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논문초록 

 
ASIP 구현툴들을이용한고속 LT Codec 프로세서설계 

 
오늘날 루비 변환코드는 분수 부호 영역에서중요한 역할로 사용되고 있

다. 이 논문은 응용 특정 명령어 세트프로세서 (ASIP) 디자인 툴을 사용하

여 LT 코덱의 구현을 위한 다양한 기술을 알려준다. ASIP 디자인에서 프로

세서의 성능을 향상할 수 있는 일반적인 방법은 동시 작동을 보장하기 위한 

기능들을 향상하는 것이다. 이러한 이유 때문에, 지난 몇 년간의 연구에 응

용 프로그램 특정 도메인에서 프로세서의 작동을 직접하였다. 따라서이 연

구 논문에서 LT 코덱과 같은 이러한 응용 프로그램 특정 작업은 서로 다른 

프로세서 플랫폼을 사용하여 구현되었다.하드웨어의 성능과 프로세서의 구

조에 따라 달라질 뿐만 아니라 입력 응용 프로그램 LT Codec의 구조에 따

라 달라진다. 따라서입력 설계 전략, 프로세서 및 컴파일러 아키텍처와같은 

최적화는 응용하는 특정 프로세서의성능을 향상시킬 수 있는 매우 유용한 

현상이다. 지난 몇 년 동안, 프로세서 아키텍처는RISC 가족의 영역에서 발

전되어 왔다. 교육 수준 병렬 처리 (ILP), 우회 기법 및 여러 강좌와 같은 몇 

가지 주요 개념은 RISC 프로세서의 운영에 포함되어 있다. 따라서 운송 실

알람샴술 

논문지도교수: 최광석 

공동지도교수: 권구락 

정보통신공학과 

조선대학교대학원 
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행 아키텍처(TTA)는 응용 프로그램 특정 프로세서 디자인에 스타일을 기

본으로 한다. 

이 논문은 LT 코덱을위한 고속 TTA 프로세서를 설계 할 몇 가지 기술을 

분석한다. 이외에도 TTA 아키텍처, LT 인코더와 디코더의 설계 수정이 쉽

고 효율적인 코덱 생산을 하기 위해 수정되어야 한다. 따라서이 논문은 복

구 목적으로 소프트 디코딩으로 알려진 여러개의 제품 알고리즘을 사용하

고, 그리고매우 적은 반복작업으로 AWGN 채널을 통해 인코딩 된 비트 스

트림에서 디코딩 된 신호를 생성하였다. 

TTA 기반의 병행설계 환경 (TCE) 툴(tool)은 LT코덱을 실행하는 프로

세서의 다양한 범주(category)를 개발하기 위해서 사용돼왔다. 게다가, 이 

결과를 다른것들의 응답과 비교하기 위해 LT 코덱을 실행하기 위한 

Tensilica 와 OpenRISC 툴들을 사용했다. TCE와 마찬가지로, Tensilica 

툴에서 프로세서의 성능을 극대화 하기위해 몇몇 환경설정들이 선택(설정)

되고 수정되었다. 이러한 활동들을 기반으로, 몇몇 유용한 결과들이 생성되

었고 TTA의 LT_CODEC.adf 아키텍쳐가 TCE와 Tensilica 툴의 아키텍쳐

와 비교했을때 LT 엔코더와 디코더를 실행함에 있어서 최소의 사이클을 차

지함을 보여주었다.이런 프로세서에서 Decoder.adf 나 Decoder_llr.adf 그

리고 마지막으로 LT_CODEC.adf라 이름지어진 일반적인 기능 유닛

(function unit)들은 TTA 프로세서의 기능을 점진적으로 개선하기 위해서

사용되었다. LT_CODEC.adf는 LT코덱을 시뮬레이팅 하는데 오직 4466 

사이클과 43ms를 차지 했는데, 이는 Tensilica 툴에 비하면 매우 적다. 

