypass transports

(a) Simple view (b) Connectivity model [4].

-45-

One TTA instruction divided into several bus fields depends upon the number of

buses in the architecture. Each bus-field specifies one move operation from source

(src) to destination (dst). The i-bit indicates as source id and this source id may be

interpreted as an immediate or as a register specification. The following example

shows the programming in a TTA architecture. For example, TTA has three buses and

this example represents the TTA scheduling of previous example.

From this example, it requires 8 moves and four instructions to execute this operation.

3.2.1 Hardware Aspects of TTAs

The figure 24 shows an example of TTA processor. FUs, RFs, data memory,

instruction memory and interconnection network are included in this architecture. An

FU may contain a general purpose register file or logic units; in that case, it is named a

register unit (RF) or arithmetic logic unit (ALU). Each FU is connected to the inter-

connection network with one or more so-called input and output sockets. In middle,

there is an interconnection network, which consists transport bus, socket and

connection. Input sockets contain multiplexers which feed data from the buses into the

FUs. Output sockets contain de-multiplexers; they put FU results on the buses [4]. The

transport buses are used to transfer operand i.e. it executes with instructions. Here the

RISCs

SISO

Traditional VLIWs

SIMO

Transport triggered architectures

SIMT

Figure 23: Architectural view for OTAs and TTAs [4].

Bus-1 Bus-2 Bus-3

#8 ->O1add ; r1 ->O2add ; r5 -> r6;

Radd -> O1sub; R2 ->O2sub ; --

Rsub -> O1nor; R4 ->O2nor ; --

Rnor -> r8 ; -- ; --

-46-

number of buses is customized as to reduce the cycle counts. It is the task of the

compiler to optimize the required transports, given a certain connectivity, such that the

cycle count (the number of executed cycles) is minimized [4]. The FUs of TTA

architecture are internally pipelined and it is possible to implement one or more

operations by using TTA FUs. One of the input and output ports of FU is called

trigger port and as its name when an operand is transferred to this port, the operation

execution is triggered. Then the result can be read from the output port after the time

defined by the static latency of the operation. One of the important aspects of this

TTA architecture is that FUs are may be called as register which means that the values

are stored in the port until the next operation overwrites that port. Thus the traffic on

the register may be reduced [7].

The register files (RFs) do not differ much from the FUs that have discussed

earlier. Like FU, the RFs are connected to the IC and their connections are visible to

the programmer. The TTA template also allows the customization of the register files

as well as function units by the programmer and this brings a tremendous

improvement of performance to the processor. The following characteristics are

observed for TTA architecture, which is very interesting from the hardware design

point of view:

Modularity: TTAs are constructed by using different FUs and bus connections. FUs

are completely independent each other and connect with interconnection network

mentioned in figure 24. Controller unit controls the FU pipeline. Under this

modularity characteristic, the hardware design process is fully automated.

Flexibility and scalability: TTA architectures are very much flexible. Because the

interconnection network is separated from the FUs and both can be designed

independently. But for VLIW its scenario is different. If the FU changes then it is

required to modify the interconnection network. The FU of TTA architecture is

flexible in terms of functionality. It may contain multiple inputs and outputs including

different operands.

-47-

Processor cycle time: This is very important characteristics for TTA architectures.

The processor can be optimized for operation throughput instead of latency. To

optimize the processor, it requires superpipelining those FUs, which constrain the

achievable cycle time. Advanced bus implementation techniques are required to

optimize the processor.

Hardware efficiency: Hardware efficiency of TTA processor is very high. It is very

efficient to handle the hardware change aspects. TTA architecture supports one

operation format and it uses reduced decoding logic among the RISC design. In TTA

architecture register efficiency and transport efficiency are very high. It is not required

to allocate RF stages for all the values produced during the course of a program so, in

TTA it requires less number of RF. FU splitting is another aspect of TTA processor.

FU logic can be split into independent parts used for different functionality. For TTA

architecture, splitting FU has no impact on interconnection network and splitting FU

can be used concurrently which increases the efficiency of hardware use.

 Figure 24: Example of a Transport Triggered Architecture (TTA) [3].

-48-

From the above discussion TTA architecture ensures the economy usage of hardware

architecture. That means it will exchange the complexities between compiler

(software) and hardware stage. Hence, this characteristics make TTAs a suitable

architecture for application specific processors.

Until chapter 3, I have discussed the different processor architectures. According to

the ref [4], TTA style processor is very good for implementing the application specific

design. To generate the application specific processor design, I took the LTcodec

system as input design. So next chapter I will discuss the basic of LTcodec theorem

followed by the related works regarding the implementation of LTcodec.

-49-

Chapter 4

Luby Transform Encoder and Decoder

The binary erasure channel (BEC) is a real world channel environment which is a

common communication channel model used in coding theory and information theory.

Since the absence of feedback concept in forward error correction channel, advanced

adaptation schemes or reliable transmission modes are infeasible in the BEC

environment [8]. Therefore, research has been done to fulfill the BEC requirements.

Luby et. al. explained a channel code with potentially limitless redundancy (rateless)

and used it to solve the reliable broadcast problem in BEC [9]. This coding scheme is

known as the fountain code. Luby Transform (LT) code and Raptor code are two such

fountain codes based on its degree distribution function. These codes have been

extensively proposed to solve the transmission problem through wired internet and the

resulting behaviors are investigated on erasure channels. Like the low density parity

check (LDPC), the decoding part of the LT code includes an iterative belief

propagation algorithm or Log-BP algorithm. So, the decoder architecture of the LT

code has followed a similar architecture to that of the LDPC decoder. In [10], the

LDPC decoder was implemented by using parity check matrix directly mapped into

the hardware. In [11], the VLSI architecture of LDPC was studied and authors tried to

reduce the gap between decoding throughput and hardware complexity.

4.1 Coding Theory

C. E. Shannon wrote in his paper [12] that “the fundamental problem of

communication is that of reproducing at one point either exactly or approximately a

message selected at another point.” According to Shannon, messages are referred to or

are correlated according to some system with certain physical or conceptual entities.

However, the solution of this fundamental communication problem is theoretical. The

-50-

ideology of this problem is related to the transmitting or receiving the message signal.

In conventional procedure, we should encode the selected message by adding some

redundant information, such that even if the transmitted encoded message is corrupted

by noise, there will be sufficient redundancy in it to recover the original message.

Regarding this statement two individual problems should be raised: how much

redundancy is required? This is related to quantitative question. Another one is what

kind of redundancy is the best choice? This is related to qualitative question. These

are two interesting questions. In the receiving end, the original message recovery

depends on the amount of redundancy. Therefore, how many redundant bits are

required for recover the transmitted messages. Alternatively, it makes sense that what

is the optimum use of the communication resources at this disposal, e.g., of channel

bandwidth. Each and every coding scheme assigns a value known as information rate

that means what portion of that transmitted signal is useful. The qualitative solution is

seeking for actual coding schemes, which should not only optimally use the

communication resources, but also be equipped with the set of encoding and decoding

algorithms, which can be performed practically and efficiently. For this reason, the

aim of the code designer is to apply the code scheme such a way that the maximum

information rate may be achieve with a vanishing probability of decoding error and

efficient encoding and decoding algorithms. Shannon showed the answer regarding

the quantitative question and proved that for reliable transmission, there is a certain

limit to the information rate over a noisy channel. According to Shannon’s theorem,

for a communication channel C, the channel capacity]1,0[)(∈CCap and the

information rate R are related as R < Cap (C) for reliable communication. That means

it is necessary to exist a reliable coding scheme of information rate R. Therefore, the

question is still remaining which coding scheme is more reliable and close to the

channel capacity. Over the last few decades, this coding theory has been developed

tremendously. Researches from various fields of mathematics and engineering are

doing research on it, posing and answering beautiful problems of both the theories and

-51-

the practical. Still the efficient coding scheme has been searching. Among the

researchers, Wozencraft and Reiffen [13] illustrated that “Any code of which we

cannot think is good”. It was the predominant concept of early 90s. This dominant

attitude should be changed after introducing the Turbo codes [13]. The IP of Turbo

codes depends on using the pseudorandom interleavers in the encoding algorithm and

iterative decoding algorithm. Turbo code has very structured encoding and decoding

algorithm including enough randomness. After introducing the Turbo code, it was

considered as the first practical codes which approached the channel capacity. Turbo

codes played the vital role in the field of error correction coding. But in fact initially

this code was rejected by the referees of the conference board. However today, Turbo

code is an important tool of everyday technology making our lives very easier. It is

employed in mobile communication, satellite communication standards, in IEEE

802.16 metropolitan wireless network standards and so on. Immediate after Turbo

code, low-density parity code (LDPC) was rediscovered by many researchers

independently like MacKay, Neal, Wiberg, Sipser and Spielman [13]. They showed

that LDPC codes have excellent performance comparable to and often exceeding that

to Turbo codes. After that, huge research efforts devoted to understand of this new

new approach as an efficient error correcting code. It overcomes the problem of

classical coding theory, which deals mainly with the algebraic construction of codes.

As a result, nowadays practical codes and their decoding algorithms have low

computational complexity and are amenable to rigorous mathematical analysis [13].

From the ref [13], the new attitude of coding theory is: “Codes are viewed as large

complex systems described by random sparse graphical models”. Therefore, decoding

can be executed as the inference on the sparse graphical models. Bayesian procedure

called the belief propagation algorithm is chosen as the decoding algorithm [13].

During the application of Bayesian procedure, it is realizes that Belief propagation is

exceptionally efficient inference on sparse graphical models and in particular, on the

sparse factor the graphical models corresponding to LDPC codes. This spare factor

-52-

graph is often called Tanner graphs [13]. Soon after the rediscovery of LDPC code, it

has been realized that the iterative decoder of LDPC codes is a belief propagation

decoder. Eventually, it has also been shown that decoding of Turbo codes is another

representation of belief propagation algorithm [13]. Thus, belief propagation schemes

changed the way of thinking of error correction coding. It seems that the best

redundancy from the qualitative question of the code designer is the redundancy that

can be represented by a sparse graphical model on which we can run a belief

propagation algorithm.

4.2 Fundamentals of Channel Coding

Channel coding is very important for reliable data transmission and reception. When

data carrying signal is propagated through channel then it is seriously affected by the

response of the channel. So in the receiving end, receiver will receive this exhausted

bit streams. So, successful recovery depends on the channel response. Therefore, a

modeling like channel coding is mandatory for remove the effect of this unwanted

noise or fading due to the channel.

4.2.1 Channel Models

To ensure the reliable transmission, channel coding is an obligatory part of

communication. The main objective of channel coding is to transmit a message across

a noisy channel. Here message is a sequence of k symbols () k

k Xxxxx ∈= ,...,,, 321x ,

which are elements from a predetermined alphabet X. For this channel encoding

purpose, the encoder maps the sequence x to the codeword () n

n Yyyyy ∈= ,...,,, 321y

and then transmitted through the channel and impaired by the channel noise.

The decoder observes a sequence of corrupted symbols, i.e. , a received word

() n

n Zzzzz ∈= ,...,,, 321z and estimates y based on z. Vectors x, y, z can realized of

random variables, X on X
k
, Y on Y

n
, Z on Z

n
, respectively. Similarly, each xi, yi, and zi

-53-

is a realization of scalar random variables Xi, Yi, and Zi respectively. In addition, we

assume that each Xi, Yi, and Zi is independent and identically distributed (i.i.d)

according to probability density function PX (x), PY (y), PZ (z) respectively. The

relationship between Y and Z is modeled by a conditional probability density function

PZ|Y(z|y). The meaning of communication channel modeling is to specify its

probability density function. Figure 25 shows three communication channels named as

symmetric channel, erasure channel and Zcha channel.

Figure 25: Three communication channels (a) memoryless symmetric (b) binary erasure (c)

Zcha channel (d) the 8-ary erasure channel [14].

4.2.1.1 Binary-Input, Memoryless and Symmetric (BIMS) Channels

Here we assume that the channel models are binary-input, memoryless and

symmetric (BIMS channels). In memoryless case, for any input x = (x1, x2,…..,xN), the

output message is a string of N letters, y = (y1, y2,…..yN), from the alphabet yi∈Y.

Figure 25 (a) showed the model of BIMS channel. These channels have a binary

codeword symbol alphabet Y represented either as F2 = { 0, 1 } or as set {-1, +1}.

BIMS channels have no memory that means the output of such channel at any time

instant depends only on its input at that time instant, i.e.,)|()(
1 | jj

n

j Yz yz
jj∏ =

Ρ=Ρ y|Y| zZ
.

The meaning of symmetric channel is that the channel output is symmetric in its input.

The maximum amount of information per symbol that can be conveyed about the

codeword Y from the received word Z in the case of a memoryless channel C, is

1 - ε

ε

(d)

Xt
Yt

?

(a)

(b) (c)

-54-

referred to as the channel capacity [13]:

());(sup
)(

ZYICCap
yYΡ

= . Where sup is supreme function and I (Y;Z) denotes denotes

mutual information between the random variables Y and Z. According to Shannon

theorem, for reliable transmission the value of code rate R satisfies the condition

R<Cap (C).

4.2.1.2 Binary Erasure Channel (BEC)

The binary erasure channel (BEC) is the simplest non-trivial channel model. It was

first introduced by Elias as a toy example in 1954 [15]. Nevertheless, nowadays this is

a real world problem specially in Internet promoted area. Basically, erasure channel

can be used to model data networks or packet switching networks, where packets

either arrive correctly or are lost due to buffer overflows or excessive delays. For

example, files sent over the internet are chopped into packets, and each packet is

either received without error or not received. Erasure channels model situations where

information may be lost but is never corrupted. The BEC model the erasure in the

simplest form like: signal bits are transmitted and either received correctly or known

to be lost. It the receiving end, decoder will recovery this lost part of transmitted

signal. Figure 25 (b) shows the BEC (ε). Time, indexed by t, is discrete and the

transmitter and receiver are synchronized. The channel input at time t denoted by Xt, is

binary { }1,0∈tX . The corresponding output Yt takes on values in the set {0, 1, *},

where * indicates an erasure. Each transmitted bit is either erased with probability ε,

or received correctly: { },*tt XY ∈ and { } ε==Ρ *tY . Each erasure is t independent

because of the memoryless channel. The capacity of the BEC (ε) is CBEC (ε) =1 – ε

bits per channel use. Therefore, it can be shown that CBEC (ε) ≤ 1 – ε. Figure 25 (d)

portrays a simple channel model describing the BEC situation with q-ary erasure

channel. That means, all inputs are set of input alphabet {0, 1, 2, 3,……,q-1}. The

alphabet size q is 2
l
, where l is the number of bits in a packet. The eight possible

-55-

inputs {0, 1,…..,7} are shown in figure 25 (d) by the binary packet 000, 001,…111.

Instead of FEC technique, if the communication system is ARQ then the total number

of retransmission depends on the value of ε. If the erasure probability ε is large, the

number of feedback messages sent by the first protocol is very high.

4.2.1.3 Zcha Channel

Zcha is also known as binary asymmetric channel. This channel contains binary

input and output value where the cross over 1→ 0 occurs with probability p whereas

the crossover 0←1 never occurs. Figure 25 (c) represents the scenario of Zcha channel.

For example, X and Y are the random variables describing the probability distributions

of the input and the output of the channel, respectively. So the crossovers of the

channel are characterized by the conditional probabilities: { } 10|0 ===Ρ XY ,

{ } pXY ===Ρ 1|0 , { } 00|1 ===Ρ XY , and { } pXY −===Ρ 11|1 . That means for

Zcha channel, a 0 is always transmitted correctly but a 1 becomes a 0 with probability p.

The name of this channel comes from its graphical representation figure 25 (c).

4.3 Linear Codes

Linear codes are most common channel codes where both the message and the code

word symbol alphabet restricted to F2. A binary linear coding scheme can be viewed

as a linear mapping from the set of messages k

2F to the set of code words n
C 2F⊂ ,

where C forms a k dimensional vector subspace of n

2F . Generally, this vector space C

is called as code that follows particular manner of the coding scheme. It is referred as

(n, k) binary linear code, where n is the length of codeword, k is the dimension of the

code and R is known code rate defined as k/n.

Linear code can be fully described by its basis {g1, g2,….,gk}, where gi
n

2F∈ , leads to

the generator matrix representation of a linier code. A kn× matrix G is called the

generator matrix of code C if cGxc =∈∃⇔∈ ;Fx k

2C

-56-

Note that any matrix with columns that form a basis of C is a generator matrix of C

and that representation by generator matrix allows a simple mechanism of mapping

the messages to the code words. On the other hand C can be specified as its dual

(orthogonal) sub space ⊥
C within n

2F and its basis {h1, h2,……,hn-k}. The dual

subspace of C is defined as }0:F{ 2 CcC
n ∈∀=⋅′∈′=⊥ ccc .

By this way, it is possible to represent a parity check matrix of a linear code. An

nkn ×−)(matrix H is the parity check matrix of C if 0=⇔∈ Hcc C . Therefore, it

can be written that any matrix with rows that form a basis of ⊥
C is a parity check

matrix of C.

In fountain codes, coding schemes have no fixed rate. Each row of the generator

matrix of such coding scheme can be viewed as a random variable on k

2F , where k is

the dimension of the code. At any time instant Ν∈j , the fountain encoder generates

a single encoded symbol xv ⋅= jjy from the message k

2F∈x where x is a randomly

chosen row vector from k

2F . In this scheme the receiver observes a number of received

word symbols
niii zzz ,......, ,

21
corresponding to the transmitted symbols

niii yy ,......,y ,
21

.

The resulting code at the receiver end is an (n, k) binary linear code described by a

generator matrix with vectors
niii vv ,......, v,

21
as its rows. If the decoder fails to decode

then receiver will collect additional encoded symbols which result in a code of greater

length.

4.4 Belief Propagation Decoding Algorithm

Like many other algorithms, decoding of linear codes deals with the optimization of

a rather complicated global function of a large number of variables. For this reason,

decoding is difficult compared to encoding procedure for this linear code. One

important aspect of this decoding is the factorization of global product into a local

functions i.e., functions defined on small subsets of the set of all variables. Then it is

-57-

possible to get a starting point in the construction of the efficient algorithm. This

factorization is usually visualized with a bipartite graph, called factor graph. The

factor graph is used to represent relations between local functions and variables. It

describes which variables are arguments of which local functions. It can be said that a

factor graph is a graphical model on which Bayesian inference can be performed and

in particular the Belief Propagation (BP) algorithm [13]. In order to optimize Belief

propagation algorithm simply exploits the factorization of the global function to

efficiently compute the global function many times. This is on the same conceptual

level as the distributive law computations. For example, a function of three variables

can be formed as two ways: acabcbaf +=),,(and)(),,(cbacbaf += .Therefore it

is clearly more efficient to compute the factorized version of the function (second

function) compared to the first one. In first function, it requires two multiplications

and one addition whereas in second form of function it requires one addition and one

multiplication.

The complete explanation of BP algorithm will be discussed in Appendix II. It is not

only used in iterative decoding procedures for sparse matrix codes but also used in

BCJR, Viterbi, Kalman filtering and certain instances of the fast Fourier

transformation. Now I will discuss how BP algorithm relates to the decoding problem

of binary linear codes.

4.4.1 Binary-input MAP Decoding via Belief Propagation

Let us assume that binary codewords of length n are transmitted through a binary

input memoryless symmetric channel. Consider that the codeword x = (x1, x2,….,xn)

n

2F∈ , is generated by an (n , k) linear code C described by its parity check matrix

() nknj

ih
×−∈=)(

2FH . Note that the received word is y = (y1, y2,….,yn). Assume that the

channel is described by its transition probability)|()(P
1 | jj

n

j XY xyP
jj∏ =

=x|yX|Y .