그럼에도 불구하고 Tensilica의 시뮬레이션 스피드는 TCE 툴에 비하면 매

우 빠르다. 이런 시뮬레이션 결과로부터 100MHz 클럭을 사용하여 초당 거
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의 100K 사이클을 수행한다고 볼 수 있다. 그러나 Tensilica는 ConnX D2 

엔진을 이용하여 초당 1M 사이클을 수행한다. LT 코덱의 디코딩 기술은 반

복 방식으로서 수행되었고다른 프로세서 아키텍쳐의 변화 때문에 이런 디

코딩 반복 방식은 TCE와 Tensilica 툴을 이용하여 연구되었다. 이런 결과

로부터 TCE 툴의 LT_CODEC.adf는 디코더 된 신호를 발생시키기 위해 오

직 단일 반복만을 취했다. 그러나 Tensilica의 XRC_D2MR 환경은 성공적

인 디코딩을 위해서 9 사이클을 취했다. 나중에 이 학위논문은 TCE, 

Tensilica 와 OpenRICS 사이의 비교를 나타낸다. 결과는 Tensilica 툴은 

OpenRISC 보다 더 많은 사이클을 취하고 TCE의 성능은 다른것들과 비교

했을때 더 좋다는 것을 보여준다. 그러나 이 비교에서 OpenRISC 프로세서

의 제한 때문에 오직 LT 엔코더만 시뮬레이션 되었다. Tensilica와 마찬가

지로 OpenRISC는 명령을 실행하기 위해서 몇몇 사이클을 사용하는데이는 

OTA 클레스 프로세서 툴의 일반적인 행동이다. 
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ABSTRACT 

 
A High Speed LT Codec Processor Design Using ASIP 

Implementation Tools 

 

 

 

 

 

 

 
 

Luby Transform code nowadays plays an important role in the area of fountain 

code. This thesis reports the various techniques for implementation of LT codec 

using the application specific instruction set processor (ASIP) design tools. In 

ASIP design, a common approach to increase the performance of processors is to 

boost the number of function units for ensuring concurrent operation. Due to this 

reason, in past few decades researches had been carried out to dedicate the 

operation of processor on application specific domain. Therefore, in this research 

paper, such an application specific work like LT codec was implemented using 

different processor platforms.  The performance of the hardware not only depends 

on architecture of the processor but also depends on structure of the input 

application i.e. LT codec for this thesis. Therefore, optimizations like strategy of 

input design, processor and compiler architecture are very useful phenomenon to 

enhance the performance of the application specific processor. In past few years, 

processor architectures had been evolved in the area of RISC family. Some key 

concepts like instruction level parallelism (ILP), bypassing technique, and multiple 

instruction executions are included with the operation of the RISC processor. 

Hence transport triggered architecture (TTA) is promising style in application 
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specific processor design. This thesis analyzes some techniques to design a high 

speed  TTA processor for LT codec.  Besides this modification of TTA 

architecture, the design of the LT encoder and decoder should be modified to make 

a simple and computationally efficient codec processor. Therefore, in this thesis, 

sum product algorithm known as soft decoding had been used for message 

recovery purpose and this algorithm took very less iterations for generating error 

free decoded signal from encoded bit streams through AWGN channel.  

TTA based co-design environment (TCE) tool has been used for developing 

various category of processors in this LT codec implementation. Moreover, to 

compare this result with other’s response, Tensilica and OpenRISC tools are taken 

for implementing this LT codec. Like TCE, in Tensilica tool several configurations 

are chosen and modified for optimizing the performance of the processor. Based on 

these activities some useful results are produced and it shows that LT_CODEC.adf 

architecture under TTA takes minimum cycles compared to other architectures of 

TCE and Tensilica tools for implementing LT encoder and decoder. In this 

processor, some processor architectures named as Decoder.adf and Decoder_llr.adf 

and finally LT_CODEC.adf are generated for gradually improving the performance 

of the TTA processor. LT_CODEC.adf took only 4466 cycles and 43 ms for 

simulating LTcodec, which is very less compared to the Tensilica tool. 