Maximum a posteriori (MAP) decoding problem can be described as the optimization

-58-

problem:

{ }
() niX

x

MAP

i Nixx
i

i

∈Ρ=
∈

,|maxargˆ
|

1,0
yY . (30)

The previous can be transformed as follows

{ }
()∑ Ρ=

∈
i

i x
x

MAP

ix
~

|
1,0

|maxargˆ yxYX
 (31)

Equation 31 is written from law of total probability and by applying the Bayes’s law

{ }
()

{ }
() }{x

~ 1

|
1,0

~

|
1,0

 |maxarg)(|maxargˆ
C

x

n

j

jjXY
x

x
x

MAP

i

i

jj
i

i
i

xyx ∈

=
∈∈

Χ









Ρ=ΡΡ= ∑ ∏∑ xxy XXY (32)

where X{ ⋅ } is the indicator function. In the last step, we have used the fact that the

channel is memoryless and that codewords have uniform prior. We write ∑
ix~

 to

indicate a summation over all components of x (except xi) and not the components of y.

Assume that the code indicator function X{ ⋅ } has a factorized form. From equation 32

it is then clear that the bit-wise decoding problem is equivalent to calculating the

marginal of a factorized function and choosing the value that maximizes this marginal.

Example: Consider the binary linear code C(H) defined by the parity check matrix



















=

101

010

000

1000

1100

1011

7654321 xxxxxxx

H

In this case
{ }

()yY |maxarg |
1,0

iX
x

x
i

i

Ρ
∈

 can be factorized as

{ }
() }0{}0{}0{

~

7

1

|
1,0 754643421

 |maxarg =++=++=++

=
∈

ΧΧΧ









Ρ∑ ∏ xxxxxxxxx

x j

jjXY
x

i

jj
i

xy .

The corresponding factor graph is shown in the figure 26. This graph includes the

Tanner graph of H but additionally contains the factor nodes, which represent the

effect of the channel.

-59-

Figure 26: Factor graph for the MAP decoding [15]

For this particular case, the resulting graph is a tree. We can therefore apply the

message-passing algorithm to this example to perform bitwise MAP decoding.

Therefore, MAP decoding consists of the marginalization of the function

() () { }








=⋅










Ρ= ∏∏

−

==

kn

j

j

n

j

jjXYnn Xxyyyxxf
jj

11

|11 0xh|,........,;,.......,

over each variable
ni Nix ∈, , where

knj Nj −∈,h , denotes the j-th row of the parity

check matrix H. This marginalization can be performed by a belief propagation

algorithm on a factor graph corresponding to the parity check matrix H. This is shown

in the previous example.

4.4.2 Message-Passing Rules for Bit-wise MAP Decoding

In binary message domain u(x) is denoted as message signal and can be thought of as

a real valued vector of length 2, (u(1), u(0)) (here we think of the bit values as {0,1}).

The initial such message sent from the factor leaf node representing the i-th channel

realization to the variable node i is ()1|(| iXY yp
ii

,)0|(| iXY yp
ii

) as mentioned in figure

26. A variable node of degree K + 1 showed in figure 27 the message passing rule

calls for a pointwise multiplication [15]:

() ∏
=

=
K

k

k

1

)1(1 µµ , () ∏
=

=
K

k

k

1

)0(0 µµ . (33)

Now take the ratio)0(/)1(kkkr µµ= . Now putting the relationship from equation 33,

}0{ 421
X =++ xxx

}0{ 643
X =++ xxx

}05{ 74
X =++ xxx

-60-

we have

∏
∏

∏

=

=

= ===
K

k

kK

k

k

K

k

k

rr
1

1

1

)0(

)1(

)0(

)1(

µ

µ

µ

µ
 (32)

That means that the ratio of the outgoing message at a variable node is the product of

the incoming ratios. Again if take the log-likelihood ratios)ln(kk rl = , then processing

rule is ∑
=

=
K

k

kll
1

. Therefore, ‘r’ and ‘l’ can be denoted as likelihood and log-likelihood

ratios.

Consider now the ratio of an outgoing message at a check node, which has degree J +

1 showed in figure 27.

Figure 27 : A variable node (v) with K + 1 neighbors and a check node (c) with J + 1

neighbors.

For a check node it can be written that ()
 }x {

1

1

X,.......,
=∏

=

=

J

j

jx
nxxf . We assume that the

xi takes values in {0, 1} and instead of ∑
=

=
J

j

j xx
1

 it can be written as ∏
=

=
J

j

j xx
1

.

Therefore,

∑ ∏

∑ ∏

∑ ∏

∑ ∏

∑ ∏

∑ ∏

∏

∏
=

∏

∏
===

=

=

=

=

=
=

=
=

=
=

=
=

=

=

J

j

jJ

J

j

jJ

J

j

jJ

J

j

jJ

xxx

J

j j

jj

xxx

J

j j

jj

xxx

J

j

jj

xxx

J

j

jj

x

J

j

jjJ

x

J

j

jjJ

x

x

x

x

xxxf

xxxf

r

1

1

1

1

1

1

1

1

0:,...
1

1:,...
1

0:,...
1

1:,...
1

~ 1

1

~ 1

1

)0(

)(

)0(

)(

)(

)(

)(),....,,0(

)(),....,,1(

)0(

)1(

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

-61-

() ()

() ()∏ ∏

∏ ∏

∑ ∏

∑ ∏

= =

= =

=
=

+

=
=

+

−−+

−++

=

∏

∏
=

=

=

J

j

J

j

jj

J

j

J

j

jj

xxx

J

j

x

j

xxx

J

j

x

j

rr

rr

r

r

J

j

jJ

j

J

j

jJ

j

1 1

1 1

0:,...
1

2/)1(

1:,...
1

2/)1(

11

11

1

1

1

1

 (33)

In the equation 33, it has a term like ()∏
=

+
J

j

jr
1

1 , we get the sum of all products of the

individual terms rj, j= 1,….,J.

For example ()
321133221321

3

1

11 rrrrrrrrrrrrr
j

j +++++++=+∏
=

. Similar fashion can also

be applied for ()∏
=

−
J

j

jr
1

1 . For this reason equation 33 is developed by using the

following relationship

() ()∏ ∏ ∑ ∏
= =

=
=

+

∏
=−++

=

J

j

J

j
xxx

J

j

x

jjj
J

j

jJ

jrrr
1 1

1:,...
1

2/)1(

1

1

211

.

Now, in equation 33, divide the numerator and denominator by ∏
=

+
J

j

jr
1

)1(, it can be

written as

∏

∏

+

−
−

+

−
+

=

j j

j

j j

j

r

r

r

r

r

1

1
1

1

1
1

.

So, ∏
+

−
=

+

−

j j

j

r

r

r

r

1

1

1

1
. Now if l

er = then we see that)2/tanh(
1

1
l

r

r
=

+

−
. Combining these

two statements, it can be written as

-62-











=∴

=
+

−
=

+

−
=

∏

∏ ∏

=

−

= =

J

j

j

J

j

J

j

j

j

j

ll

l
r

r

r

r
l

1

1

1 1

)2/tanh(tanh2

)2/tanh(
1

1

1

1
)2/tanh(

 (34)

For the case of binary input memoryless channels, we discussed the message passing

rules for bit-wise MAP decoding of a parity check code and saw that if the factor

graph of a code is a tree, the sum-product solution is equal to the MAP decoding

solution. The message passing algorithm can efficiently perform MAP decoding for

the codes whose corresponding factor graph is a tree. But the class of code that has a

tree like factor graph is not powerful enough to perform well using this message

passing algorithm. Because it may contain low weight codewords and has a large

probability of error.

Two fundamentals rules are derived by these equations. Equation 33 represented as

‘sum’ rule and equation 34 portrays ‘tanh’ rule. These rules are important for the

belief propagation algorithm in decoding of binary linear codes over BIMS channels.

In another sense, these rules are the base for decoding of LDPC, LDGM, LT and any

fountain codes.

4.5 Fountain Codes

It is very easy to imagine that users are receiving data from satellite during the car

driving or the vehicles are receiving navigation updates data from the satellite. In this

case, the packet may be lost for many reasons like car is in deep signal fading tunnel,

or the channel erasure property is too high for signal degradation. Therefore, whatever

the reasons, there are packets lost in this communication. If the communication system

is ARQ then the system throughput degenerates as the number of receivers become

large. Indeed, if each of the hundreds of thousands of receivers drops only a small

fraction of packets and requests their retransmission, chances are that every packet

must be retransmitted, and that the broadcaster will need to repeat the entire

-63-

transmission several times. As it is mentioned earlier that the above channel is known

as binary erasure channel, let us assume that the transmitter needs to communicate a

certain message of k packets to a large number of receivers. Each receiver j∈Nr, where

r is the number of receivers correctly receives a certain fraction ()()j

ep−1 of all

transmitted signal. Therefore, ()j

ep is the instantaneous packet loss rate observed by

the j
th

receiver. In order to avoid feedback request, it requires some form of channel

coding mechanism applicable for erasure channels. The classic block codes for erasure

correction are called Reed–Solomon codes [16]. An (N, K) Reed–Solomon code (over

an alphabet of size q = 2
l
) has the ideal property that if any K of the N transmitted

symbols are received then the original K source symbols can be recovered (Reed–

Solomon codes exist for N <q). Practically RS code is applicable for small value of K,

N and q. In RS coding, standard implementations of encoding and decoding consume

the cost order of K(N - K)log2N packet operations. Moreover, like other block code, in

RS code it is required to know the value of code rate R and erasure probability p

before transmission. If p is larger than the expected value then the receiver will

receive fewer than K. Therefore, another encoding technique pioneered by Michael

Luby [17] is required to overcome this problem. Soon, fountain codes [13] would be

born.

4.5.1 Properties of Fountain Codes

In order to avoid the necessity to modify the encoding scheme whenever conditions

in a loss prone network change, the idea of a digital fountain arose rather naturally.

The digital fountain encoder should be able to produce an endless supply of encoded

packets per message and these packets are then just sprayed across the network,

finally each receiver simply keeps on collecting them until their number reaches some

threshold larger than message length. They can then attempt the reconstruction of the

original message, and a judicious choice of encoding scheme should be the one that

provides high probability of successful reconstruction when received bit are only

-64-

marginally larger than message bit. In such schemes, no feedback is ever required.

The encoder of a fountain code is a metaphorical fountainthat produces an endless

supply of water drops that means encoded packets. Suppose the original file has a size

of Kl bits where K is the number of packets and each drop contains l encoded bits.

Now any receiver wishes to receive the encoded file then it will hold the bucket under

the fountain and collects the the number of drops the bucket is a little larger than K so

that it can recover the original message. In fountain code, the number of encoded bit

generated from the source message is potentially limitless. For this reason, it is known

as rateless code. In fact, it simultaneously supports both extremes of packet loss rates,

since the users with low packet loss can collect their packets very quickly and tune out

of the broadcast. Furthermore, it assumes that each produced encoded packet is

equally useful to the receiver. The size of the encoded packet is determined on the fly

that means depending on its erasure characteristics, every receiver will receive

different size of packets. Fountain code is near optimal for every erasure channel.

Regardless of the statistics of the erasure scenario of the channel, encoder will

generate packets as are needed to recover the source data. The source data should be

recovered from K΄ encoded data where K΄ is slightly larger than K. Moreover, the

fountain code has very less encoding and decoding complexities. A digital fountain

that transmits the encoded packet should have the following properties:

• It can generate an endless supply of encoding packets with constant encoding

cost per packet in terms of time or arithmetic operations.

• A user can reconstruct the message using any K packets with constant

decoding cost per packet, meaning the decoding is linear in K.

• The space needed to store any data during encoding and decoding is linear in K.

These properties show digital fountains are as reliable and efficient as TCP systems,

but also universal and tolerant, properties desired in networks.

-65-

4.5.2 The Random Linear Fountain

Based on the above properties, we can identify the fountain-coding scheme for an

arbitrary channel model with a probabilistic process that assigns to the message an

infinite sequence of encoded symbols, all of which are the evaluations of an

independently selected function of the message. Assume that an encoder has a file of

size K packets s1, s2, s3,….,sK. Here, the concept of packet is an elementary unit that is

either transmitted intact or erased by the erasure channel. Let us assume that in n clock

cycle the encoder generates K random bits {Gkn} and the transmitted packet tn is set to

the bitwise sum, modulo 2 of the source packets for which Gkn is 1 [18].

Figure 28: Transmission scenario of binary fountain code over BEC [18].

-66-

 ∑
=

=
K

k

knkn Gst
1

 (34)

Figure 28 shows the transmission scenario through BEC using a generator matrix of

a random linear code.

The gray lines show the lost packet sprayed from the transmitter and the bottom part

of figure 28 shows the received packet be the receiver. Therefore, in the receiving

matrix the lost packet columns are missing. Point should be noted that the top part of

the figure 28 represents the original generator matrix but due to the erasure property of

channel in receiving end receiver knows the fragment of the generator matrix G

associated with its packets. Let we assume that after erasure, receiver collects N

packets from the transmitted signal. Therefore, the dimension of G is K – by–N matrix.

Now the question should be posted that, what is the chance that the receiver will

recover the entire source file without error?

For example if N<K, the receiver has not enough information to decode the

transmitted file. If N = K the receiver will receive K – by–K matrix G and can be able

to decode by using the following rule:

∑
=

−=
N

n

nknk Gts
1

1 (35)

where G
-1

 is the inverse of matrix G and is computed by Gaussian elimination. Let we

calculate the probability of a random K-by-K binary matrix is invertible. It is the

product of K probabilities, each of them the probability that a new column of G is

linearly independent of the preceding columns. We need to ensure that G has K non-

zero columns. The probability that the first column of G has non-zero value is (1-2
-K

).

Similarly the probability is (1-2
-(K-1)

) that the second column is equal neither to the all-

zero column nor to the first column of G. So the probability of invertibility is

289.0
2

1
1

4

1
1

8

1
1

2

1
1

2

1
1

)1(
=








−








−








−×⋅⋅⋅×








−








−

−KK
 for K larger than 10. So, this

invertible probability is very less and this expected value is close to one.

-67-

Now let E a small number means excess of packets and at receiving end receiver will

receive this excess packets in addition with K then N = K + E. Therefore at receiving

end the dimension of G is K – by – N. So, what is the probability that the G matrix

contains an invertible K – by – K matrix? Let we assume the probability δ that means

the receiver will not be able to decode the file when E excess packets have been

received. Hence,δ is failure probability and 1 – δ is the probability that G matrix

contains an invertible K – by – K matrix. Figure 29 shows the plotting of failure

probability δ with respect to E for K = 100 [18]. δ is bounded by E
E

−≤ 2)(δ for any

value of K.

In nutshell, for reliable communication, receiver has to receiver K + log21/ δ

encoded bit at 1 - δ probability condition. As excess packets E increase then the

probability of success also increases to (1- δ), where E−= 2δ .

The above scenario can be portrays by the following example. We hypothetically

think that we throw N balls independently at random into K bins, where K is very

large like 1000 or 10,000. There are several questions: if N = K then what fraction of

bins is empty? If N > 3K, is there any empty bin? Or minimum how many balls are

required to ensure all bins will get at least one ball?

After throwing N balls, then the probability that one particular bin is empty is

KN

N

e
K

/1
1 −≈








− . Now if N = K and N = 3K then the probability of one particular bin

is empty is approximately 1/e and 1/e
3
 respectively. To make sure that all the bins

have a ball, we need to throw many balls. For general value of N the expected number

of empty bins is Ke
-N/K

 . So this expected number is almost equal to δ . Therefore δ =

Ke
-N/K

 ,
δ

K
KN elog= and

δ

K
KN elog> . This condition represents that if N satisfies

this relation then each bin will get at least one ball after throwing.

-68-

Figure 29: Properties of failure probability δ against E the number of redundant packets [18].

4.6 Luby Transform Codes

LT (Luby Transform) codes [17] are the first class of fountain codes fully realizing

the digital fountain paradigm. LT codes are binary linear fountain rateless codes. The

encoder can generate as many encoding symbols as required to decode k information

symbols. The encoding and decoding algorithms of LT codes are simple; they are

similar to parity-check processes. LT codes are efficient in the sense that the

transmitter does not require an acknowledgement (ACK) from the receiver. This

property is especially desired in multicast channels because it will significantly

decrease the overhead incurred by processing the ACKs from multiple receivers [14].

It has two parameters: the length of the message and degree distribution on the set of

message alphabet. The output degree distribution of an LT code will be identified with

its generating polynomial. The analysis of LT codes is based on the decoding

algorithm and degree distribution properties. For this reason, Ideal Soliton distribution

and Robust Soliton distribution are introduced as the degree distribution. The

importance of having a good degree distribution of encoding symbols is also

investigated under this analysis. LT codes are considered as very efficient if K

information symbols can be recovered from any K + O()/(ln 2 δKK) encoding

symbols with probability 1 - δ using O()/ln(δKK ⋅) operations [14].

-69-

4.6.1 Encoding Process

Any number of encoding symbols tn can be independently generated from source

file {s1,s2,s3,….,sK} information symbols by the following encoding process:

• Determine the degree dn of the packet from a degree distribution. This degree

is chosen at random from a given node degree distribution)(dρ . The

appropriate choice of ρ depends on the source file size K.

Choose dn for distinct input packets and set tn equal to the bitwise sum, modulo 2, of

those dn packets.

Figure 30: Encoding process of LT codes.

This process is similar to the generating parity bits except that only the parity bits are

transmitted. As shown in figure 30, the degree distribution)(dρ comes from the sense that

the bipartite graph (shown in figure 30) consists of information symbols as variable nodes and

encoding node as factor node. The degree value d determines the performance of the LT

coding so that it will successfully decode the encoded signal with lower complexity. The

algorithm of LT encoder can be described as the following way:

LT encoding algorithm

Input: message x = {s1,s2,s3,….,sK}, probability distribution)(dρ on NK

Output: an encoded symbol tn

1. Sample an output degree d with probability)(dρ

2. Sample d distinct message symbols { }
diii sss ,....,,

21
 uniformly at random

XOR operation
degree value d

-70-

from the message {s1,s2,s3,….,sK} and XOR them,
ji

d

jn st 1=⊕= .

LT codes hold two major benefits compared to the general binary linear fountain

codes. Firstly, the code design is greatly simplified and the code designer needs only

to specify the set of d numbers describing the degree distribution)(dρ . Secondly, it is

possible to select the output degree distribution in such a way that the decoding of an

LT code is possible with a version of a computationally efficient belief propagation

algorithm.

4.6.2 Decoding Process

The decoding of an LT code utilizes a belief propagation (BP) algorithm on the

factor graph of the linear encoder NK

22 FF → obtained by the fountain encoder map.

This factor graph has the incidence matrix formed by N active rows of the LT

generator matrix, which correspond to N observed encoded symbols. Decoding of LT

code is easy in the case of an erasure channel. Therefore the decoder’s task is to

recover s from t = sG, where G is the generator matrix associated with the graph. The

decoding is done by using the message passing algorithm like sum-product algorithm.

In receiving end, all messages are either completely uncertain (message packet sk

could have any value with equal probability) or completely certain (sk has a particular

value with probability one). We assume that in the check node position encoder

generates tn encoded signal. The simple decoding process is illustrated by the

following way:

1. Find a check node tn that is connected to only one source packet sk (if there is

no such condition decoding halts).

(a) Set sk = tn.

(b) Do XOR sk to all checks
nt ′ that are connected to sk:

knn stt ⊕= ′′ for all n′ such that 1=′knG .

Remove all the edges connected to the source packet sk.

-71-

2. Repeat (1) until all sk are determined.

The above process is illustrated in figure 31 for a case where each packet is just one

bit. There are three source packets (shown by the upper circles) and four received

packets (shown by the lower check symbols), which have the values t1, t2, t3, t4 = 1011

at the start of the application.

Figure 31: Example of decoding LT code for K = 3 and N = 4 [18].

In figure 31, panel ‘a’ shows the first iteration where the only check node is

connected to a sole source bit (variable node). Then in panel ‘b’ we set source bit s1

accordingly to check node bit (here s1 = 1) then XOR the value of s1 (1) to the check

nodes to which it is connected to s1 (panel ‘c’) and finally disconnecting s1 with its

edges from the graph. Thus, first iteration is completed. Similarly, at the starting of the

second iteration shown in panel ‘c’, the fourth check node is connected to a sole

source bit, s2. Then we set s2 to t4 as shown in panel‘d’. Finally, in third iteration, two

check nodes are both connected to s3 and they agree about the value of s3, which is

restored in panel ‘f’.

From the above explanation, the decoding process is bounded into three steps: release,

cover and process. In release step all encoding symbols of degree one (those which are

connected to one information symbol t1 in panel ‘a’ of figure 31) are released to cover

their unique neighbor.