Nevertheless, the simulation speed of Tensilica is very high compared to the TCE 

tool. From this simulation result, it can be shown that TCE executes almost 100 K 

cycles per second using 100 MHz clock. However, Tensilica runs 1 M cycles per 

second using ConnX D2 engine. It is shown that the decoding technique of LT 

codec has been performed as iterative manner and the manner of this decoding 

iteration due to the change of different processor architectures was investigated 

using TCE and Tensilica tools. From this experiment, LT_CODEC.adf of TCE tool 

took only single iteration for generating decoded signal. However, XRC_D2MR 

configuration of Tensilica took 9 cycles for successful decoding.  Later, this thesis 
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portrays a comparison between TCE, Tensilia and OpenRISC tool. Result shows 

that Tensilica tool takes more cycles than OpenRISC and the performance of the 

TCE is very good compared to others. But, in this comparison, only LT encoder 

was simulated due to the limitations of OpenRISC processor. Like Tensilica, 

OpenRisc takes separate cycles for executing the instructions, which is a common 

behavior of the operation triggered architecture (OTA) class processor tools. On the 

other hand, for TCE tool it is occurred as the side effect of data transport. 

Moreover, to determine the efficiency of the LT Codec architecture, the encoder 

and decoder are implemented with a core area of 9 mm
2
 in TSMC 180-nm 1-poly 

6-metal and Samsung 130-nm complementary metal–oxide–semiconductor 

(CMOS) technology.  Therefore, an efficient trade off is required between all these 

observations to design an excellent processor based on the specific input 

application. 
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Chapter 1 

Introduction 

System on chip (SoC) is a great revolution in modern era. Like integrated circuit, 

SoC includes many components of digital, analog or mixed signal electronic system in 

a single chip. Therefore, SoC plays a vital role in the area of embedded system. As a 

result, new design tools and methodologies are required to address the design, test and 

verification for SoC. In today’s SoC design, programmability, reusability and 

concurrent operation ability are the most exigent challenges and these force the design 

work from Register Transfer Level (RTL) to a higher abstraction level.  Silicon 

Intellectual Property (SIP) or Silicon IPs are used as components in silicon chip 

design since mid-1990s. The important constrains for quality design of SIP became 

higher after the year 2000. After that time, SIP has been accepted widely and used in 

large scale [1].  Figure 1 shows the design complexity using SIP. As shown in Fig. 1, 

around the middle to late of 1980s, RTL components were optimized as the lowest 

level component of system design. In this stage, RTL components took a certain 

degree of design complexity from the system design so that the system could be 

relatively more advanced compare to the system designed on a transistor level. During 

1990s, the system design became more advanced and complicated that programmable 

IP has to be used as the lowest level component to relax the system design complexity 

[1]. After 2005, the component design complexity was dramatically increasing which 

was handled by SoC platform.  

 

1.1 Design Goal or Motivation 
 

The traditional RTL design and SoC design differ from the size of their basic 

building blocks. Designers can use complete blocks instead of logic gates and 

registers. In order to increase the productivity, hardware design reuse is vital factor in 

SoC system. To build complex systems, designers can integrate the pre-designed and 
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pre-verified intellectual property (IP) blocks to save the time to market of a product. 

Designers are working hard to meet the requirements of embedded system design 

constrains like enhanced performance, less area, low power and less time to market. 

General Purpose Processors (GPPs), Digital Signal processors (DSPs) and Application 

Specific Integrated Circuits (ASICs) are trying to solve the SoC design problem 

partially. Because of wide variety of applications, GPPs are not suitable for 

application specific embedded system. Here, designers think of ultimate performance 

and flexibility. Since the application and programmer’s behavior are unknown, the 

instruction set must be general.  As a result, for different embedded system devices, 

GPPs cannot provide good performance at low power. Similarly, in ASIC there is no 

post-programmable opportunity, so its reusability is very limited. On the other hand, 

in spite of programmability DSPs cannot achieve high performance with low power 

dissipation. Because of that, in order to get an optimistic solution for SoC design, 

there is a recent interest in new flexible architectures with programmability and 

instruction parallelism and probably now a days it is known as Application Specific 

Instruction-set Processor (ASIP). These ASIP architectures can replace multiple chip 

designs implemented as ASIC architecture [2]. Sometimes ASIP is known as SIP. 

More SoC solutions use ASIP IP. For ASIP designers, the biggest challenge is the 

efficiency issue. Based on the coverage of full functionality of input application, the 

main target of ASIP design is to gain the highest performance over silicon and the 

highest performance over power consumption as well as the highest performance over 

design cost [1]. For this reason ASIP gives more impression to solve all the constrains 

in SoC scheme and looks very good solution for application specific embedded 

systems design. Recently, ASIPs provide enhanced performance and flexibility and 

keep the benefit of post-programmability compared to custom ASICs. The extensible 

use of programmable processor platforms brings the advantage of Time-to-market. 

ASIPs are optimized to execute a single application or a set of applications for 

focusing on the specific purpose. In ASIP, it is possible to get higher performance if 
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the processor resources like registers, function units and computational units are 

exactly matched with the input application. For example, in input application there is 

no left or right shift operation, so this shift operation can be removed from the 

processor architecture. As a result, this specific processor will take less power and 

area compared to general-purpose processors those include all operation instructions. 

For this reason, the main instigation of ASIPs is to increase the performance of 

application without implementing fixed function hardware components. On the other 

hand, manual IP block design sometimes time consuming and expensive. It requires a 

tradeoff between GPP software implementation and pure hardware implementation in 

terms of area, power and time. ASIP implementation is perfect for this trade off and it 

is capable for scalable operation in terms of performance per area and power 

consumption factors [3]. In ASIP, a platform (next it is known as custom function unit 

in specific processor architecture) is a partly designed application specific system that 

is used to adjust to a custom design with minimum cost. Therefore, this platform 

based system design requires minimum design cost during the plugging a 

programmable IP on the platform. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Dealing complexity of the design using Silicon IP and SoC platform [1]. 
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Processor design is not an easy task. Without the help of advanced design flow 

diagram, it is very difficult to design processor in time and even not possible to 

maintain high quality. For complicated system such as ASIP, therefore the design flow 

is very much essential. Figure 2 shows the state of the art ASIP design flow adopted 

from ref. [1]. This ASIP design flow is divided into three parts: architecture design, 

design of programming tools, and firmware design, as depicted in Fig. 2 (a).  

In this thesis, I will focus on the application specific processor design techniques by 

using ASIP design tools. I have selected this input application as Luby Transform 

codec (LT code). The reasons for selecting this LT code as a class of fountain codes 

have been discussed in the chapter 4. Now a days the ASIP design is very promising 

technique due to its tremendous demands in daily applications. In order to reduce the 

time to market and to improve the excellency of the processor, there are many 

automated design tools developed in this area. This thesis will describe the processor 

design techniques using different tools for specific application. 

The instruction set design is most important step in this design flow and this is the 

first step of ASIP design process. This design stage is complicated and cannot be 

claimed that a certain instruction set is the best. There should be a tradeoff of 

instruction set among different parameters like performance, functional coverage, 

flexibility, power consumption, silicon cost, and design time etc. Figure 2(b) 

represents a basic  design flow for the design of an instruction set architecture. As 

shown in Fig. 2(b), at the starting stage, first the input application should be specified 

and then translate to functional coverage. Under functional coverage, it is required to 

collect the relevant standard specifications and knowledge in order to add extra 

features for future usage. 

After getting the input application specification, the partitioning of 

hardware/software should be decided through profiling of the source code. It is 

required to meet the performance constraint by defining the functions boosted by 

application specific instructions and the functions accelerated by software using 
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conventional instructions. This is an important design concept known as 10% - 90% 

code locality. That means 10% of the instructions run by 90% of the time and 90% of 

the instructions run by 10% of time. Therefore, ASIP design required to find the best 

instruction-set architecture optimized for the 10% frequently used instructions and to 

avoid the instructions among the 90% those are not frequently used. The next step is 

to implement the instruction set that include instruction-coding, design of the 

instruction set simulator, and benchmarking. Therefore, the compiler takes the 

instruction set and converts into the assembly syntax and the design of the binary 

machine codes. Then the Instruction Set simulator (ISS) implements the instruction-

set in forms of assembly and binary codes. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Finally benchmarking is applied to evaluate the performance of instruction-set. 