In cover step, the released encoding symbols cover their unique neighbor information

symbols. In this step, the covered but not processed input symbols are sent to ripple,

which is a set of covered unprocessed information symbols gathered through the

previous iterations. That is shown in figure 31 panel ‘b’.

In process step, one information symbol in the ripple is chosen to be processed. In this

a b c d e f

-72-

step, the edges connecting the information symbol to its neighbor encoding symbols

are removed and the value of each encoding symbol changes according to the

information symbol. The processed information symbol is removed from the ripple.

This procedure is shown in figure 31 panel ‘c’. So, these working procedures

explained in figure 31 had been translated into HLL for example C in this thesis work.

Therefore, for implementation point of view, I make a structure of this algorithm

efficiently. Otherwise, it will take more cycle for simulation using ASIP design tools.

These HLL codes are transformed into the assembly instructions by the compiler of

specific tool. For example in TTA, TCE compiler translates the input design into the

TTA assembly code and this will be discussed in chapter 5. The following algorithm

represents the LT decoding algorithm for BEC.

LT decoding algorithm

Input: channel output N

n Zt ∈ , factor graph LTG representing the active N rows in the

LT generator matrix.

Output: message x{ s1,s2,s3,….,sK } ∈X
K
 (or an indicator 0 that the decoding has

failed)

1. Assign an all-erasure vector x to variable nodes,
Ki Nis ∈∗= ,

2. while x at least one erased sample sj = * do

find an unerased output node a, ∗≠at , connected to exactly one erased

variable node i, si = *.

ifthere is no such output node return 0 (decoding fails)

else

 setsi = ta, ta = *;

 set)(, iNbtst bib ∈∀⊕= ;

end if

3. end while

4. return x

-73-

The decoding process continues by the iterating the above steps. From the above

algorithm, to continue the decoding process each iteration can be triggered by the

encoding symbol of degree one. It is important to guarantee that there always exist

encoding symbols of degree one to release during the process for successful recovery.

Note that information symbols in the ripple can reduce the degrees of decoding

symbols. Information symbols in the ripple keep providing the encoding symbols of

degree one after each iteration and, consequently, the decoding process ends when the

ripple is empty. The decoding process succeeds if all information symbols are covered

by the end. Therefore, generating ripple plays a vital role in decoding process of LT

code. I will discuss the generating process of ripple in terms of degree distribution.

4.6.3 Degree Distribution Design

The degree distribution)(dρ is the critical part of LT codes design. Sometimes the

encoded packets must have high degree like K in order to ensure that there are not

some packets connected to single node. On the other hand, many packets must have

low degree, so that the decoding process can get started, and keep going, and so that

the total number of addition operations involved in the encoding and decoding is kept

small. The guidelines of the distribution design are following [19]:

• The sum of all degrees should be as small as possible since it corresponds to

the necessary operations of decoding process.

• As few as possible codewords are required to recover the message symbols.

That means the release rate of encoding symbols is low in order to keep the

size of the ripple small and prevent waste of encoding symbols. Similarly, the

release rate of encoding symbols is high enough to keep the ripple from dying

out.

Therefore, it is required to design degree distribution of encoded signal carefully so

that release rate will be balanced. This is the reason that the degree distribution plays

an important role in LT codes. Moreover, the encoding and decoding complexity are

-74-

going to scale linearly with the number of edges in the graph. Now what should be the

average degree of packets? As I took ball-bin example and let we think that each ball

and bin are connected through edges. In order to complete successful decoding, every

source packet must have at least one edge in it. The encoder throws the edges into

source packets at random manner, so the number of edges must be at the order of

Kloge K. So the average degree of each packet must be at least loge K. The encoding

and decoding complexity of LT code will definitely be at least of Kloge K. Luby [17]

shows that this bound of complexity can be achieved by carefully choosing the degree

distribution.

4.6.3.1 Ideal Soliton Distribution

The Ideal Soliton distribution displays ideal behavior in terms of the expected

number of encoding symbols needed to recovery the data. Ideally this distribution

ensures that one check node has degree one at each iteration. At each iteration, when

this check node is processed, the degrees in the graph are reduced in such a way that

one new degree-one check node appears. In expectation, this ideal behavior is

achieved by this ideal soliton distribution. In this distribution, the degree distribution

follows the following criteria:

()

() Kd
dd

d

dKd

,.....,3,2for
)1(

1

;1for /1

=
−

=

==

ρ

ρ

 (36)

The expected degree under this distribution is roughly logeK. According to equation

36, K/1)1(=ρ represents the initial ripple size is 1. Now to ensure the ripple size

increase 1 in each iteration, all the rest)(dρ should satisfy
K

d

Kdd

1

)(

1 −
=

⋅⋅ρ
 and

hence equation 36 is derived.

-75-

Figure 32: Ideal Soliton Distribution for K = 10 and 100 [14].

Figure 32 shows the performance of ideal soliton distribution for different message

size. The Ideal Soliton distribution works perfectly in the sense that only K encoding

symbols are sufficient to cover the K information symbols and exactly one encoding

symbol is expected to be realized each time an information symbol is processes. Also

in this distribution, the ripple is expected manner and there is neither the waste of

encoding symbols nor the exhaustion of the ripple.

However, the practical scenario is different. In practice, the ideal soliton

distribution shows very poor performance because fluctuations around the expected

behavior make it very likely that at some point in the decoding process there will be

no degree-one check nodes and, moreover, a few source nodes will receive no

connections at all. Since the ripple size is one, it will disappear very easily during the

decoding process, therefore the decoding will be failed under this distribution.

Therefore, we need a distribution that ensures the ripple of large expected size enough

to enable stable decoding as well as has the nice property of the Ideal Soliton

distribution that maintains the expected ripple size constant in order not to waste

encoding symbols. A small modification requires fixing these problems.

-76-

4.6.3.2 Robust Soliton Distribution

The problem of Ideal Soliton distribution is that the ripple size is too small so it

may disappears easily. The intuition of the Robust Soliton distribution is try to solve

this problem by increasing the ripple size to prevent the ripple from disappearing

during the decoding process. Note that the required number of codeword symbols will

increase with the ripple size, so it is also crucial to keep the ripple size small enough.

The robust soliton distribution makes the ripple size () KKe δ/log through the whole

decoding process. Therefore, the robust soliton distribution has two extra parameters c

and δ ; it is designed to ensure that the expected number of degree-one checks is

about () KKcS e δ/log≡ rather than 1, throughout the decoding process. The

parameter δ is a bound on the probability that the decoding fails to run to completion

after a certain number K′ of packets have been received. The parameter c is a

constant of order 1. However, in practice, c can be a free parameter. Therefore, the

robust soliton distribution is defined as below:

(37)

Then add the ideal soliton distribution ρ to τ and normalize to obtain the robust

soliton distribution, µ

Z

dd
d

)()(
)(

τρ
µ

+
= (38)

where ∑ +=
d

ddZ))()((τρ .

In order to complete the whole decoding process, the number of encoded packets

required at the receiving end with probability at least δ−1 is KZK =′ . The detailed

=)(dτ

1)/,...(2,1for
1

−= SKd
dK

s

SKdS
K

s
/for)/log(=δ

SKd /for 0 >

analysis and comparison of Ideal and Robust Soliton distribution can be found in [

From the above explanation of Luby’s analysis (specially equation 38), the small

value o

in

least once. For constant value of

K

with probability at least

and Robust soliton distribution

for

=

del for

K

probability

Figure 33 Comparative scenario of degree distribution (a) the distribution of

4.7

fountain code paradigms. In previous

analysis and comparison of Ideal and Robust Soliton distribution can be found in [

From the above explanation of Luby’s analysis (specially equation 38), the small

value of d at the end of

in τ at d = K/S

least once. For constant value of

KK log2+=′

with probability at least

and Robust soliton distribution

for K = 10,000,

= K/S respectiv

del for K = 10,000. These figures prove that there exists a value of

K′ receives packets, the decoding algorithm will recover the

probability −1

Figure 33 Comparative scenario of degree distribution (a) the distribution of

4.7 Hardware Implementatio

It is mentioned earlier that the performance of LT codec is very high in digital

fountain code paradigms. In previous

analysis and comparison of Ideal and Robust Soliton distribution can be found in [

From the above explanation of Luby’s analysis (specially equation 38), the small

at the end of τplays a vital role to start the decoding process and the spike

K/S ensures that every source packet is likely to be continued to check at

least once. For constant value of

SSe)/(log δ check nodes are necessary to finish whole decoding procedure

with probability at least −1

and Robust soliton distribution

= 10,000, c = 0.2, δ

respectively. Figures 33 (a) and (b) are plotted against the two parameters

= 10,000. These figures prove that there exists a value of

receives packets, the decoding algorithm will recover the

δ .

Figure 33 Comparative scenario of degree distribution (a) the distribution of

(b) number of degree

Hardware Implementatio

t is mentioned earlier that the performance of LT codec is very high in digital

fountain code paradigms. In previous

(a)

ρ

analysis and comparison of Ideal and Robust Soliton distribution can be found in [

From the above explanation of Luby’s analysis (specially equation 38), the small

plays a vital role to start the decoding process and the spike

ensures that every source packet is likely to be continued to check at

least once. For constant value of c Luby’s re

check nodes are necessary to finish whole decoding procedure

δ− . Figure 33 represents the comparative scenario of Ideal

and Robust soliton distribution. Figure 33 (a) shows the distribution of

 = 0.05. The distribution

. Figures 33 (a) and (b) are plotted against the two parameters

= 10,000. These figures prove that there exists a value of

receives packets, the decoding algorithm will recover the

Figure 33 Comparative scenario of degree distribution (a) the distribution of

(b) number of degree

Hardware Implementation of LT C

t is mentioned earlier that the performance of LT codec is very high in digital

fountain code paradigms. In previous sections

(a)

τ

-77-

analysis and comparison of Ideal and Robust Soliton distribution can be found in [

From the above explanation of Luby’s analysis (specially equation 38), the small

plays a vital role to start the decoding process and the spike

ensures that every source packet is likely to be continued to check at

Luby’s result shows that at the receiving end

check nodes are necessary to finish whole decoding procedure

. Figure 33 represents the comparative scenario of Ideal

. Figure 33 (a) shows the distribution of

= 0.05. The distribution

. Figures 33 (a) and (b) are plotted against the two parameters

= 10,000. These figures prove that there exists a value of

receives packets, the decoding algorithm will recover the

Figure 33 Comparative scenario of degree distribution (a) the distribution of

(b) number of degree-one checks

n of LT Codec

t is mentioned earlier that the performance of LT codec is very high in digital

sections, I have discussed the related theories

analysis and comparison of Ideal and Robust Soliton distribution can be found in [

From the above explanation of Luby’s analysis (specially equation 38), the small

plays a vital role to start the decoding process and the spike

ensures that every source packet is likely to be continued to check at

sult shows that at the receiving end

check nodes are necessary to finish whole decoding procedure

. Figure 33 represents the comparative scenario of Ideal

. Figure 33 (a) shows the distribution of

ρ and τ are larger at

. Figures 33 (a) and (b) are plotted against the two parameters

= 10,000. These figures prove that there exists a value of

receives packets, the decoding algorithm will recover the K

Figure 33 Comparative scenario of degree distribution (a) the distribution of

one checks S [18].

odec

t is mentioned earlier that the performance of LT codec is very high in digital

, I have discussed the related theories

S

analysis and comparison of Ideal and Robust Soliton distribution can be found in [

From the above explanation of Luby’s analysis (specially equation 38), the small

plays a vital role to start the decoding process and the spike

ensures that every source packet is likely to be continued to check at

sult shows that at the receiving end

check nodes are necessary to finish whole decoding procedure

. Figure 33 represents the comparative scenario of Ideal

. Figure 33 (a) shows the distribution of)(dρ and

are larger at d = 2 and

. Figures 33 (a) and (b) are plotted against the two parameters

= 10,000. These figures prove that there exists a value of c such that given

 source packet

Figure 33 Comparative scenario of degree distribution (a) the distribution of)(dρ and

t is mentioned earlier that the performance of LT codec is very high in digital

, I have discussed the related theories

c

(b)

analysis and comparison of Ideal and Robust Soliton distribution can be found in [18].

From the above explanation of Luby’s analysis (specially equation 38), the small

plays a vital role to start the decoding process and the spike

ensures that every source packet is likely to be continued to check at

sult shows that at the receiving end

check nodes are necessary to finish whole decoding procedure

. Figure 33 represents the comparative scenario of Ideal

and)(dτ

= 2 and d

. Figures 33 (a) and (b) are plotted against the two parameters c and

such that given

source packets with

and)(dτ

t is mentioned earlier that the performance of LT codec is very high in digital

, I have discussed the related theories

-78-

and mathematics of this codec. In this section, I will discuss some research articles

those are related to the hardware implementation of LT codec system. I will discuss

the proposed LT codec architecture in the next chapter.

Hardware Designs for LT Coding by Han Wang, Delft University of Technology [19]

In this research articles, two BEC models are proposed on different OSI layers and

these channel models are used to analyze the performance of LT codec. Here H. Wang

described an efficient architecture of LT codec that has a linear time complexity and

the results of this architecture were measured in terms of time, area and coding

performance. Now I will discuss the little bit more regarding this LT codec

architecture. In broader aspect, total architecture divided into two parts: encoding

architecture and decoding architecture. In encoding structure, the encoding steps are

done by using c
T
 = Hs

T
 equation, where c and s are vectors and H is the generator

matrix. Here special memory architecture is required for this matrix multiplication. In

the encoder block architecture, index counter, degree counter and global counter are

used for indexing the degree value and neighbor nodes information. In this encoding

architecture, a bit selector selects the neighbors of the encoding the codeword symbol

from vector s following the neighbor position saved in H matrix. The modulo 2

operation is performed for generating the final value of codeword. The neighbor

counting is indexed by the counter and sends to the index calculator. Finally the

codeword is formed by applying the modulo 2 operation on the information symbols

equal to the codeword symbol’s degree value. Figure 34 shows the encoder

architecture of LT codec.

-79-

Figure 34: Hardware architecture of LT encoder [19].

Similarly, in the decoding process executes a set of operations on the receives

generator matrix H to get the decoded symbols from the encoded value. In this

decoding architecture, it has three stages. That means three search operations so it

implies the time complexity is O(n
3
). In the first stage it will search for a row i in H

such that degree d(i) = 1. In the second stage, it will search for the column j in the row

i where H(i)(j) = 1. Then it will set)()(icjs =′ ,)()()(jskckc ′⊕= and H(k) (j) = 0.

Finally it will search for all H(k) (j) =1 until there is no degree d(r) = 1. Figure 35

shows the decoder architecture of LT codec. Two simulation environments are used

for implementing these architectures. ANSI C was used for implementing the software

part of LT codec. For hardware implementation, this architecture was translated into

HDL form and Xilinx Modelsim was used to compile this HDL program. Speed and

area are reported from this tools by varying different message block length and code

block length. During the simulation different code rate should be taken. The

Spartan3E FPGA prototyping board had been used to measure the functionality of the

encoder and decoder of LT codec. Theirs results shows that the hardware

implementation was 500 times faster that the software implementation. However,

there were some limitations of this research article. For example, there are no

Vector C Degree Index Neighbors Vector S

1

2

3

2

 K

⊕

Index Calculator

2

1

Degree Counter

0

2

1

0

0

4

1

6

.

0

.

1

2

Global Counter

XOR

Operation

-80-

comparisons with other encoding or decoding algorithms. Since it was implemented

on the prototyping board so the performance scenario is no real like the original

implementation using the standard cell during the chip design process.

Figure 35: Hardware architecture of LT decoder [19].

Soft Decoder Architecture of LT codes by K. Zhang et.al. [20]

In this paper, K. Zhang et. al. presented an architecture of a soft decision LT decoder

with a block length of 1024 bits and 100 iterations. Here, input node and output node

processing techniques are described to accelerate the decoding speed. To apply these

node-processing units, an efficient router and reverse router are designed to indicate

the graphic connectivity between input and output nodes. The soft decoding procedure

explained in this paper [20] is based on the sum product algorithm. In sum product

algorithm LLR, message passing from check node to variable node or variable node

check node operations are used which are elaborately explained in this paper. For

implementation point of view, K. Zhang et. al. proposed an architecture for LT

decoder which includes degree distribution generator (DDG), random number

generator (RNG), message memory, connectivity memory, router and reverse router,

output node processing unit (ONU) and input node processing unit (INU). Figure 36

Vector C

1

2

3

2

Matrix H1

0

4

1

6 1

0

2

1

0

Vector s′ n

0

k

Vector C

1

2

3

2

Matrix H2

0

4

1

6 1

0

2

1

0

Vector s′

n

0

k

Matrix H1

1

0

2

1

⊕

1

2

3

2

Matrix H1

0

3

1

6 1

0

2

1

Matrix H2

1

0

2

1

1

2

3

2

Matrix H1

0

3

1

6 1

0

2

1

-81-

(a) shows the LT decoder architecture proposed by K. Zhang. In this architecture,

message memory is used to store the massage from check node node and variable

node processing. ONUs are used for computing the message of check node using

variable node message and the output of LLR memory. So the message memory stores

the message from check node, variable node and LLR memory and fetched by ONU

and INU during the time of iteration. In order to reduce the decoding latency partly

parallel architecture is used in this architecture.

Figure 36: Architecture of LT decoder (a) complete decoder unit.

This architecture is responsible for concurrent use of input and output node

processing. RNG is used for generating the degree distribution. According to this

paper, degree distribution should be unchanged during the LT encoding and decoding

procedure. A simple method is used for generating degree distribution using RNG and

ROM. The connectivity memory stores the connection information between input and

output node. That means, this memory stores the non-zero location of the generator

matrix. In this paper for LT decoding process, row processing and column processing

(a)

-82-

are corresponding to the variable node processing (input node processing) and check

node processing (output node processing). For this reason, a router block requires to

control the proper memory location to store message from check node unit and

variable node unit. Similarly, in this paper, architecture of output node processing unit

and input node processing node unit are explained elaborately. In ONU look up tables

are used for getting the ‘tanh’ result of message. Figure 36 (b) shows the ONU

architecture for LT decoder. This architecture was synthesized and prototyped on

Xilinx-V XC5V1x330 board. It shows that ONU consumes maximum registers as well

as LUTs on the FPGA prototyping board.

Figure 36 : Architecture of LT decoder (b) output node processing unit [20].

A scalable LDPC decoder ASIC architecture with bit-serial message exchange by T.

Brandon, et. al.[21]

In this paper, T. Brandon et. al. presented a scalable bit serial architecture of LDPC

decoder. Here the decoder was implemented for a (256,128) regular (3,6) LDPC code

(b)

-83-

using TSMC 180-nm 6 metal CMOS technology. It has a decoded information

throughput of 350 Mbps, core area is 6.96 mm
2

and energy efficiency is 7.56 nJ per

uncoded bit at low SNR. In this architecture the decoder is fully block parallel. All

bits of 256 codeword are processed by 256 variable nodes and 128 parity check nodes

that together form an 8-stage iteration pipeline. For decoding the LDPC code, sum

product algorithm was used which is also known as min-sum algorithm. As it is

mentioned earlier that it has 128 check nodes and 256 variable nodes, so in it’s

decoder architecture 128 CNUs and 256 VNUs are interconnected by using interleaver

network. In its VNU architecture, the variable nodes are connected into two 128-node

arrays. Each array is linked by two 4-bit wide LLR buses. Similarly, each variable

node contains two 4-bit registers for holding the LLR channel measurements for the

two codewords being decoded. In addition, there are 4-bit shift registers for receiving

the message from parity check node via interleaver network. These register holds the

binary values that pass through the combinational logic that converts the values from

sign-plus-magnitude format to two’s complement format, forms three 6-bit sums for

the outgoing messages, and converts the 6-bit sums via a saturation operation to three

4-bit sign-plus-magnitude output message values [21]. Three 4-bit shift registers are

used to capture the new output messages. The pipelined interleaver contains two 4-

stage shift registers in the variable node, one flip-flop in each interleaver direction and

one register in the parity check nodes, for a total eight pipeline stages. The parity

check node receives six bit-serial input belief message from the interleaver and

computes then corresponding six bit-serial output belief messages using the standard

min–sum algorithm. The details algorithm of this check node unit was described in the

ref [21] including sum product algorithm. This decoder architecture was fabricated in

TSMC’s 180-nm 6-metal CMOS process using the SAGE-X standard cell library.