Moreover, the performance of instruction-set can be modified and the usage of each 

instruction will be exposed for further optimization. The ASIP design flow takes the 

specific design requirements as input and deliveries the microarchitecture design as 
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Figure 2: Hierarchy of ASIP design flow. (a) Different sections of ASIP design. 

(b) Basic flow of ASIP design [1]. 
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output. The design of an ASIP is based mostly on experience, and it is essential to 

minimize the cost of design iteration. This microarchitecture in form of RTL coding  

is known as the tiny processor of the specific input application. This RTL design is 

ready to use for chip design. 

 

1.2 Thesis Organization  

Chapter 2 describes the evolution of different processor architectures. It presents 

the improvement of the RISC processor and explains how ILP, bypassing techniques, 

and FUs as well as RFs are added in the processor architectures. 

Chapter 3: After discussing the basic architecture of typical processors in chapter 2, 

in chapter 3, an efficient architecture of processor has been discussed. It shows why 

transport Triggered architecture is more suitable for designing the custom function 

unit. Finally, it represents the hardware structure of TTA. 

The main ideology of this thesis is to design an efficient processor for LT encoder 

and decoder. For this reason after selecting the suitable processor, we need to discuss 

about Luby Transform code. Chapter 4 will be discussing about the LT codec. There 

are many issues for implementing the encoder and decode of LT codec. Chapter 4 

includes the basic algorithm of encoding and decoding procedure, degree distribution 

and background study of the LT codec implementation. Next chapter will show the 

proposed architecture of input design as well as processor design. 

For this reason chapter 5 surely discusses about the ASIP design tools. Moreover, our 

proposed LT codec architectures are explained in this chapter. This architectures have 

been implemented by using ASIP design tool. 

In this thesis work TCE, Tensilica and OpenRisc processor tools have studied and 

proposed processor of LT codec has been developed. This chapter represents the basic 

theories for developing processor using these tools. By using these concepts, LT codec 

program has been simulated which is shown in simulation chapter. 
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Chapter 6 shows these simulation results generated by three tools. First of all 

individual result generated by specific tool has been displayed. Here mainly cycle 

counts and simulation time are taken as reference parameters for comparing the 

performance of the tool. After simulating using all these thee tools, then a comparison 

table is portrayed to get the overall scenario of these tools. 

Finally, in chapter 7, the whole work of this thesis will be summarized including 

the limitations as well as different diversified optimization levels of these tools. 

Besides this, an effective discussion are reported to make trade off between input 

design and optimization level of the processors. However to get the ultimate goal, 

some future works have been proposed with few ideas. 
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Chapter 2 

Evolution of RISC Processors 

In the previous section, we have discussed about the general concept of ASIP 

design goal that includes the instruction-set generation, ISS execution and 

microarchitecture formation technique. In this chapter, we will be discussing about the 

step-by-step evolution of processors. The main theme for selecting processor platform 

is to take a processor class that has concurrent operation strategy, good flexibility in 

terms of use and more automated working functionality. Therefore, design automation 

is very important to reduce the time to market. For complex input deign, it is difficult 

to design the instruction-set manually. So, in order to make the ASIP work user-

friendly it requires an automated design tool for improving the efficiency and reducing 

the research time. For this reason for selecting ASIP design tool, that exploits good 

design automation. 

 

2.1 Design Automation 

Figure 3 (a) shows the overview of ASIP design automation in point of research 

view. This design automation is divided into three major parts: architecture 

exploration, modeling and generation-verification. In first step, architecture and 

assembly instructions are generated according to the input application analyses. Here, 

researchers design different profiles like control flow graph. The tool will merge 

different control flow graphs. Architecture Description Language (ADL) is required to 

model the instruction-set and architecture which is shown in second stage of Fig. 3 (a). 

ADL is little bit difficult to understand. It should have sufficient information 

regarding the modeling of instruction-set, data path, control path and 

microarchitecture. If the ADL carries sufficient information for generating tools and 

architectures, the ADL will not be readable and cannot be used by ASIP designers [1]. 