Figure 37 shows the architecture of LDPC decoder proposed by T. Brandon et. al. To

speed up the simulation run time and reduce the memory allocation, the variable nodes

were grouped into pairs together with a small controller circuit and then these sub-

-84-

blocks were synthesized. The dimensions of the resulting IC core for the (256,128)

code are 2639.4 µm x 2639.4 µm = 6.96 mm
2
 and the total chip area is 10.82mm

2
. The

logic utilization area in the core is 86%. There are 259 logic gates per check-node

pair, 1183 gates per variable node pair, and a total of 188,84 8 gates before clock- tree

generation and buffer insertion. During chip-level final synthesis, an addition 3557

gates were added bringing the total gate count to 192,405. The operating voltage of

this chip is 1.62 V and 4 ns clock period. The variable node unit consumes the

maximum power which is almost the 75% of total power. This paper shows the ASIC

implementation of LDPC decoder which is used the sum product algorithm as a part

of decoding process. Since LT decoder also used the sum product algorithm, for this

reason I have included this hardware architecture of this paper.

Figure 37: LDPC decoder architecture (left) and variable node unit block diagram (right) [21].

These hardware architectures are designed for ASIC implementation of LT codec. At

first, these structutres are translated into HDL which is known as RTL design and then

this RTL design is ready for further processing of chip design procedure. In this thesis,

we are interested about the application specific processor design of LT codec

application. Moreover, at the end of this processor design, RTL design will be

generated by the ASIP design tools. Next chapter, we will discuss the LT codec

processor design techniques.

-85-

Chapter 5

LT Codec Processor Design Using ASIP Tools

In this chapter, we will show the processor design techniques using three tools: TCE,

Tensilica and OpenRISC. For application specific processor design, at first it requires

two design files: one is input application written in HLL (for example in this work

ltcodec.c file) and second one is processor architecture file (for example architecture

definition file .adf, configuration file .cfg etc). These two design files are key

structutres for processor design in application specific domain. The response of the

processor depends upon these input design files. For this reason, it is very important

for designers to make efficient architecture of input application and configuration

files. At first, we will discuss the proposed architecture of LT codec. Then processor

design parts will be discussed.

5.1 Proposed Architecture of LT Encoder and Decoder

In order to understand the LT codec architectures, at first we present an architecture

for ASIC realizations of the Luby Transform (LT) encoder and decoder. However, for

processor design we required HLL translation of LT codec. After discussing RTL

architecture, we will discuss HLL architecture in corresponding sections.

To determine the efficiency of the LT codec architecture, the encoder and decoder

are implemented with a core area of 9 mm
2
 in TSMC 180-nm 1-poly 6-metal and

Samsung 130-nm complementary metal–oxide–semiconductor (CMOS) technology.

An empirically modified Robust Soliton degree distribution technique is applied for

LT codec implementation and its performance is analyzed in terms of chip area and

cycle count. Instead of including a random generator in the register transfer level

(RTL) design, we use different look-up tables (LUTs) for degree distribution, edge

routing, addressing and inverse edge routing. Therefore, this architecture is efficient

-86-

for hardware implementation and occupies less area inside the chip. The result shows

that an area of 2.3 mm
2
 is required for whole encoder and decoder implementation

using TSMC library, of which 0.08 mm
2
 is used for encoder implementation.

5.1.1 HW Architecture of Encoder

In an encoder, a long output encoded sequence can be produced from k input

symbols }.....,,,{ 4321 kSSSSS as
diiiii SSSSc ,3,2,1, ⊕⊕⊕⊕= .

Output degree d is taken randomly from a degree distribution function explained in

section 4.6.3. Figure 37.1 shows the hardware architecture of the LT encoder for 128

input bits and 256 output bits. This HW architecture is compatible for implementing

ASIC implementation of LT encoder. Therefore, in this paper, for ASIP

implementation, we have written this architecture in C language. For example in

figure 37.1, two look-up tables (LUTs) are used to satisfy the degree distribution. If

the degree distribution is 4, then pick 4 consecutive rows of address message column

(4, 6, 3, 2) that point out the message value of the corresponding address of the

message signal. But in our ASIP architecture instead of LUTs we have used

mathematical expressions: Robust Soliton Distribution (RSD) and Ideal Soliton

Distribution (ISD) for calculating degree distribution. Moreover, a uniform Random

Number Generator (RNG) is applied to get the degree value from this degree

distribution. In contrast, for ASIC design, the address of the message signal is

randomly distributed and the combined operations of the column for degree

distribution and the address of the message satisfy the distribution mentioned in

equation 37. These same LUTs are also used for decoding of the encoded signal. For

this reason, in ASIP design, we have translated the encoding process of LT codec in

HLL by satisfying the minimum execution of operation which is very simple

compared to the use of LUTs. In figure 37.1, the message signals identified by one

row of the degree distribution column are added and the result is stored in a temporary

register. For example, in the degree distribution column, the degree value is 4 then

-87-

message signals of address (4, 6, 3, 2) positions are identified as (1, 0, 1, 0),

respectively, and the result of this addition is stored in a temporary register as 2 and

after applying the modulo 2 operation, the encoded signal for degree distribution 4 is 0.

The 256 bit encoded signal is generated according to the same procedure as used for

the 128 rows of degree distribution column and 128 bit message signal.

The following process is compatible for encoder architecture mentioned in figure

37.1.

1. Create the two lists D and A that represent the degree and address of the message

table, respectively.

2. Take a variable x that indicates the first element of table D.

3. Find the value of degree number d and let D(x) = d and let A(x) = A(x-1) +d.

4. Take d numbers from 0 to k-1 message column, where k is the length of the original

message by using the address A(x) and save the result of their addition into the

Figure 37.1: Architecture of LT Encoder.

-88-

temporary register.

5. Apply modulo 2 operation on the temporary register column.

6. Repeat steps 1 to 5 until the codeword is formed.

Here the LUTs D and A are generated from equation 1 using a computer program.

The above-mentioned activities can be done very easily in HLL by obeying the

following algorithm:

Input: message x = { s1, s2, s3,….,sK }, probability distribution)(dρ on NK

Output: an encoded symbol tn

1. Sample an output degree d with probability)(dρ

2. Sample d distinct message symbols { }
diii sss ,....,,

21
 uniformly at random

from the message

{s1, s2, s3,….,sK} and XOR them,
ji

d

jn st 1=⊕= .

In this thesis, we have executing this algorithm as an encoder technique of LT code

and designed encoder processor using ASIP tools. Now I will explain the decoding

process of LT code.

5.1.2 HW Architecture of Decoder

In LT codec, decoder is more complex than encoding part. From this encoding

explanation, it can be found that direct RTL mapping is quite difficult than HLL

mapping. However, at first we will discuss the RTL design process of LT codec. Then

we explain the decoding procedure using HLL mapping. In this LT codec

implementation, we have taken 128 bits for information signal and 256 bits for

encoded signal. In order to get decoded signal from encoded bit stream, soft decoding

procedure is applied by using sum-product algorithm.

Channel decoding in an LT decoder is based on the log likelihood ratio (LLR) of a

binary random variable { }1±∈X or { }1,0∈X defined by the following equation,

-89-

{ }
{ }










=

=
=
∆

0Pr

1Pr
log)(

X

X
XLLR (39)

where LLR(X) represents the LLR corresponding to bit X, and P(X = 0, 1) represents

the probability that bit X is equal to 0 or 1. The LT decoder operates based on the sum

product algorithm by passing the message (LLR values) on tanner graph. Let L(ti,j)

denote an L value message passed from check node i to variable node j and L(hi,j)

denote an L value message passed from variable node i to check node j. Then from

[8], L(ti,n) can be written as:











⋅= ∏

≠Ν∈

−

jnn

ini

ji

i

hLcL
tL

,

,1

,
2

)(
tanh

2

)(
tanhtanh2)(

)

 (40)

where)ˆ(icL denotes the received L value of the codeword from the channel. Similarly,

the L value L(hi,j) depends on the messages passed to variable node i. So L(hi,j) can be

obtained by [8]

∑
≠∈

=
jee

ieji

i

tLhL
,

,,)()(
ε

 (41)

Similarly the L value about the decoding decision [8]

∑
∈

=
ie

iei tLuL
ε

)()ˆ(,
 (42)

(a)

Figure 37.2: Hardware architecture of the LT Decoder: (a) CNU architecture.

-90-

During this decoding process, the messages are exchanged back and forth in a number

of decoding iterations between the variable nodes and check nodes. The LT decoder

operates based on the sum product algorithm by passing the message (LLR values) on

tanner graph. For example, equations 40 and 41 are responsible for implementing the

check node unit (CNU) and the variable node unit (VNU) and equation 42 is used as

(b)

(c)

Figure 37.2: Hardware architecture of the LT Decoder: (b) VNU architecture, and (c) Final

decoding stage

-91-

the decoding final stage. In decoding architecture, these equations are implemented in

different stages and the working principle of this architecture is discussed in the next

section.

 CNU Operation:

In the CNU module, LLR memory is used for check node operation while the

message is passing through the check node. Like encoder, the same degree distribution

table is used so that when the degree is one, the counter counts the position of unity

degree and CNU memory stores the message of the count address value from LLR

memory. Then, the counter counts further and when the degree is not equal to one, the

message from LLR of that count address is multiplied with the message from VNU

memory through the operations presented in figure 37.2 (a). The CNU memory

therefore has messages for degree one and updated messages for a degree greater than

one. Messages pass through these CNU nodes and updated messages are stored in the

CNU memory. The operations of CNU are executed as below:

1. Search for a row in degree table where d(i) =1.

2. Take the message from LLR memory and store it in CNU memory, L(i) = C(i).

3. Search for a row in degree table where d(i) = x, x ≠ 1.

4. For each x, temporary register T(j) = T(j) * V(j) and C(j) = T(j)*L(j) where j =

0,1…x-1.

VNU Operation:

As shown in figure 37.2(b), each variable node contains 4 LUTs. Two new LUTs

termed as edge information and index tables are included in VNU operation. These

additional tables consist of nodes and edge information provided by the degree

distribution function. The VNU function unit takes data from CNU memory and stores

it in VNU memory after following the operation of node routing and inverse node

routing explained in figure 37.2(b). In VNU, the processing unit accumulates

messages serially from the check node and stores them in the variable node memory.

-92-

The operation of VNU can be written as below:

Search for a row in address table A(i) such that A(i) = K and the increment of K

depends on index table I(j). Here, j is the variable of the Index table and its increment

depends on Degree table D(l). Edge information table controls the value of l in a

prescribed manner. So, for A(i) = K, VNU processing unit accumulates LLR message

format from CNU memory and stores it in the VNU memory unit.

Final Decoding Stage:

After finishing the CNU and VNU operations, CNU memory contains all the nodes

and edges of the processing information. Degree and address LUTs are used for

generating addresses for the decoder memory. Then, data read from the decoder

memory are taken as the decoded output. Figure 37.2 (c) shows the final decoding

stage architecture. Its algorithm is given below:

1. For each element of degree D(i), increase the index variable k until k = D(i).

2. When k > D(i), then k = 0.

3. For every value of i and k, take the value from the address table A.

4. Using this address value, store the information from CNU memory in the decoder

memory.

5. Finally, the decoded output is generated from the decoder memory.

From the above discussion, the whole decoding process is explained through the

LLR operation, CNU and VNU processing unit and final decoding stage. It is

performed by passing messages from check nodes to variable nodes and vice versa.

Therefore, this decoding is an iterative process and messages are decoded from the

code value after certain iterations. This 144 quad flat package pin LT Codec chip is

fabricated by applying TSMC 180nm technology.

5.1.3 Decoding Procedure Using HLL

Decoding algorithm has been developed by using these three equations from eq. 40

to eq. 42. Through these equations, the message information is passing from check

-93-

node to variable node and variable node to check node of tanner graph. Figure 37.3

shows the typical tanner graph of LT codec. Figure 37.4 shows the HLL mapping of

LT decoder. In this case, we have followed the algorithm explained by equation 40 to

42. According to this figure, first we have taken one 2D array (L(ti,j)) size of encoded

signal length by maximum degree value. In encoding end, we have already generated

the edge, index of those edges for variable node and degree value of check node that

are explained in figure 37.3. At first we need to search which check node has single

degree that means if degree is one then store the LLR values of that check node to

L(ti,j) memory. Otherwise store the message passing value calculated by using eq. 40,

41, edge and degree information in L(ti,j) memory. Then we have taken another 1D

array (L(ui)) size of information signal length by one. According to eq. 42, the

message value of each variable nodes should be stored in L(ui) memory. After that

decoded signal is found by applying the hard decision according to figure 37.4.

In this section, we have discussed the LT encoder and decoder architecture in terms of

HLL format. After that, we need to explain LT codec processor generation techniques

by using ASIP design tools.

Figure 37.3: LT Codec tanner graph.

Variable node

Check node

Edge information

Degree information

-94-

(if degree = 1) L (ti,j) = LLR of encoded signal value

Figure 37.4: Decoder structure using HLL.

L (ti,j) memory

 (size: encoded signal length x maximum degree value)

(if degree ≠ 1)











⋅= ∏

≠Ν∈

−

jnn

ini
ji

i

hLcL
tL

,

,1

,
2

)(
tanh

2

)(
tanhtanh2)(

)

∑
≠∈

=
jee

ieji

i

tLhL
,

,,)()(
ε

∑
∈

=
ie

iei tLuL
ε

)()ˆ(,

L (ui) value decoding memory

(size: original signal length x 1)

L(ui) >= 0 then

Decoded signal = 0

else 1

Decoded Signal
(size: original signal length x 1)

- 4 0 0 0

4 0 0 0

-4 0 0 0

-4 0 0 0

4 0 0 0

-4 0 0 0

3.9 -3.9126 0 0

3.9 0 0 0

3.82 -3.91 0 0

3.03 -3.99 0 0

7.3358

14.3050

-10.0862

-13.4066

9.3384

5.2213

14.2883

19.0292

7.2319

6.6509

-8.7674

-13.4615

-22.4657

21.0193

-26.1414

8.4995

0

0

1

1

0

0

0

0

0

0

1

1

1

0

1

0

-95-

5.2 Processor Design Using ASIP Tools

It is necessary one tool set for implementing application specific processors based on

the TTA processor template. As mentioned earlier that there are different tools to

satisfy this requirement. TTA based Co-Design environment (TCE) is one such tool

set and its main goal is to provide a reliable and effective toolset for designing

programmable application specific processors and generates machine code for them

from applications written in high level language (HLL). This toolset is developed by

Tampere University of Technology [22]. Processor Design (ProDe), a retargetable

high level language compiler tcecc, the retargetable Instruction Set Simulator (ISS)

ttasim (command line version) and proxim (graphical user interface version) and the

processor generator ProGe are the most essential properties used in TCE. Using this

tool, application written in high level language can be implemented in FPGA

evaluation board through RTL design flow. The concept of retargetability of tools

means that it can be automatically adapted to the processor architecture during run

time. In TCE the designer can customize the TTA processor that means the

architecture file can be modified by adding or removing FUs, RFs, data buses and

even by using user defined FUs. The designer can also change the width and number

of GPRs. So this tool is very flexible and customizable to improve the processor

performance in terms of cycle count or other overheads.

5.2.1 ASIP Design with TCE [23]

The main goal of TCE ASIP design flow is to produce a processor in HDL language

and implement this generated processor to chip design process or an FPGA evaluation

board for checking functionality. Figure 38 (a) shows the complete design structure of

TCE ASIP design flow. From this figure, it can be shown that the desired application

in HLL and the design requirements are applied as inputs of the design flow. The

design requirements may include the amount of FPGA resources, the target execution

-96-

time, the minimum clock frequency, as well as energy, area etc. So, at the beginning

of the design flow it is required a starting point architecture which is known as

Architecture Definition File (ADF). The structure of architecture is very important to

meet the desired requirements and there are flexible activities to modify this

architecture to meet the requirements. Therefore, the aim of this thesis is to depict the

response of different ADFs to reduce the cycle counts to implement the input

application. However, next this source code with starting point architecture (ADF) is

compiled by the tcecc compiler and generates TTA Program Exchange Format

(TPEF) binary file. Then the retargetable instruction set simulator ttasim receives

these two files (TPEF and ADF) as input and produce the simulation results.

Execution cycle count, processor resource utilization and optimally execution trace

are included in this simulation result [3]. These simulation results are then feed backed

to the starting point architecture (ADF) to adjust the parameters. If the minimal

structure of ADF fails to meet the requirements then custom architecture is applied for

simulation. However, this iteration process is known as manual processor Design

Space Exploration (DSE) [3]. TCE also includes explorer tool to automate this DSE

operation. On the other hand, TCE allows the designer to customize TTA processor

that is FUs and transport buses etc are modified according the designer requirements.

This custom operation is allowed to accelerate the application. The custom operation

design flow is shown in the following figure 38 (b). From this figure, first, it is

required to find a custom operation then the designers create a custom operation

compiler definition by using Operation Set Editor tool (OSEd). In order to simulate

the custom operation FUs, it is required simulation models written in C/C++. After

this, the processor architecture and HLL source code are modified according the

custom operation. In HLL source code this is done by calling the operation via TCE-

specific operation macros or intrinsic. Then the feedback is taken to get the response

of the new custom design and if the result is not satisfying then it is modified or

another custom operation can be tested [3]. In this thesis, I showed the performance of

-97-

this custom operation in terms of cycle count, resource utilization for LT encoder and

decoder as an input application file. Figure 39 (a) shows the simulation behavior of

the typical custom function unit. This figure describes the architectural simulation

behavior of the ADD operation. The first and the second operand (id 1 and id 2) are

added up and the result is written to the output with id 3. OSAL architecture does not

include the operation latencies of the custom FU.

Figure 39(b) shows an example of a TTA processor datapath using TCE tool that

consists of FUs, RFs, a Boolean RF, and a custom interconnected network [24]. These

data transports are clearly programmed and written to a trigger port of functional units.

Figure 39 also represents instructions, defined as moves, for three buses [24]. An

explanation of these instructions is given in the next section. In this figure, moves are

defined for three buses performing an integer summation loaded from memory and a

constant.

Figure 38: TCE design flow: (a) from HLL to FPGA [3] (b) TCE custom operation design

flow [3].

(a) (b)

-98-

Figure 39: TCE operation (a) simulation behavior of custom FU (b) Example of TTA

processor data path with 3 instructions for three buses [2].

5.2.2 Processor Design Space Exploration

Design space exploration is defined as the process of finding target processor

architectures with desired performance for a given applications. In TCE this process

can be largely automated but trial-and-error process should be followed to get more

efficient target processor. Figure 40 represents the automatic design space exploration

process of TCE. TPF is a suffix of the files used to store TTA programs stored in our

TTA Program Exchange Format files. ADF and IDF are the two file formats for

describing the architecture and implementation data of the processor, respectively, as

presented in the previous section. A processor configuration consists of an ADF/IDF

pair. The design space explorer modifies resources of a given architecture and passes

the modified architecture to the code generation and analysis phase for evaluation. As

a result, it will produce the estimate of consumed energy, number of cycles and cycle

time. This process is repeated for each modified architecture until satisfy the target

architecture goal.

Trigger Port #4�ALU.IN1

LSU1.R�ALU.IN2.ADD

RF.2�LSU2.T.STW

Bus

Port Connection

(a) (b)

-99-

Figure 40: Automated Design Space Exploration [23].

5.2.3 TTA Programming

In TTA programming, data transports are required to read and write the operand

values, and the operation is triggered when data is written to a trigger port. Sequential

and parallel TTA programs represent the sequence of instructions depending on a

number of buses. In sequential TTA programming, the moves are sequentially

executed because of single bus architecture. Therefore, its code is not scheduled to be

executed in a target structure. In a parallel TTA program, a set of moves is executed

using a multiple bus structure. Therefore, each bus will be utilized in parallel in the

same clock cycle. Thus, instruction level parallelism (ILP) is exploited in a parallel

TTA architecture. An example of a simple TTA program is given below [25]:

1: 100 ->RF.1 ; 500 -> RF.2

2: RF.1 -> ALU.add.1; RF.2 -> ALU.sub.1

3: 50 ->ALU.add.2 ; 100-> ALU.sub.2

4: ALU.add.3 ->RF.1 ; ALU.sub.3 ->RF.2

5: RF.1 ->ALU.EQ.1 ; RF.2 -> ALU. EQ.2

6: !ALU. EQ.3->bool; ………

7: !bool 2-> GCU.jamp.1

Here two buses are used in TTA architecture so that a couple of instructions are

executed in one clock cycle. In Line 1, two general-purpose registers (RF) take

-100-

constant values from the immediate unit and store those values in the ADD and SUB

modules of ALU through a load store unit (LSU). This is explained in Line 2. After

finishing the similar operations in Lines 3 and 4, RF1 and RF2 hold the output values

of ADD and the SUB module of ALU. Line 5 shows that these two values from GPRs

are applied to two inputs of the equator (EQ) module of ALU. In Line 6, the result of

the comparison is transferred to a Boolean register, which is used in conditional

execution. In the last line, the value of the Boolean register is evaluated and the jump

operation of the global control unit (GCU) is triggered in case a Boolean register value

is false. That means the program execution is transferred back to Line 2 when the

values of RF1 and RF2 are not equal. For this example, the second operand of the

ADD, SUB, and EQ operations, and the first operation of the JUMP operation, are

triggering ports. Therefore, this whole comparison operation is done in 7 cycles, and

each cycle executes two operations for two bus architectures. That means, depending

on this ILP, the speed of the processor is identified. Single bus architecture would

require almost 12 cycles to execute this operation. The assembly notations of this

example are taken from the TTA Based Co-design Environment (TCE) tool [25].

In TTA architecture, it is possible to add a new instruction to the target processor

which implements arbitrary functionality. This custom instruction reduces longer

chain operations to a single custom operation. To add this custom instruction, the

ADF files of the TTA processor should be modified by introducing a new FU. In this

thesis paper, we showed the ways in which the instructions set are generated from

each custom function unit. The generating procedure of each efficient custom function

unit, modification of ADFs, and reference design are discussed in the author’s other

paper [4]. The TTA code generation techniques for this FU, named CRCFAST, are

discussed in detail. Moreover, this new custom architecture for implementing CRC is

very efficient in terms of cycle count which is also discussed in-depth in [26].

-101-

5.2.4 Code Generation Method Using TCE Tool

In the previous section, we discussed the assembly instruction of the TTA processor,

which was applied to Architecture Definition Files (ADFs) in the TCE tool [6]. In this

section, we will discuss the code generation technique which is the main part of whole

design flow in the TCE structure. Before going to discuss the code generation

technique using TCE tool, we will show the advantage of customized code generation

for TTAs. It is well-known that VLIW and TTA based processors exploit the ILP at

compile time. Here, compiler finds the parallel instructions before run time. VLIWs

are constructed from multiple, concurrently operating FUs where each FU supports

RISC style operation. But the traditional VLIW processor architecture is not suitable

for scalable operation because of its complex connectivity of required datapath

especially for register file (RF) and bypass circuit. The data bandwidth and instruction

bandwidth depend on the number of selected FUs. However, when all FUs are utilized,

the available data bandwidth is still rarely utilized. For that reason, the concept of

TTA and its code generation techniques are required. The complete design flow is

divided into four phases: Initialization, Design Space Exploration, Code Generation,

and Processor & Program Image Generation [25]. In initialization phase, the

sequential code form of the TPEF file format is generated by compiler like TCECC

(TCE C Compiler) including the architecture definition file (ADF). If this compiler is

provided with multiple compilation units, the TPEF linker links them to a single TTA

Program Exchange Format (TPEF) binary file. This TPEF file format is used for

storing unscheduled, partially scheduled, and scheduled TTA programs to apply input

to TCE. The compiler used here is known as a frontend compiler because it has no

more use in the rest of the TCE toolset. Now, for TCE version 1.5, this compiler can

compile only in the high level C language. Design space exploration is used to

estimate the cost for different starting point architectures (ADFs). The goal of this

phase is to find an optimal architecture for input design. Here the explorer removes

the unused connections and resources from the starting point architecture, which is

-102-

more beneficial in terms of area, power, and time. It should be noted that if a program

is simulated using various types of efficient target architecture modified either

automatically or manually, parallel simulation is invoked to increase processor speed.

Therefore, the Explorer creates a database named the Exploration Result Database

(ExpResDB), which contains the configuration of evaluations during exploration. It

also creates an Implementation Definition File (IDF) for estimating the cost of each

explored target architecture.

Figure 41: Code generation and analysis [25].

The most influential and demanding part of TCE design flow is code generation

and analysis. Figure 41 shows the code generation procedure of the TCE tool. In this

stage, the sequential program is converted to parallel instructions by efficiently

utilizing the given target architecture. It is very difficult for a programmer to write a

thousand lines of a TTA program manually, even if there is a use of semi-automatic

design space exploration. Moreover, hand written code is not always efficient.

Therefore, in this stage, the scheduler takes all responsibility for the performance of

the entire toolset [3]. Figure 42 (a) shows the important concepts regarding an

instruction scheduling compiler for the TTA architecture. Generally, the main working

principle of a compiler is to translate a program written in a source language to

another target language.

In TCE, the compiler is used to translate HLL like C into executable code for TTA. It

-103-

should be noted that, during this compilation, it assigns processor resources to every

data transport, while avoiding any conflicts in resource usage [5]. Moreover, at the

same time, all possible ILP should be exploited to facilitate efficient code execution

[5]. Figure 42(a) shows that an ILP compiler has three parts: a front-end, a middle-end,

and a back-end [5].

Figure 42 : Compiler structure of TCE tool (a) data flow in the ILP compiler [27] (b) structure

and data flow in a TCE compiler [27].

(a)

(b)

Front-end

LLVM-GCC
LLVM

bytecode

LLVM:

back-end

TCE:

back-end

ADF
Parallel TTA

code
Application in

C

LLVM:

opt

LLI

Frontend

Middle end

Back end

-104-

The front-end translates the source application code written in HLL into intermediate

program representation (IR), and this IR is not compiled for any particular target

architecture. All possible auxiliary data, including IR, is the input to the middle-end of

compiler (or back-end if there is no optimization performed on IR). The middle-end

executes high-level language and architecture-independent optimization on IR

produced by the front-end. To increase efficient ILP, this optimization includes dead-

code elimination, function inlining, and loop unrolling. In the back-end, the compiler

reads machine-independent IR, the architecture description file (ADF), and profiling

information. Then it translates the code into parallel code for the target architecture.

The back-end performs several optimizations using control analysis, data flow

analysis, and memory reference disambiguation analysis. These optimizations

comprise register allocation and instruction scheduling, which are important parts of

generating efficient code executables for the target processor [27].

Figure 42 (b) shows the basic structure of the TCE compiler, which follows the same

configuration of the re-targetable ILP compiler explained in Figure 42(a). The front-

end of the TCE compiler is the Low Level Virtual Machine (LLVM) C front-end,

which transforms an application written in C to LLVM byte-code. This LLVM byte-

code, known as IR, is an architecture-independent intermediate program

representation used in the LLVM framework [27]. Then this IR is optimized in the

middle-end and simulated with the LLI for verification. The back-end of the TCE

compiler requires the architecture definition file of the target processor. In this stage,

the LLVM back-end performs machine-dependent code transformations like

instruction selection and register selection. After passing this stage, the optimized

code contains both machine independent and dependent information. Then this

optimized code is applied to the input of the TCE back-end. The back-end performs

instruction scheduling, applies TTA specific optimizations, and executes the code

generation process. The optimized codes shown in table I(b), for a custom CRC

architecture are generated by TCE tool [28].

-105-

Table I(b): TCE assembly instructions for CRC implementation with crcfast.adf.

Cycle Bus 1 Bus 2

1 4 -> ALU.in2, 16777208 -> ALU.in1t.sub ;

2 0 -> CRCFAST.trigger.crcfast, ALU.out1 -> RF.0 ;

3 gcu.ra -> LSU.in2, _exit -> gcu.pc.call ;

4 ALU.out1 -> LSU.in1t.stw, ... ;

5 8 -> LSU.in1t.stw, CRCFAST.output1 ->LSU.in2;

6 ..., ... ;

7 0 -> LSU.in2, 4 -> LSU.in1t.stq ;

5.2.5 Program image and Processor Generation

This is the final stage of TCE design flow. This includes generation of HDL files of

the selected TTA designs and bit images of the program. Program Image Generator

(PIG) processes a scheduled program stored in a TPEF file and generates bit images of

the programs that can be uploaded into the instruction memory of the target processor.

Figure 43 shows the processor generation technique using TCE tool.

Figure 43 Block diagram of processor generation technique using TCE tool [23].

Program Image Generator (PIG) processes a scheduled program stored in a TPEF file

and generates bit images of the programs that can be uploaded into the instruction

memory of the target processor. Binary Encoding Map (BEM) can be generated

manually or can be obtained by BEM generator. In figure 43, instruction compressed

plugins are used to compress the program images and generate a corresponding

-106-

decompression block to the control unit of the target processor. Program Generator

reads the ADF and IDF files of the target processor and finally produces the HDL files

of the implementations and generates the interconnection network and the control

logic by using Hardware Database (HDB) files.

5.3 ASIP Design Flow Using Xtensa Xplorer (XX): Tensilica Tools

Tensilica is very popular in the area of customizable processor design. It was

founded by former employees of Silicon valley and EDA companies like MIPS in

1997. Like TCE tool, Tensilica also develops application specific processor for use in

synthesized chip design for embedded system. Under Tensilica Xtensa Xplorer is

processor IP architecture used to generate processor for input application. Besides the

application of TTA-based Co-design Environment (TCE), a comparison between TCE

and Tensilica tools is displayed in terms of cycle count. At first, I will discuss an ASIP

oriented design flow using Xtensa Xplorer (XX) integrated development environment

(IDE) as the design framework under Tensilica tool. Using the XX, it is possible to

integrate software development, processor optimization and multiple-processor

system-on chip (SoC) architecture into one common platform. From it, we can profile

our input application code to identify the cycle consumed by the function used in input

design. Then we can make necessary change to speed up that code. There are various

building blocks in the Xtensa architecture. Figure 44 (a) shows the structure of Xtensa

architecture. This figure shows the range of configurability, extensibility with Xtensa

processor. In this architecture, system designer should specify the different blocks of

configuration function units. Advanced designer-defined functions are one kind of

hardware execution units and registers.

-107-

Figure 44: Configuration of Xtensa Xplorer

(a) Xtensa architecture [29] (b) Xtensa design Flow.

Figure 44 (b) represents overall design flow of XX. In this figure, the fist block

contains different configurations selected upon the nature of input application. Based

(a)

(b)

Configure processor

(Including Custom

TIE instructions)

Configuration-

Specific Database

Configuration

Specific HDL

Description and

CAD Scripts

Synthesize Logic

Hardware

Simulate, Debug

&Profile Application

SW: Add Custom Ins.

Place and Route

Verify Time

Compile, Assembler and

Link Application

Software

Install SW:

Set up Environment

Configuration-

Specific SW

Development

Tools

Configuration-

Independent Xt

Tool

Software

-108-

on these properties of this architecture, I have taken different configurations of

architectures to simulate our input application. For this reason, I have taken 16

preconfigured cores and the result is tabulated after simulating the input application

using those cores. Then we apply some custom logic levels to processor for

accelerating the processor performance. These preconfigured cores are divided into

four broad categories; Communication, HiFi/Audio, Video/Imaging and Diamond or

General Purpose Controller. The Communication configuration core is known as

ConnX D2 DSP engine. In this thesis, two ConnX configurations known as

XRC_D2MR and XRC_D2SA are used for simulation and show very good

performance between all other configurations. The XRC_D2xx configuration includes

dual 16-bit multiply-accumulate (MAC) units and 40-bit register file to the base RISC

architecture of the Xtensa LX processor. This engine uses two-way SIMD (single

instruction, multiple data) instructions to provide high performance on vectorizable C

code. It implements an improved form of VLIW instructions and five-stage pipeline.

Figure 45 shows the basic architecture of the ConnX D2 engine with two MAC units

with register banks [30]. The ConnX D2 instruction set is designed for numeric

computations like add-subtract, add-compare or add-modulo etc required for digital

signal processing. This ConnX D2 core exploits seven DSP-centric addressing scheme

mentioned in figure 45. In order to provide excellent performance, it includes data

manipulation instructions like shifting, swapping, and logical operations. Our input

design is LT codec and it has huge number of shifting, swapping and logical

operations. So, this processor architecture is suitable for our input design. Besides this,

I have simulated our LT codec design using other configurations. So, I have briefly

explained these architecture. For more interest, it is recommended to study the

reference manual of Tensilica tool. The HiFi/Audio engine (330HiFi) is optimized for

audio processor, voice codecs and pre- and post-processing modules. This

configuration includes the Xtensa LX processor that is the basis of the 330HiFi

processor. It extends the HiFi 2 Audio Engine ISA for hardware perfecting, 32 x 24

-109-

bit multiply/accumulate operations, circular buffer loads and stores and bidirectional

shift. There are two main components in this engine: a DSP subsystem that operates

primarily on 24-bit data items and other one is a subsystem to assist with bit stream

access and variable length encoding and decoding [8].

Figure 45: A simplified architecture of ConnXD2 DSP engine [30].

So this architecture is fully compatible for audio/video compression or processing

operation. Another category of processor known as Diamond or General Purpose

Controllers are optimized for SoC design and it can be used in any application where a

controller is required. Diamond controllers are based on a modern RISC

architecture.Among these controllers Diamond 106Micro and 108Mini are cache-less

controllers and designed for lowest area and power. The Diamond 106Micro has an

iterative, multicycle multiplier and uses a non-windowed 16-entry AR register file. So

-110-

it is ideal for fast context switching and does better performance for nested function

calls. The diamond 108Mini has full 32x32 multiplier and divider and 32-bit input and

output general-purpose I/O (GPIO) ports. The Diamond 212GP and 233L are

applicable for medium level performance and they have caches, local memories,

divider, 32-bit input/output GPIO ports and other DSP instructions. Therefore,

Diamond 212GP and 33L are ideal for hard drive controller, imaging, printing,

networking etc. The Diamond 570T can generate up to 64-bit Very Long Instruction

Word (VLIW) instruction bundles as per the requirement of input design. This VLIW

instruction contains two or three operations or instructions. The 570T processor also

includes 32-bit input and output GPIO ports with 32-bit input and output FIFO

interface. Therefore, this FIFO interface provides a very useful mechanism for the

processor to communicate with other RTL blocks, devices and processors [31]. Next,

we will show the comparative performance of all these processor architecture.

5.3.1 Extension via TIE

Tensilica Instruction Extension (TIE) is a language that lets designers incorporate

application-specific functionality in the processor by adding new instructions. To

accelerate the speed of the processor, in Tensilica, it is possible to apply the custom

operation in input design. Tensilica Instruction Extension (TIE) language is a

powerful way to optimize the processor and is used to describe new instructions, new

registers and execution units that are automatically added to the Xtensa processor.

Xtensa cores take TIE files as input and create a version of Xtensa processor to

complete the tool chain incorporate with new TIE instruction. The processor

architect’s job is to decide which applications are common enough to warrant some

level of support through dedicated instructions.

Figure 46 shows the TIE generation technique using Xtensa processor. This TIE can

be generated automatically or manually, depends on the performance of TIE

instructions. In this work, we have used TIE instructions generated automatically to

-111-

profile our input design and it shows good performance. So using TIE instruction,

processor creates single instructions that perform the multiple general purpose

instruction

Figure 46: Generation of custom TIE instructions [29].

As mentioned above, TIE instructions improve the execution speed of the input

application running on Xtensa processor. Some other techniques like Flexible

Instruction Extensions (FLIX), Single Instruction Multiple Data (SIMD) and Fusion

can be executable through TIE operation. In this paper, we applied only FLIX

instruction to the input application. In Xtensa, FLIX instructions are multi-operation

instructions (32-bit or 64-bit long) that allow a processor to perform multiple,

simultaneous, independent operations. In FLIX, processors are encoding the multiple

operations into a wide instruction word. The XCC compiler takes the FLIX operation

-112-

and converts it into FLIX format instruction as per the requirements to accelerate the

input code [32]. The performance of FLIX instruction is discussed in simulation result

chapter.

5.4 OpenRISC Tool

The OpenRISC architecture is one of the latest in the development of modern open

architectures. It consists a family of 32- and 64-bit RISC/DSP processors. This kind of

architecture allows a spectrum of chip and system implementations at a variety of

price/performance points for a range of applications. OpenRISC 1200 is a

synthesizable processor developed and managed by OpenCores and using this OR

1200 processor, systems are designed with emphasis on performance, simplicity, low

power consumption, scalability, and versatility. It targets medium and high

performance networking, portable, embedded, and automotive applications. Therefore,

OR 1200 is an open source IP-core available from the OpenCores website as a Verilog

HDL model.

By using this tool, the design can be simulated by two ways. The first uses the RTL

simulation of primary design by using Icarus Verilog or Mentor Graphic’s Modelsim

and the second method involves creating a cycle accurate from hardware description

language using verilator tool.

In this thesis, RTL simulation (Icarus Verilog Simulator) is donefor reference designs

by using OpenRisc architecture, which consists 5-stage single-issue integer pipeline,

virtual memory support and basic DSP capabilities [33]. Figure 47(a) shows an

overview of OpenRisc 1200 core architecture. For RTL implementation, all the blocks

of OpenRisc 1200 IP core are written in Verilog HDL and are published under the

GNU License. Here the test programs are compiled to Executable and Linkable

Format (ELF) file format, which can be executed both in ISS and RTL simulator.

management unit, programmable interrupt controlle

Moreover, other peripheral devices can be used by 32

in this

design by using OpenRisc processor is simulate

simulator) and observed the log files generated as output of that simulator, so this

design is not intended for implementation on FPGA prototyping

(a) OpenRisc core’s architecture

This implementation also includes a register set, cache operation, power

management unit, programmable interrupt controlle

Moreover, other peripheral devices can be used by 32

in this work, we didn’t use any peripheral interface. As I mention earlier that the test

design by using OpenRisc processor is simulate

simulator) and observed the log files generated as output of that simulator, so this

design is not intended for implementation on FPGA prototyping

(a) OpenRisc core’s architecture

This implementation also includes a register set, cache operation, power

management unit, programmable interrupt controlle

Moreover, other peripheral devices can be used by 32

we didn’t use any peripheral interface. As I mention earlier that the test

design by using OpenRisc processor is simulate

simulator) and observed the log files generated as output of that simulator, so this

design is not intended for implementation on FPGA prototyping

Figure 47: Architecture overview:

(a) OpenRisc core’s architecture (b) CPU/DSP block diagram of OpenRisc

This implementation also includes a register set, cache operation, power

management unit, programmable interrupt controlle

Moreover, other peripheral devices can be used by 32

we didn’t use any peripheral interface. As I mention earlier that the test

design by using OpenRisc processor is simulate

simulator) and observed the log files generated as output of that simulator, so this

design is not intended for implementation on FPGA prototyping

-113-

Figure 47: Architecture overview:

(b) CPU/DSP block diagram of OpenRisc

This implementation also includes a register set, cache operation, power

management unit, programmable interrupt controller (PIC), debug unit and tick timer.

Moreover, other peripheral devices can be used by 32

we didn’t use any peripheral interface. As I mention earlier that the test

design by using OpenRisc processor is simulated by RTL simulator (Icarus Verilog

simulator) and observed the log files generated as output of that simulator, so this

design is not intended for implementation on FPGA prototyping

(a)

(b)

Figure 47: Architecture overview:

(b) CPU/DSP block diagram of OpenRisc

This implementation also includes a register set, cache operation, power

r (PIC), debug unit and tick timer.

Moreover, other peripheral devices can be used by 32-bit Wishbone bus interface. But

we didn’t use any peripheral interface. As I mention earlier that the test

d by RTL simulator (Icarus Verilog

simulator) and observed the log files generated as output of that simulator, so this

design is not intended for implementation on FPGA prototyping

(b) CPU/DSP block diagram of OpenRisc

This implementation also includes a register set, cache operation, power

r (PIC), debug unit and tick timer.

bit Wishbone bus interface. But

we didn’t use any peripheral interface. As I mention earlier that the test

d by RTL simulator (Icarus Verilog

simulator) and observed the log files generated as output of that simulator, so this

 board, rather purely

This implementation also includes a register set, cache operation, power

r (PIC), debug unit and tick timer.

bit Wishbone bus interface. But

we didn’t use any peripheral interface. As I mention earlier that the test

d by RTL simulator (Icarus Verilog

simulator) and observed the log files generated as output of that simulator, so this

board, rather purely

-114-

for making comparison between TTA and OpenRisc processor.

Memory Addressing is one of the important operations of OpenRisc architecture.

The processor computes an effective address when memory access instruction is

executed. This addressing is also applicable for fetching the next sequential instruction.

Fetching instructions from main memory is the main bottleneck of RISC processor.

The access time depends on the fetching instructions and this can be alleviated by

perfecting instructions before they are required by the processing unit [5]. The

memory operand warps around from the maximum effective address and Load/Store

instructions using these address mode contain a signed 16-bit immediate value and

add to contents of a general purpose register specified in the instruction [34].

OpenRisc 1200 implements 32-bit 32 general-purpose registers (GPRs). The

Load/Store Unit (LSU) transfers all data between the GPRs and CPU’s internal bus. In

figure 47(b), the instruction unit implements the basic instruction pipeline, fetching

instructions from memory subsystem, disfetches them to available execution units and

maintains a state history to ensure a precise execution model. It implements the 32 bit

part of the OpenRISC 1000 architecture. Figure 47 (b) shows the different units of

CPU architecture in OpenRISC processor.

Figure 47 (c): Architecture overview: OpenRISC 1200 5 stages pipeline.

Instruction Cache

PC

IF ID EX LS WB

Except Unit

-115-

The instruction unit implements the basic instruction sets of the OR1200 core. This

instruction unit fetches instruction from the memory system and dispatches them to

the available execution units like LSU, ALU, MAC units. The basic operation of

instruction unit is similar to that of the RISC processor which is already discussed in

the previous chapter. But The OpenRISC1000 architecture defines five instruction’s

formats and two addressing modes those are explained elaborately in its product ref

manual [34]. Besides the GPRs and SPRs, OR 1200 has some important registers like

Supervision register, Exception supervision register, Program counter register,

exception program counter register and exception effective address registers.

OR 1200 has LSU which is responsible for transferring data between GPRs and the

internal data bus of CPU. The LSU has been implemented as as independent unit OR

1200 architecture so that if there is a data dependency then memory system only be

affected. The LSU can execute one load instruction every two clock cycles. It has

ALU like RISC processor architecture.

MAC unit executes the basic DSP operations and MAC instructions. In OR 1200

MAC unit is fully pipelined. In every clock cycle, it has ability to accept new MAC

operation. The MAC instruction has 32-bit operands and a 48-bit accumulator.

System unit connects all the CPU signals to the system signals except those which

are connected through the Wishbone interfaces.

The exception unit oversees the exceptions generated by the OR1200 processor core.

For example the system calls, memory access conditions, interrupt request etc are

handles by the exception units.

For this OpenRisc processor, there are five-stage pipeline named as fetch, decode,

execution, memory and write-back [34]. These five instructions are in progress at any

given clock cycle and each stage of the pipeline performs its task in parallel with all

other stages. So in this thesis, the execution clock cycles are counted for OpenRisc

processor by applying two reference designs named as LT encoder and LT decoder

architectures. The result will be discussed elaborately in experimental result section.

-116-

Figure 47 (c) shows the five stages pipeline architecture of OpenRISC processor. As it

is mentioned earlier that pipelining is one of the most important phenomenon to verify

the processor. It has strong effort to speed up the processor. Using this Pipelining

technique an instruction’ execution is divide into a number of independent steps to

improve the throughput of a processor. These independent steps are called pipeline

stages. Each pipeline stage ends up in a storage (pipeline registers) of its execution so

that the subsequent stages can use the result. Therefore the pipelining architecture of

OR 1200 processor is similar to the pipelining that I have discussed elaborately in

previous chapters.

In this chapter, I have discussed proposed architecture of LT codec, processor design

three different ASIP design tools and their architectures. Nevertheless, this discussion

is not sufficient for understanding the complete tools. To get adequate information

reference manual and user guides of corresponding are recommended. However, there

are many other tools, mentioned in earlier chapter for designing and simulating ASIP

work. In this thesis, I took only three tools for comparing their results.

-117-

Chapter 6

Simulation Result

I have implemented and generated application specific processor for LT codec using

TCE, Xtensa and OpenRISC processor design tools. I took TCE as a main designing

tool and other two tools have been taken for comparing the results using TCE.

I have translated the complete encoding and decoding algorithm using C program.

Before feeding in the decoding module, I apply noise to corrupt the transmitted signal

through the channel. Therefore, the overall communication can be modeled by the

figure 48.

Figure 48: Simulation model of LT codec communication.

The main aim of this thesis is to implement figure 48 using ASIP design tools. The

results of this implementation based how efficiently I will produce LT codec

processor and its efficiency should be calculated in terms of cycle count and time

required for simulation. Area, number of gates and cells required to implement this

architecture have been discussed in reference [35].

6.1 LT Codec Simulation Using TCE Tool

Simulation procedures using TCE tool have been discussed elaborately for CRC

application in ref [26]. First, we need to compile the input design by TCE C compiler

(TCECC). Then, the starting point architecture is required as input for retargetable

compiler TCECC. The structure of this ADF depends on the input application system

Message

Generator

LT

Encoder
Channel

AWGN

Noise

LLR

Receiver

LT

Decoder

Error

Calculator

x tn w

r = tn + w

x

L x′
e

-118-

written in HLL. As it is known that this starting point architecture contains collection

of FUs, RFs, Immediate Units (IUs), and transport buses. FUs perform operations,

RFs provide temporary fast accessible storage, the network of buses performs data

transports between the FU’s and RF’s, and sockets interface FU’s and RF’s to

transport buses [3]. At first, the minimum structure of architecture known as

minimal.adf is used which describes a minimalistic architecture containing minimum

resource that TCE compiler can perform to compile C code. So minimal.adf

architecture is mandatory architecture and new architectures are formed by adding or

modifying custom FU with this minimal.adf architecture. Figure 49 shows the TTA

structure of minimal.adf.

Figure 49 : Structure of minimal.adf architecture.

 Instead of copying whole FUs, duplicating the specific operation of that FU will

reduce the total cycle count [26]. For this reason, moderate.adf is developed by

including its resources with minimal architecture. In order to increase the performance

of the processor, new FUs and RFs are added to minimal.adf file and these new

architectures are listed in table II. I developed hierarchy of processors for LT codec

and its performances are tabulated in terms of cycle counts, time counts and resource

utilization. There are various ways to increase the performance of the processor. For

example increasing the width of RFs, duplicating the FUs, increasing the number of

transport buses, modifying the design architectures and generating the custom FU for

specific operation are popular useful techniques for improving the performance of the

-119-

processor. However, in this thesis I emphasized on the modification of LT codec input

design structure and generating the custom FU for LT codec architecture. Other

techniques are explained elaborately in the ref [26]. After finishing the simulation

with minimal.adf by using ttasim, the result shows cycle execution counts, time

required for simulation and processor utilization which are tabulated in table III.

Table II: Resources of all architecture definition files (ADFs)

Name of ADFs Resource Name No. Description

minimal

LSU 1 FU with

operation:ldh,ldhu,ldq,ldqu,ldw,sth,stq,stw

ALU 1 FU with

operation:add,and,eq,gt,gtu,ior,shl,shr,shru,sub,xor

RF 1 Includes 5x32 bit registers, 1 read and 1 write port

IO 1 FU with operation: stdout

TIMER 1 FU with operation: rtc,rtimer

Boolean RF 1 Includes 2x1 bit registers, 1 read and 1 write port

GCU 1 Global Control Unit of the Processor

Transport Bus 1 Fully connected transport bus

moderate

FU_1 2 FU with operation : ldw

FU_2 2 FU with operation : stw

FU_3 2 FU with operation : add

FU_4 1 FU with operation : ldq

Custom Random 1 FU with operation : random number generator

Encoder CUS_ENC 1 FU with operation : LT encoding operation

Decoder
DEGREE 1 FU with operation : LT degree distribution, edges

information

Decoder_llr

DEGREE 1 FU with operation : LT degree distribution, edges

information

LLR 1 FU with operation : tanh function generation

LT_CODEC Encoder_Decoder 1 FU with operation : LT encoder and decoder

Therefore, table III shows the implementation result of minimal, moderate and

custom architectures of LT codec. From this table, it can be shown that the minimal

architecture does not offer good performance. It consumes huge cycle counts and

takes more time for simulation. By using this architecture, ADD, LDW and STW

consume maximum cycles. Therefore, this architecture can be moderated by

-120-

duplicating specific operations like ADD, LDW and STW as separate FUs. A new

architecture is formed named as moderate.adf that shows good performance compared

to the minimal architecture. This way of improvement is not much explained in this

thesis. However, it is discussed earlier that the RNG is very important in this LT

encoder and decoder operation. In HLL, default C random function was used to

generate this random number. I therefore, generated one new FU name as RANDOM

that generates the random number and use this FU in architecture named as

custom.adf. Result shows that this custom FU takes only 230 cycle counts and reduces

almost 84,900 cycles compared to moderate architecture. Using this custom.adf

architecture LT codec takes 195,431,136 cycles and 1,954,311 ms time for

implementation. Still this is not sufficient reduction of cycle count for implementing

LTcodec. I need to develop more efficient processor.

It is mentioned earlier that there are several ways to improve the performance of the

processor. At first I step by step modified the input design of LT codec. For example,

the random number generator is widely used in encoder and channel noise generator.

If this RNG is included as part of input design then it will consume (84,900/230)

almost 370 cycles per function call as compared to RNG is included as part of

compiler design (architecture definition file). So it can be easily shown that if there

are huge calling of RNG function in HLL then it will consume huge cycle counts.

One possible solution of this problem is to design uniform random number generator.

But it is very difficult to generate uniform RNG by satisfying the functionality of the

encoder and decoder. I have modified the input design depending upon the

expectation of random number. For example, in order to generating the degree

distribution in encoding part rand() is used through its prescribed manner. On the

other hand, for noise generation, I have used LUTs instead of RNG.

Similarly it is mentioned earlier that the decoding process of LT codec is based on

the iterative manner. Now we need to design a decoder that will take less iteration and

this iteration depends on the degree distribution and number of redundant bit to

-121-

decode the encoded signal. However in this thesis, satisfying the functionality of LT

codec I modify the degree distribution for reducing the cycles and simulation time.

Later I will show the design of custom FU for LT decoder. Now I am going to explain

the cost statement for different parts of the LT codec.

Before discussing this thing, I will explain the implementation of printf() command

for printing values using this TCE tool. This implementation is not like the operation

of any standard compiler.

Table III: Comparison of cycle counts and resource utilization of LT codec

 for minimal, moderate and custom ADFs.

Name of

Arch(.adf)

Cycle & Time

Count
Other Parameters Operation executed in function units

minimal

Time (ms)

1958958

Name Number Name of FUs Name of

Operations

Number of

executions

% of

Utilization

Tran. Bus 1

LSU

LDQ 189945 0.1

Cycle

195,895,926

Registers in

Register

Files

16

LDW 11124970 5.7

STW 11626063 5.9

STQ 171904 0.1

LDQU 79160 0

ALU

ADD 21431038 10.9

SUB 803811 0.4

AND 2858751 1.5

EQ 2754354 1.4

IOR 360951 0.2

XOR 2365888 1.2

moderate

Time (ms)

1,955,159

Tran. Bus 1
LSU

STQ 171904 0.09

Registers in

Register

Files

16

LDQU 79160 0.04

ALU

SUB 803811 0.41

Cycle

195,516,036

AND 2858751 1.46

EQ 2754354 1.41

IOR 360951 0.18

XOR 2365888 1.21

SHL 4024325 2.06

SHR 1784612 0.91

FU_1 LDW 7009118 3.58

FU_2 STW 7177559 3.67

FU_1 LDW 4115852 2.11

FU_2 STW 4448504 2.28

FU_3 ADD 12295030 6.29

FU_3 ADD 9136008 4.67

FU_4 LDQ 189945 0.1

custom

Time (ms)

1,954,311
Tran. Bus 1

RANDOM RAND 230 0.000118
Cycle

195,431,136
RFs 16

Since TCE is operating system free platform so, printf () implementation does not

follow the straightforward approach. To make this job easy it is required to include an

-122-

operation name as STDOUT. This operation reads its input from the bus connected to

the architecture, expected it to be a 8-bit char and writes the char verbatim to the

simulator host’s standard output. Software floating point support is necessary (swfp

flag) because this tells the compiler to link the program with the floating point

emulation library. Therefore, printf() function includes support for printing floating

point values and our architecture does not contain floating point function units. This

operation consumes huge cycles that is shown in the next simulation results. After

verifying the system, this FU should be removed completely.

Table IV shows the simulation result for the LT encoder using different

architectures. According to the previous discussion for using the printf command the

Encoder processor takes more than 1,583,000 cycles compared to the without printf

processor operation. However, at first I have simulated the LT encoder using

minimal.adf architecture and it takes huge time and cycles because of missing custom

FU. Then in Encoder.adf I have included one custom FU named as CUS_ENC to

transfer the major operation of encoding algorithm to the compiler part (hardware

architecture). From table IV it can be shown that the this custom operation takes only

230 operations and reduces the clock cycles almost 7,717,027. This shows the

significant improvement in performance.

Table IV: Comparison of cycle counts and resource utilization

of LT encoder for Encoder and minimal.ADFs

Name of

Arch(.adf)

Cycle Count Time Count (ms) Operation executed in function units

Encoder

23,946

(Without Print

Operation)

238

Name of FUs Name of

Operations

Number of

executions

% of

Utilization

CUS_ENC CUS_ENC 230 1

ALU ADD 2499 10.5

Encoder

1,606,946

(With Print

Operation)

16068

FU_3 CUS_ENC 230 0.01

ALU ADD 202425 12.5

minimal 7,740,973 77409 ALU ADD 792444 10.23

After generating the processor for LT encoder, I will generate efficient LT decoder

processors. In table III it is shown that for minimal.adf architecture LT codec takes

highest number of cycles and from the theory of LT decoding algorithm, decoding of

-123-

LT codec is very much complex compared to encoder algorithm. Before designing the

custom FU for implementation of LT decoder, I will explain the main bottleneck of

decoding algorithm. In decoding algorithm, soft decoding procedure has been used

through the check node and variable node operations. So VNU operation, it requires to

know that how many edges are formed for each variable node that means it will tell

the degree distribution of the message signal. Similarly, in CNU operation it will

require to know that how many variable nodes are connected with each check node.

That means the edge information of the check nodes. It is mandatory to find the single

edge check node (degree 1 value of check node per update), so it is required to index

the edges of the check nodes. Figure 50 shows the pictorial information of this

decoding scenario. So to make the custom FU for LT decoder, I need to include these

three information to this custom FU and use the required output properly fetching

from this custom FU. The name of this custom FU is DEGREE. Moreover, in the

decoding end, the encoded signal should be taken from the DEGREE FU.

Figure 50: LT codec tanner graph for understanding the algorithm of LT decoder.

degree information

edge information

single edge node

edge indexing
1

2

-124-

Figure 51: Architecture of custom function unit (DEGREE) for LT decoding application.

Figure 51 represents the structure of custom FU DEGREE and this FU is for

decoding algorithm of LT codec. This DEGREE function unit gives four outputs those

are labeled in the figure 51. Now degree, edge and index information generations are

the part of compiler that means architecture through this FU. As a result the new ADF

file Decoder will take less cycle counts for implementing the decoding operation and

in this ADF architecture, whole encoding operations: generation of encoded signal,

degree, index and edge information are part of the DEGREE FU. So I can remove the

coding related to activities of DEGREE FU from the main input design written in C

language. The custom FU DEGREE is written in C++ programming language. So, this

is a powerful technique used in TCE tool. Table V shows the simulation result of LT

decoder using Decoder ADF. Result shows that Decoder.adf configuration takes

184,541,996 cycles which is less than 10,889,140 cycles compared to the result of

custom.adf architecture. From table V, it can be shown that DEGREE FU takes only

358 cycles when its operations are as a part of ADF architecture. Behind this

operation the processor improves its efficiency by reducing the 10,889,140 cycles

compared to custom.adf. Still, it is not sufficient in terms of cycle reduction.

Therefore, I need to modify more.

degree information

LT encoded signal

index information

edge information

Output nodes of FU

Input nodes of FU

Custom FU

-125-

Table V: Cycle counts and resource utilization of LT decoder for Decoder ADF

Name of

Arch(.adf)
Cycle Count Time Count (ms) Operation executed in function units

Decoder

184,554,925

(With Print

Operation)

1,845,549

Name of FUs Name of

Operations

Number of

executions

% of

Utilization

DEGREE DEGREE 358 ~0

ALU ADD 18171801 10

LSU LDW 9437612 5.1

Decoder 184,541,996 1,845,418

FU_3 DEGREE 358 ~0

ALU ADD 2433650 1.3

LSU LDW 170573 0.1

According to the sum product algorithm, in CNU and VNU operation ‘tanh’ is used

for sign identification. Therefore, I make a custom FU for ‘tanh’ function which is

included in the architecture named as Decoder_llr. Table VI shows the result of this

processor. From the comparison of table V and VI, LLR custom FU reduces the

163,425,299 compared to Decoder.adf processor. LLR itself consumes only 1380

cycles.

Table VI: Cycle counts and resource utilization of LT decoder for Decoder_llr ADF

Name of

Arch(.adf)

Cycle Count Time Count (ms) Operation executed in function units

Decoder_llr

21,129,626

(With Print

Operation)

211,296

Name of FUs Name of

Operations

Number of

executions

% of

Utilization

FU_3 DEGREE 358 0.001

LLR LLR 1380 0.006

ALU ADD 2185800 10.3

LSU LDW 1123666 5.3

Decoder_llr 21,116,697 211,166

FU_3 DEGREE 358 0.001

LLR LLR 1380 0.006

ALU ADD 2184203 10.3

LSU LDW 1122914 5.3

Yet, it is not sufficient the status of cycle count. According to table VI, it takes more

that 21M cycles. But I want to reduce cycle count more. If I analysis the decoding part

of input design, the whole complexity of decoding algorithm drops to the number of

iterations of the message passing algorithm. Moreover, this number of iterations

depends on the degree distribution of encoded signal. For constant degree distribution,

error (e) of figure 48 is inversely proportional to the number of iterations. I actually in

this thesis, focused on the implementation of the encoder and the decoding so, I

-126-

slightly modify the degree distribution to ensure the error (e) is zero and calculate the

cycle count w.r.t. number of iteration. Table VII shows the result of this analysis. Here

I have used the same architecture Decoder_llr and mimimal.adf that for simulating

with different iteration number. Table VII shows the comparative result between two

different architectures. For example for 7 iterations, minimal.adf took huge cycles

because of input design. In this input design, I have included channel noise and there

is no optimization of degree distribution. Moreover, the minimal.adf architecture is a

simple processor structure.

Table VII: Comparison of cycle counts of LT decoder using two ADFs for different iterations.

 Decoder_llr.adf architecture minimal.adf architecture

of Iterations Cycle Count Time Count (ms) Cycle Count Time Count (ms)

1 6,581,637 65,816 168,851,862 1,688,518

2 9,488,649 94,886 532,749,722 5,327,497

3 12,395,661 123,956 943,238,922 9,432,389

4 15,302,673 153,026 1,378,119,387 13,781,193

5 18,209,685 182,096 1,835,020,463 18,350,204

6 21,116,697 211,166 2,306,948,480 23,069,484

7 24,023,709 240,237 2,789,089,682 27,890,896

Up to this point, Decoder_llr architecture takes minimum cycles to process the LT

decoder. This architecture can be further modified by generating a custom FU using

Encoder.adf and Decoder_llr.adf architectures. The name of this FU is

Encoder_Decoder. Using this FU the final architecture is formed as LT_CODEC.adf.

Table VIII shows the final result using this architecture. It takes very less cycle counts

compared to all other architectures. When an operation is included as function of input

design, it will take more cycles to generate the TTA instructions for this particular

operation. TTA compiler will translate this specific operation instructions by using

ALU and LSU FUs. On the other hand, when the specific operation is included as a

part of custom FU then the TCE compiler can easily generate the TTA instructions

independently. This is explained in the code generation technique of TCE tool [28].

However, figure 52 show the complete scenario of all architectures. After designing

-127-

this architecture, TCE will generate the complete processor for specific application

input design in VHDL HDL.

Table VIII: Cycle counts and resource utilization of LT decoder for LT_CODEC.adf

Name of

Arch(.adf)

Cycle

 Count

Time

Count

(ms)

Operation executed in function units

LT_CODEC 4,466 43

Name of FUs Name of Operations Number of

executions

% of

Utilization

Encoder_Decoder Encoding &Decoding 1 0.02

ALU ADD 666 15

LSU LDW 305 7

Figure 52: Comparative performance of different architectures for LTcodec implementation.

These are the step by step procedures for generating the application specific processor

like LT codec. According to the performance of the processor, LT_OCDEC processor

shows very good performance compared to the other architectures. Moreover, these

architectures can be further modified by duplicating the custom FUs, adding more

data BUS or changing the RFs. However, after generating the optimized processor as

HDL formation, it will be applied in prototyping board, or chip design procedures for

getting the real information about timing, area or power reports. In the next section, I

will discuss the simulation result using Tensilica tool.

Architecture Name Cycle Count

minimal 195,895,926

moderate 195,516,036

custom 195,431,136

Decoder 184,541,996

Decoder_llr 21,116,697

LT_CODEC 4,466

Architecture Name

Cycle Count (M)

196

150

1

minimal

moderate
custom

Decoder

Decoder_llr

LT_CODEC

-128-

6.2 SimulationResult Using Tensilica Tool

To compile an application in XX, we required to inform Xplorer the project to

compile the processor configuration to compile the project on and the build target. A

set of build properties like compiler, assembler and linker contains in a build target. In

this work, we took the “release” version of the target library using level 3 optimization

and apply FLIX & TIE instructions. Figure 53 shows the configuration overview of

the ltcodec_tie processor configuration. From figure 53, this processor is developed

using TIE instruction set for LT codec input design and then add this TIE instruction

with core processor named as XRC_D2SA.

Now I am compiling the LTcodec input design as reference code along with its

library for each of the sixteen target cores and then run a profile execution.

Configuration Overview

User Name chosun_ice_edu/sub2

Core Name ltcodec_tie

Core Description XRC_D2SA

Configuration Detail

TIE sources for configuration ltcodec.tdb contains ltcodec.tie

Xtensa ISA version LX4.0

Instruction options

16-bit MAC with 40 bit Accumulator no

MUL 32 no

32 bit integer divider no

Single Precision FP no

Double Precision FP Accelerator no

Synchronize instruction no

Conditional store synchronize instruction no

MUL 16 yes

CLAMPS yes

NSA/NSAU yes

MIN/MAX and MINU/MAXU yes

SEXT yes

Boolean Registers yes

Number of Coprocessor(NCP) 3

Enable Density Instruction yes

Enable Processor ID yes

Zero-overhead loop instruction yes

TIE arbitrary byte enables yes

Figure 53: Processor configuration of ltcodec_tie architecture

-129-

Table IX: Comparison of cycle counts for different configurations of Tensilca tool.

Active Processor Configuration Total cycles Required Time (s)

DC_C_106micro 229,213,917 163.71

DC_C_108mini 219,797,553 171.82

DC_C_212GP 204,964,527 164.23

DC_C_233L 204,968,307 170.19

DC_C_330HiFi 202,604,066 165.85

DC_C_545CK 201,013,597 180.24

DC_C_570T 170,170,153 153.52

DC_D_106micro 229,213,920 162.71

DC_D_108mini 219,797,557 170.46

DC_D_212GP 204,964,531 163.87

DC_D_233L 204,968,281 169.39

DC_D_330HiFi 202,604,071 166.68

DC_D_545CK 202,604,071 179.79

DC_D_570T 170,170,158 154.26

XRC_D2MR 164,231,379 137.86

XRC_D2MR_FLIX 162,629,766 135.66

XRC_D2SA 208,465,165 157.37

XRC_D2SA_FLIX 206,444,710 202.20

Table IX represents the comparison of cycle counts for all processor configurations.

As shown in figure 53, the configuration components are designed according to the

implementation of input design. Based on this, ConnXD2 category processor shows

very good result compared to the other processor configurations. If we study the cycle

consumed by different operations using TCE tool, there are huge addition and logical

operations taken by the LT codec design. Due to this reason, ConnXD2 type processor

is suitable for simulating this LT encoder and decoder. From table IX, We can see that,

without custom instruction operation XRC_D2MR is the best in comparison to other

processors. Moreover, in Diamond controller processor, 570T configuration

outperforms compare to others. We see that, 570T processor contains many DSP

instruction extensions and SIMD execution units. If we see the disassembly

information of input function, it is easily possible to find the step-by-step cycle

consumptions by main and children functions as per their configuration details. We

are not going to discuss all these architectural analysis. As it is mentioned earlier that

ConnX D2 architecture is suitable for communication and for its rich hardware

-130-

resources, XRC_D2MR configuration without TIE or FLIX instruction, takes

164,231,379 total cycles for LT codec application. From its profile status, main

function consumes highest 7,585,908 cycles and if we see the disassembly profile of

main function, it takes many load, add, move and logical operations. So, when we

think in terms of hardware, these operations are rewiring certain bits from input to

output. For this reason, we develop TIE and FLIX instructions and include these

custom instructions to the processor. Table IX shows the result of all target processor

in terms of cycles. Significant improvement in terms of cycle counts was found and

from this table, the XRC_D2MR_FLIX configuration took 162,629,766 cycles and

main function took only 5,984,295 cycles which reduces 1,601,613 cycles compared

to without FLIX operation. These architectures can be further modified by introducing

the custom TIE instructions. I have generated TIE instruction by using automatic TIE

generation techniques as mentioned in Figure 46. Now I will show the behavior of

iteration vs cycle counts of LT codec implementation.

Table X: Simulation for different number of iteration using Tensilica tool

of

Iterations

XRC_D2MR_MAC DC_C_106micro

Cycle Count Time Count (s) Cycle Count Time Count (s)
1 5,204,861 4.43 6,983,593 4.97

2 19,182,518 15.60 26,034,519 18.31

3 35,128,884 27.71 48,036,337 33.79

4 52,840,982 42.21 72,696,444 50.98

5 71,951,305 57.18 99,135,487 69.74

6 92,160,200 74.41 127,678,043 90.72

7 115,082,566 92.73 159,731,114 113.43

8 164,837,807 128.70 194,314,345 137.03

10 189,915,708 151.39 264,271,320 185.73

16 340,940,055 283.37 475,626,960 335.57

It is mentioned earlier that the decoding complexities depend on the number of

iterations required for recovering message from encoded signal. For XX it takes 9

iterations for successfully decoding the encoded signal. However, it is possible to

reduce the number of required iterations by modifying the degree distribution in the

encoder. Table X was simulated for fixed degree distributions using highest and

-131-

lowest configurations. Therefore, number of cycles are increasing exponentially with

respect to the number of iterations. So it is very important to trade off between

several issues: degree distribution, architecture structure of processor configuration,

architecture of LT encoder and decoder, and finally the status of BEC. Because, the

value of δ depends on the characteristics of the channel and the average number of

degree connected with variable node depends on the value of δ . For example,

according to the table X, for fixed value of δ , XRC_D2MR takes more that 340M

cycles for 16 iterations on the other hand for diamond controller 106mico, it takes

more than 475M cycles for 16 iterations. Moreover, simulating time behaves same as

the manner of cycle counts.

6.3 Simulation Result Using OpenRisc Tool

For OpenRisc processor, “.cfg” file contains the default configurations and a set of

simulation environments, which are similar to the actual hardware situation. For RTL

simulator, the verilog files of all IP cores are included by using MAKE file. So once

the environment is configured then the simulator generated the “.log” files under “out”

and “run” folder. The minimal architecture of reference design is shown in table XI.

In the OpenRisc processor, the reference design is compiled using OpenRisc tool

chain (or32-elf) and a memory image is generated (.vmem). Then this program image

is used in simulation to fill the RAM. Next, the verilog RTL sources check, compile,

and simulate the result. Therefore, the OpenRISC processor will generate all the

required signals to execute the operation.

There is no GUI for processor configuration in OpenRisc tool. So this reference

design can be modified by setting the enable value 0/1 in the configuration file. For

example in DMMU, entry size means the instruction size in bytes, the typical value of

entry size is 64. SIM section of this configuration is one of the major parts in this

configuration. This section specifies the behavior of the or1ksim processor. Under this

section, it includes the operations like verbose used for printing extra message, debug

-132-

used for debugging, profile, mprofile used for memory profiling, exe_log etc.

Similarly, CPU section ensures the operations like ver used for version, sr used for

supervision register, sbuf_len used for length of store buffer etc. PM section is used

for power management. UART section is used for creating an interactive terminal

window like xterminal window. By setting or modifying the above parameters, new

processor can be designed through observing their performances.

Table XI: Resources of OpenRisc processor for reference design

Resource Name No. Description Processor

IMMU 1 Instruction Memory management Unit

OpenRisc

DMMU 1 Data Memory Management Unit

IC 1 Instruction Cache

DC 1 Data Cache

CPU 1 Central Processing Unit

PM 1 Power Management

UART 1 Universal Asynchronous Receiver/Transmitter

Table XII: Simulation result by using OpenRisc processor encoder and decoder.

OpenRISC Processor

Encoder Decoder

cycle Time (ns) cycle Time (ns)

142,015 6,174,570 153,353 6,712,850

Figure 54: Different signal waveforms of instruction wishbone bus for OpenRisc-1200 core.

As it is mentioned, earlier that custom operation or instruction generation is one of

the powerful techniques to reduce the cycle count. In OpenRisc processor tool, I did

not find such option like designing custom FU in TCE or TIE and FLIX instruction

generation technique in Tensilica tool. Therefore, in OpenRisc tool only modifying

-133-

the CPU configuration is not sufficient to reduce the cycle count. For implementing

the technique of sum product algorithm, it is required to use the sign function (tanh or

tanh
-1

) in LT decoding algorithm. In OpenRisc C compiler it does not support to

include the “math.h” header file. Therefore, I modify the decoding architecture of

LTcodec design as per requirements of OR C compiler by including the LUTs. But

these LUTs are not efficient because of random number generator. For each new

simulation this LUT should be changed due to change of RNG. But for implementing

the LT encoder, it does not require any mathematical operation. So it is easily

synthesized by OpenRisc core. However table XII represents the simulation result

using this processor. Here I have simulated encoder and decoder independently due to

the missing support of math.h header file. While simulation, by enabling the option

VCD = 1, value change dump (VCD) file had been generated under ‘out’ folder. Then

‘signal.wav’ file has been loaded and we can see the output waveform of OpenRISC

processor instruction wishbone bus by GTK wave tool using “or1200-lttest.vcd” file.

It is also possible to get the wave form of other signals like uart, ram, data wishbone

bus etc. Figure 54 shows different signal of instruction wishbone bus for OpenRisc-

1200 core. In this figure iwb_clk_i means instruction_wishbone_clock_input signal.

Similarly, iwb_ack_i means acknowledgement signal.

There are some limitations for simulating LT codec design using OpenRisc

processor. I successfully completed the implementation of encoder but in the decoding

part implementation didn’t work properly. Due to the problem of header file, I

mentioned earlier that LUTs had been used there and these LUTs have been changed

in each simulation because of random degree distribution. So it is not possible to

calculate the error calculation of the LT codec. Since there is no option to transfer load

from input design to compiler or simulator, so it is not possible to include the custom

FU like TCE or custom instruction set like TIE and FLIX in OpenRisc processor.

Only modification can be achievable by designing LTcodec architecture as input

design or changing the CPU architecture of the processor. But the effect of changing

-134-

CPU or simulation architecture shows very less impact on cycles count or simulation

time. For this reason I didn’t represent the CPU architecture modification in this thesis,

although I have done this by changing setting the enable condition of different

parameters under CPU section in reference configuration.

6.4 Comparison between All LT Codec Processsors

Now, it is necessary to mention that we already developed hierarchy of different

architectures for LT codec by using TCE, Tensilica and OpenRisc tools. First, I will

show the comparison between TCE and Tensilica tool for LT codec implementation.

Then, the comparison between TCE, Tensilica and OpenRisc will be displayed. Table

XIII shows the comparison between TCE and Tensilica processor.

Table XIII compares the performance results of Xtensa Xplorer and TCE tools. While

simulating the instruction set simulator of TCE, tool run time count (RTC) is

measured in millisecond and clock frequency is 100 MHz. From this table

LT_CODEC.adf architecture takes minimum cycles compared to other architectures

of TCE and Tensilica tools for implementing LT encoder and decoder. Moreover, this

architecture took only 43 ms which is very less compared to the Tensilica tool. If we

analysis the structure of XX core, it satisfies the class of RISC processor including the

five and seven stage pipeline design. In this design, five-stage pipelining had been

used for implementation. On the other hand, TCE tool is for implementing input

design on TTA. It is mentioned earlier that the TTA structure has more benefits

compared to the OTA processor domain. In OTA domain, it takes separate

instructions for executing the instructions using ISS environment. For this reason

Xtensa tool takes more cycles for implementation. However, the simulation speed is

very high compared to the TCE tool. From table XIII, it can easily be calculated that

TCE executes almost 100 K cycles per second using 100 MHz clock. However,

Tensilica runs 1 M cycles per second using ConnX D2 engine. Now to make a fair

comparison with three tools I have simulated encoder part of LT codec by using these

-135-

tools. Table XIV shows this comparison result, which is responsible for getting the

scenario of these three tools.

Table XIII: Comparison of cycle counts for the TCE and Tensilica processors

TCE Tensilica

Architecture

Name

Time(ms) Cycle Count Cycle Count Time(s) Architecture Name

custom 1,954,311 195,431,136 204,968,307 170.19 DC_C_233L

Decoder 1,845,419 184,541,996 202,604,071 179.79 DC_D_545CK

Decoder_llr 211,166 21,116,697 170,170,158 154.26 DC_D_570T

LT_CODEC 43 4,466 162,629,766 135.66 XRC_D2MR_FLIX

Table XIV: Comparison of cycle counts for the TCE, Tensilica and OpenRISC processors

TCE Tensilica OpenRISC

Architecture

Name

Time(ms) Cycle

Count

Cycle

Count

Time(s) Architecture

Name

Cycle Time (ns)

Encoder 238 23,946 142,557 0.11 XRC_D2MR
142,015 6,174,570

minimal 77,409 7,740,973 212,886 0.20 DC_D_570T

From this table, it can be shown that Tensilica tool takes more cycles than others and

the performance of the TCE is very good compared to others. Like Tensilica,

OpenRisc takes separate cycles for executing the instructions, which is a common

behavior of the OTA class processor tools. On the other hand, for TCE tool it is

occurred as the side effect of data transport. However, all the architectures of these

three tools can be further modified by using their own techniques. Besides this, the

modifications of LT codec i.e. degree distribution, number of decoding iteration, or

input and encoded message length have huge influence on this hardware throughput.

Within these three tools, Tensilica tool is very easy in terms of use and optimization.

In this thesis, I have used the Optimization level 3, automatic TIE and FLIX options

of Tensilica tool. Moreover, the modification of configuration parameters of XX is not

sufficient for designing the high performance LT codec design. Similarly, for TCE

tool still, it can be modified by introducing more buses (presently I have used 9 buses),

duplicating FUs, RFs and adding more efficient custom FUs etc. Therefore, an

efficient trade off is required between all these observations to satisfy an excellent

processor based on the input application.

-136-

Chapter 7

Conclusions

The step by step techniques of application specific processor design using TCE,

Tensilica and OpenRISC tools have been discussed elaborately in the previous

chapters. Finally in the result chapter, the comparisons of these three tools are

presented in different aspects. In this chapter, the summary of whole thesis and some

future ideas will be presented for extending of this thesis work.

7.1 Summary

The whole work of thesis can be divided into three parts: efficient processor

selection, state of the art input design selection and finally generation of processor for

that input design. Figure 55 shows the pictorial presentation of this thesis activity.

This figure represents the algorithmic architecture for LT codec ASIP implementation.

Accodring to the figure 55, processor platform selection is an important block in this

design flow. For that reason, in the first couple of chapters I have discussed what kind

of processor we should select. For explain this thing, I have started from RISC class

processor and tried to explain the development of other efficient processor by

removing the step by step shortcomings of RISC, Superpilelined and finally VLIW

processor. Therefore, for designing application specific system TTA is promising

processor family for getting high speed response. After selecting the efficient

processor class, for generating application specific processor, we required to take a

state-of-the-art system as input design. Nowadays the fountain code is very promising

in the area of channel coding. Under this fountain code class we have selected LT

codec channel coding technique compatible for BEC. Many researchers are interested

due to comparatively simple and efficient manner of LT codec. Although due to some

problems of LT codec some other fountain codes like Raptor code has been developed.

-137-

However, in this thesis we have elaborately discussed regarding the implementation

issues of this LT encoder and decoder.

Figure 55: Design Flow of this thesis work.

For processor generation, we took three tools like TCE, Tensilica and OpenRISC.

TCE is working for developing the TTA based processor. OpenRISC tool is executing

under the concept of pure pipelined RISC processor. On the other hand, XX of

Specific Application

(LT Codec)

Processor platform

selection

TTA VLIW OpenRISC

Generation of executable processor

architecture model

Architecture Optimization

Benchmarking and

evaluation process

Satisfied
HW

modification

SW or input

design

modification

RTL Code and test bench

generation

ASIP tools

TCE Tensilica OpenRISC

No No

Yes

LT Codec ASIP

Implementation

-138-

Tensilica shows the behavior like VLIW processor. As we discussed earlier that TTA

is very suitable for applying custom FU to the architecture. Therefore, I have designed

different custom FU for LT encoder and decoder. Similarly, in Tensilica tool, the

processor configuration can be modified as per the input application in various ways.

In this thesis, TIE and FLIX technique are applied to improve the performance of

processor in terms of cycle count. Finally the performance of the OpenRISC processor

has been studied. I find some limitations while using the OpenRISC processor. For

simulating the input design written in HLL, it does not support many of the header

files. As a result, there should take some alternative solutions like LUTs or other

functional program based on mathematical operations for generating the processor.

However, the response of the processor are not solely depends on the processor

architecture. This performance also depends on the input design architecture.

Therefore, besides the designing of custom processor part, we need to design LT

codec as a reference input efficiently. We have discussed this proposed design

technique in chapter 5. In this thesis work, there are some observations I find during

simulation time. There are many reconfigurable techniques for every tool. It is not

possible to take all these optimization techniques. For example, I have used the

Optimization level 3, automatic TIE and FLIX options for Tensilica tool. Moreover,

the modification of configuration parameters of XX is not sufficient for designing the

high performance LT codec design. Similarly, for TCE tool still, it can be modified by

introducing more buses (presently I have used 9 buses), duplicating FUs, RFs and

adding more efficient custom FU etc. Therefore, an efficient trade off is required

between all these observations to satisfy an excellent processor based on the input

application.

-139-

Figure 56: Design Flow of Chip design procedure.

7.2 Future Work

Currently I have used only three tools for getting the application specific processor

of LT codec. In addition, from this comparison I found that this LT codec processor

by TCE tool is good in terms of cycle count and required time. However, some other

efficient tools like LISA, Coware etc. are required to make comparison with this

current one. To make the LT codec processor efficient, it is also required to apply

more optimization on the degree distribution of the LT encoder. It is already explained

that, the whole complexity of LT codec depends on this degree distribution i.e. the

maximum degree value in encoding part. Based on it, in the decoding part it requires

Function Spec

RTL Coding

Verilog/HDL

RTL

Simulation

Synthesis

timing

analysis

Mapped

netlist

Place &

route

timing

verification

post layout

simulation

Chip FAB

simulate

mapped design

Script files

Constraints

Chip Design Procedure

-140-

more iteration. Therefore, it is also be a part of future work to generate more efficient

degree distribution.

The processors I have generated by using these three tools are not the ultimate goal

of System on Chip (SoC) design. The first part of SoC (system design) has been done

through this thesis work presented in figure 55. The second part of SoC (Chip design)

has been remaining as shown in figure 56. Although I have done chip design

procedures for LT codec but I did not use the RTL code generated from ASIP tools.

Therefore, as mentioned in figure 55, at the end of this design flow, the target

processors are generated in HDL form and it should be the input of figure 56. That

means, the next step is to apply this HDL module into the chip design procedure.

After checking the logic simulation, these modules should be synthesized by Synopsys

or other tools using TSMC or Samsung DB files. Then the real scenario in term of

area, power and time (although these parameters are also shown in the ASIP tool but

those reports are not practical) will be found and finally we come to know which

processor is very suitable for commercial use.

-141-

Appendix I

Architecture and Bypass Complexity

The definitions of Connectivity Graph are written below [4]:

A1. The connectivity graph CG of a processor is a bipartite graph CG (Sn, Dn, E), where:

1. },......,,{
21 mnnnn SSSS = is a set of source nodes. All producers of values are treated

as source nodes.

2. },......,,{
21 nnnnn DDDD = is a set of destination nodes. This node is considered as

consumers of operand and result values.

3.
nn DSE ×⊂ is a set of directed edges.

A2. The architectural connectivity complexity, ACcompl of a connectivity graph CG (S,D,E), is

defined as a (#S,#D,#E), where:

1. #Sn is the number of source nodes.

2. #Dn is the number of destination nodes.

3. #E is the number of edges contained in the graph CG.

For example, the architectural complexity of non-pipelined processor is given below:

 ACcompl(non-pipelined) = (N+5, N+5, 3N+4)

where N is the number of general purpose processors.

A3. The bus complexity of a single bus, Bcompl is defined as a 2-tuple (#RC, #WC), where

1. #RC is the number of read connections.

2. #WC is the number of write connection ports attached to the bus.

A4. The data path complexity, DPcompl, of a processor data path is defined as a 5-tuple (#Bus,

#Rc, #Wc, #RP, #Regs), where

1. #Bus is the number of data buses.

2. #Rc the number of read connections in the data path.

3. #Wc the number of write connections in the data path.

4. #RP the number of ports on the RF and

5. #Regs the total number of registers required, including the general purpose registers and

registers to hold immediate but exclusive internal FU registers.

A5. RCmax is the maximum number of read connections to any bus, and WPmax is the maximum

number of write ports to any register.

-142-

Appendix II

Belief Propagation (BP) Algorithm [36]

BP is widely used for identifying the marginal probability in Markov models. For this reason, it

is widely used in statistical interference, pattern recognition, Artificial intelligence and recently in

forward error correction. Belief propagation is an inference algorithm for a particular kind of

factorized joint probability distribution. The distribution is represented as a graph and the

algorithm proceeds by passing messages along the edges of the graph according to a set of

message-passing rules. Therefore, when it is required to solve the modeling problem then it is best

to portray as a directed and undirected model but it cannot be translated or compiled into a factor

graph. For example, consider the ubiquitous problem of computing marginal probability of a

graphical model with N variables),....,(1 Nxxx = taking the values in a finite alphabet X. For

conventional computing algorithm, it will take a time of order
N

Χ . If factor graph FG is applied

then the computation complexity can be reduced dramatically. This recursive procedure can be

known as message passing algorithm. Message passing algorithms operate on messages associated

with edges of the FG, and update them recursively through local computations done at the vertices

of the graph. Figure A2.1 shows the generation technique of FG

Figure A2.1: Generation technique of FG.

B is expressed by probability p(B), similarly we have unary factor C is expressed by p(C). Then

we have a ternary factor X giving the conditional probability p(X|B,C) and finally the binary factor

K depends on B p(K|B). This Bipartite graph can be alternatively written as the right of figure A2.

Therefore, a factor graph can express compilations in both directed and undirected GMs. Figure

A2.2 shows an example of FG. In this figure the round nodes represents the variable nodes and the

square node corresponds the factor/function. The distribution corresponding to this graph is

factorized as :

B C

X K
B C

X
K

p(B) p(C)

p(X|B,C)
p(K|B)

B C X K

-143-

),(),,(),(
1

),,,(42431214321 xxxxxxx
Z

xxxxp cba ψψψ ××=

Suppose x1, x2,…,xn be the variables of a finite domain D. Subsets { }naV ,......,1)(⊂ are indexed

by Ca∈ , where |C| = m. Given a subset { }nS ,.......,2,1⊆ , we define { }SixiS ∈= |:X .

Consider a probability distribution p over x1, x2,…,xn that can be factorized as

() ∏ ∏
= ∈

=
n

i Ca

aVaiin x
Z

xxxp
1

)(21)()(
1

,......,, Xψψ (A2)

where)(ii xψ and)()(aVa Xψ are non negative real functions, referred to as compatibility functions

and

∑ ∏ ∏ 







=

= ∈nxx

n

i Ca

aVaii xZ
,........, 1

)(

1

)()(: Xψψ is the normalized constant or partition factor [36]. A

factor graph has represented this probability explained in equation A2 through a bipartite graph

with V variables and C (set of V(a)) factors or functions. There is an edge between a variable node

i and function node a if and only if i∈V(a). We define also C(i) := {a∈C : i∈V(a)}[36]. Now if we

want to compute the marginal probability of any variable i, as following

() ∑∑ ∑∑
∈∈ ∈∈ − +

=
Dx

n

Dx DxDx

i

n

xxpxp),......,(.......... 1

11 111

 (A2.1)

Now, the question is how efficiently we calculate this marginal probability. The BP algorithm

is an efficient algorithm for computing the marginal probability distribution of each variable of

non-loop tree factor graph.

Let us draw the factor graph as in Figure A2.3, i.e., as a tree T rooted in xi. Then, the children

of xi are the factors which contain xi. The essential idea is to use the distributive property of the

sum and product operations to compute independent terms for each sub tree recursively. This

recursion can be cast as a message-passing algorithm, in which messages are passed up the tree.

Figure A2.2: An example of a factor graph [36].

-144-

Figure A2.3: Cycle free Factor Graph with a recursive marginalization.

Let we assume that the vector Mi→a denote the message passed by variable node i to function

node a. Similarly, the quantity Ma→i denotes the message passes from function node a to variable

node i. Therefore, the messages from variable to function and function to variable nodes are

updates as the following way [36]:

∑ ∏
∈

→→

{i}\V(a)

)]()([)(
}\{)(

a

x

x j

iaVj

ajV(a)iia xMxM ψα . (A2.2)

)()()(
}\{)(

i i

aiCb

ibiiai xMxxM ∏
∈

→→ ψα . (A2.3)

 It can be shown that for open FG, these updates will be converging after a linear number of

iterations. After this convergence, the local marginal distribution at variable node and factor nodes

can be computed as below:

∏
∈

→

)(

)(ˆ)()(
iCb

iibiiii xMxxF ψα (A2.4)

∏
∈

→

)(

)()()(ˆ)()(
aVj

jijaVaaVa xMxxF ψα (A2.5)

Nowadays the BP algorithm can be used in error control coding like LT codes, LDPC or Raptor

codes etc. It shows excellent result for error recovery when data are transmitted through BEC

model.

aψ

xi

xl

Ma→i(xi)

Ml→a(xl)

∑ ∏
∈

→

→ =

{i}\V(a)

)]([

)(

}\{)(

a

x

j

iaVj

aj

iia

xM

xM

ψ

)()(

)(

}{\)(

i i

aiCb

ibi

iai

xMx

xM

∏
∈

→

→ =

ψ

-145-

References

[1] Dake Liu, “Embedded DSP Processor Design: Application Specific Instruction Set

Processor,” M.K. Publishers, Elsevier,pp. 20-200, 2007.

[2] Predrag Radosavljevic, “Channel Equalization Algorithms for MIMO Downlink

and ASIP Architectures,” Master’s Thesis, Rice University, Texas 2004.

[3] Otto Esko, “ASIP Integration and Verification flow for FPGA,” Master’s Thesis,

Tampere University of Technology, Tampare Finland, may 2011.

[4] C. Hendrik, "Transport Triggered Architectures Design and Evaluation," Ph.D

thesis, Technical University of Delft, 1995.

[5] Joseph Cavanagh,”Verilog HDL Digital Design and Modeling,” CRC press, pp.

650-699, 2007.

[6] W. Shi, H. Ren, T. Cao,W. Chen, B. Su, and H. Lu, “DSS: Applying

Asynchronous Techniques to Architectures Exploiting ILP at Compile Time”,

International Conference on Computer Design, pp. 321-327, Changsha China,

2010.

[7] V. Guzma, P. Jääskeläinen, P. Kellomäki, and J. Takala, “Impact of software

bypassing on instruction level parallelism and register file traffic,” In Proc. Int.

Workshop Emnedded Computer Syst.: Architecture, Modeling and simulation,

pages 23-32, 2008.

[8] H. Jenkač,and T. Mayer, “Soft Decoding of LT-Codes for Wireless Broadcast,”

In Proc. IST Mobile Summit, Germany 2005.

[9] J. Byers, M. Luby, and M. Mitzenmacher, “A digital fountain approach to

asynchronous reliable multicast,” IEEE journal on selected Areas in

Communications, vol. 20, pp. 1528-1540, 2002.

[10] C. Howland, and A. Blanksby, “A 220 mW 1 Gb/s 1024-bit rate ½ low density

parity check code decoder,” IEEE conference on Custom Integrated Circuits, pp.

293-296, 2001.

[11] T. Zhang, and K. K. Parhi, “VLSI implementation-oriented (3,k)-regular low-

density parity check codes,” IEEE workshop on Signal Processing Systems, pp.

25-36, 2001.

-146-

[12] C. E. Shanon, “A Mathematical Theory of Communication,” The Bell System

Technical Journal, Vol. 27, pp 379-423, 623-653, Oct. 1948.

[13] Dino Sejdinovi¢, “Topics in Fountain Coding” Master’s Thesis, University of

Bristol, 2009.

[14] G . Joshi, J. B. Rhim, J. Sun, and D. Wang, “Fountain Codes,” Notes on

Principles of digital Communication II, MIT, Dec. 2010.

[15] T. Richardson, and R. Urbanke, “Modern Coding Theory,” Cambridge

University Press, pp. 4-80, 2008.

[16] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. A. Spielman, “Efficient

erasure correcting codes,”IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 569–

584, 2001.

[17] M. Luby, “LT codes,” in Proc. IEEE Symp. Found. Comp. Sci., Vancouver, pp.

271–280, Nov. 2002.

[18] D.J.C. MacKay, “Fountain Codes,” IEE Proceedings – Communication, Vol.

152(6), pp. 1062-1068, 2005.

[19] Han Wang, “Hardware Designs for LT Coding,” Master’s Thesis, Technical

University of Delft, The Netherlands 2006.

[20] K. Zhang, X. Huang, and C. Shen, “Soft Decoder Architecture of LT Codes,”

IEEE workshop on Signal Processing Systems, pp. 210-215, 2008.

[21] T. Brandon, R. Hang, G. Block, V. C. Gaudet, B. Cockburn, S. Howard, C.

Giasson, K. Boyle, P. Goud, S. S. Zeinoddin, A. Rapley, S. Bates, D. Elliott, C.

Schlegel, “A scalable LDPC decoder ASIC architecture with bit-serial message

exchange,” INTEGRATION the VLSI journal, vol. 41, pp. 385-398, 2008.

[22] TTA-based Co-design Environment v1.5. User Manual, Tampere University of

Technology, Finland 2006.

[23] P. Jääskeläinen, V. Guzma, A. Cilio, and J. Takala, “Codesign Toolset for

Application-Specific Instruction-Set Processors,” Proc. In: Conference on

Multimedia on Mobile Devices, USA, SPIE Vol. 6507, pp. 1-11, 2007.

[24] P. Jääskeläinen, "From Parallel Programs to Customized Parallel Processors,"

doctoral dissertation, Tampere University of Technology, 2012.

-147-

[25] P. Jääskeläinen, "Instruction Set Simulator for Transport Triggered

Architectures," Master of Science thesis, Tampere University of Technology,

2005.

[26] S. Alam and G. Choi, "Response of Transport Triggered Architectures for High-

speed Processor Design," IEICE Electronics Express , Vol. 10, No. 5, pp. 1-6,

March 2013.

[27] Metsähalme, "Instruction Scheduler Framework for Transport Triggered

Architectures," Master of Science thesis, Tampere University of Technology,

2008.

[28] S. Alam and G. Choi, “Custom Code Generation Technique for ASIPs from

High-level Language,” IEICE Electronics Express (Submitted 2013).

[29] Tensilica Product, “Xtensa 7,” Product Brief.

[30] Tensilica Product, “ConnX D2 DSP Engine,” 2012 ,

http://www.tensilica.com/uploads/pdf/connx_d2_pb.pdf.

[31] Tensilica Product, “Tensilica Diamond Standard Controller,” Data Book, 2012.

[32] J. Nurmi, Processor Design— System-on-Chip Computing for ASICs and

FPGAs, Springer, The Netherlands, 2007.

[33] K. Anantha Ganesh Karikar, “Automatic Verification of Microprocessor designs

using Random Simulation,” Master’s thesis, Uppsala University, Sweden 2012.

[34] D. Lampret, “OpenRISC 1000 Architecture Manual,” OpenCores (2012).

[35] S. Alam and G. Choi, “Design and Implementation of LT Codec Architecture

with Optimized Degree Distribution,” IEICE Electronics Express (Accepted

2013).

[36] E. N. Maneva, “Belief propagation algorithms for constraint satisfaction

problems," Ph.D thesis, California Institute of Technology, Berkeley 2006.

-148-

Acknowledgement

First and foremost, I am really thankful to almightily Allah for His enormous help

to complete my thesis work successfully. Without His blessings, it is not possible for

me to carry out this thesis work and to concentrate in writing with full devotion and

consistency.

Then I would like to show my wholehearted gratitude and immense regard to my

honorable supervisor, Prof. GoangSeog Choi for his valuable support, precious

guidance and important suggestion to my work. During my lab work, he gave some

novel ideas regarding Application Specific Instruction-set Processor (ASIP) and Chip

Design procedure those were truly steered me to accomplish this task.

I am grateful to my supervisor that he has assigned me to participate in Multi

Project Wafer Design project, 2012. Under this project, I went to Electronics and

Telecommunication research Institute (ETRI) for getting training on Chip Design

process that was beneficial for me to understand the ASIC as well as ASIP design.

Moreover, I would like to give thanks to Engineers of Advanced Design Technology

(ADT) and officials of ETRI for their continuous guidance in Chip Design process.

I was truly thankful to my co-supervisor Prof. Goo-Rak Kwon for his all kinds of

support throughout my Master’s program. For his kind consideration, I was able to

complete my course and thesis work successfully.

Next, I was pleased to thesis evaluation committee members Professor Jae-Young

Pyun and Professor Young-Sik Kim for their intellectual comments and important

ideas regarding the modification of my thesis work those are really favorable for

finishing task. Furthermore, I was also pleased to the anonymous reviewers of

Electronics Express journal for their valuable comments and suggestions regarding the

improvement the work.

After that, I acknowledged the invaluable test support from the Department of

Computer Systems of Tampere University of Technology for developing the free tool

-149-

and supporting documents on transport triggered architecture. It was really beneficial

for understanding the ASIP design procedure.

Besides this, I wish to thank all the members of SoC Design Lab and Digital Media

Computing Lab for their kind help and support during my study period. The members

of these labs have been a real family to me. Thanks a lot!

I am grateful to the Chosun University for Research Assistantship (RA) and the

Korean Government for selecting me through Global IT Talent Scholarship Program

under National IT industry Promotion Agency (NIPA), without this support it is not

possible for me to study in Korea. Besides this, the Bangladesh Government through

my job place Khulna University, Bangladesh was really kind to allow me to study

outside and giving me study leave. I wish to give thanks to my departmental head and

my colleagues including the entire management staff of Khulna University for letting

me to grab this opportunity. I earnestly desire that this seed of kindness would

someday soon germinate into a harvest of technology.

Finally I would like to bestow my extended thank to my family- my father, mother

and all my siblings and sibling-in-law for giving me encourage and keeping me in

touch which are very supportive to continue study in Korea. At the same time, there

were many other people, who played vital role to make my stay successful in Korea.

From bottom of my heart, I say Thanks a lot!

South Korea, May 16, 2013

S. M. Shamsul Alam

	1 Introduction
	1.1 Design Goal or Motivation
	1.2 Thesis Organization

	2 Evolution of RISC Processor
	2.1 Design Automation
	2.2 Performance of Computer System
	2.3 Overview of Architecture Developments
	2.4 Application Oriented Architecture
	2.5 Parallel Computing: Amdahl’s Law
	2.6 Complexity of Instruction Level Parallel Processors
	2.7 Implementation Detail of RISC Processors

	3 Transport Triggered Architecture (TTA)
	3.1 VLIW to TTA
	3.2 Transport Triggered Architecture (TTA)

	4 Luby Transform Encoder and Decoder
	4.1 Coding Theory
	4.2 Fundamentals of Channel Coding
	4.3 Linear Codes
	4.4 Belief Propagation Decoding Algorithm
	4.5 Fountain Codes
	4.6 Luby Transform Codes
	4.7 Hardware Implementation of LT Codec

	5 LT Codec Processor Design Using ASIP Tools
	5.1 Proposed Architecture of LT Encoder and Decoder
	5.2 Processor Design Using ASIP Tools
	5.3 ASIP Design Flow Using Xtensa Xplorer (XX): Tensilica Tools
	5.4 OpenRISC Tool

	6 Simulation Result
	6.1 LT Codec Simulation Using TCE Tool
	6.2 Simulation Result Using Tensilica Tool
	6.3 Simulation Result by Using OpenRisc Tool
	6.4 Comparison Between All LT Codec Processors

	7 Conclusions
	7.1 Summary
	7.2 Future Work

	Appendix I
	Appendix II
	References
	Acknowledgement

<startpage>25
1 Introduction 1
 1.1 Design Goal or Motivation 1
 1.2 Thesis Organization 6
2 Evolution of RISC Processor 8
 2.1 Design Automation 8
 2.2 Performance of Computer System 11
 2.3 Overview of Architecture Developments 12
 2.4 Application Oriented Architecture 16
 2.5 Parallel Computing: Amdahl¡¯s Law 19
 2.6 Complexity of Instruction Level Parallel Processors 20
 2.7 Implementation Detail of RISC Processors 24
3 Transport Triggered Architecture (TTA) 35
 3.1 VLIW to TTA 35
 3.2 Transport Triggered Architecture (TTA) 42
4 Luby Transform Encoder and Decoder 49
 4.1 Coding Theory 49
 4.2 Fundamentals of Channel Coding 52
 4.3 Linear Codes 55
 4.4 Belief Propagation Decoding Algorithm 56
 4.5 Fountain Codes 62
 4.6 Luby Transform Codes 68
 4.7 Hardware Implementation of LT Codec 77
5 LT Codec Processor Design Using ASIP Tools 85
 5.1 Proposed Architecture of LT Encoder and Decoder 85
 5.2 Processor Design Using ASIP Tools 95
 5.3 ASIP Design Flow Using Xtensa Xplorer (XX): Tensilica Tools 106
 5.4 OpenRISC Tool 112
6 Simulation Result 117
 6.1 LT Codec Simulation Using TCE Tool 117
 6.2 Simulation Result Using Tensilica Tool 128
 6.3 Simulation Result by Using OpenRisc Tool 131
 6.4 Comparison Between All LT Codec Processors 134
7 Conclusions 136
 7.1 Summary 136
 7.2 Future Work 139
Appendix I 141
Appendix II 142
References 145
Acknowledgement 148
</body>