The third stage includes the generation and verification of processor. Some ASIP 
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design tools like Xtensa, LISA, OpenrRISC, TCE etc are extensively used for this 

generation and verification purposes. However, in designer’s point of view this ASIP 

design flow is different compared to research point. The designer’s should give focus 

on on how to use the tool to generate instruction set, architecture, and assembly 

programming tools, as well as support for design verifications. Figure 3 (b) shows the 

ASIP design flow in point of design view. Architecture and assembly instruction set 

exploration are first and most important part in ASIP design flow in point of design 

view. Because there is a huge gap between CFGs (control flow graphs) of multiple 

applications and an ASM (assembly instruction set) and many choices are possible to 

select different instruction set architectures. So to reduce the effect of this large gap 

another design step (constraint specification) might be needed. Designers will propose 

the instruction-set architecture of a processor and this instruction set and architecture 

will be the inputs of processor modeling. The processor model will be used for 

generating the instruction set simulator, the compiler, assembler, and the architecture 

behavior model. After benchmarking of the instruction set and architecture, RTL code 

will be finally generated by the ASIP automation design tools [1].There are many 

kinds of ASIP design tools developed by different research institutes and universities 

over the years. Those are MIMOLA, Cathedral-II, Target, ARC, Xtensa, LISA, 

MESCAL, PEAS-III, NOGAP, TCE, OpenRisc etc. In this thesis, I have used Xtensa, 

OpenRisc and TCE tools to simulate my input application. Xtensa configurable 

processor is used as ASIP design tool that is developed under Tensilica IP core 

company in Silicon Valley. Similarly, OpenRisc is developed under the project of 

OpenCores community. It’s purpose is to develop a series of general purpose open 

source RISC CPU architectures. TTA based Co-design Environment (TCE) tool 

developed by Tampere University of Technology, Finland. TCE is a toolset for 

designing ASIP based on the Transport Triggered Architecture (TTA). This toolset 

provides a complete design flow from C program to synthesizable Hardware 

Description Language (HDL) and parallel program binaries. Besides the discussion on 
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Xtensa and OpenRisc, this thesis mainly focused the extensive use of TCE tool. After 

getting the design automation idea, we need to give focus for selection of processor 

class based on some benchmarks like cycle counts, simulation time, architecture 

structure etc. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

Figure 3: Automatic ASIP design flow (a) Tool researcher’s view. (b) Designer’s view [1]. 
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2.2 Performance of Computer System 

The performance of the computer system depends on the real time taken to 

accomplish a certain task or application by the system. This time is known as the 

elapsed or wall clock time. This elapsed time includes 1) the user time, 2) the system 

time, and 3) the time swapping and executing other processes [4]. In user time, the 

system executes instruction specified by the application and the system time required 

to handle operating system calls as requested by the application. In this thesis, I 

mainly interested to decrease the user time. There are some standard benchmarks like 

Dhrystone, SPECint and SPECfp used to estimate the performance of a computer. The 

performances of different GPPs are listed in ref [4]. If we see the performance of 

SPECint and SPECfp, a tremendous improvement in terms if issue rate was found in 

these benchmarks [4]. This was happening because of the factors determine user time 

of an application. So this time can be calculated from [4] 

cycleuser tCPIInstrt         #  ××=     (1) 

where #Instr is the number of instructions executed, CPI is the average number of 

cycles per instruction (CPI) and tcycle is the cycle time. So order to increase the 

performance we need to decrease the factors contributing to the user time: #Instr, CPI  

and or tcycle. There are three main developments which influences these factors [4]: 

1. The improvement of VLSI technology, decreasing tcycle and increasing number 

of transistors per chip. 

2. There should be developments in pipelining instructions, instruction level 

parallelism, influencing tcycle, #Instr and CPI. 

3. Compiler developments, especially the exploitation of  instruction level 

parallelism which influences #Instr and CPI. 

These kind of developments are strongly related to VLSI improvements. The gradual 

progressive manner of VLSI revolution offers the possibility to put much more 

hardware on a single chip. This was allowing the implementation of multiple function 

units (FU) on a single chip. As a  result, the CMOS feature size scaled down almost 
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20% per year. Therefore, chips are getting larger and the number of transistors per 

chip #Trans is increasing more than 50% annually. The achievable cycle time tcycle, 

which is determined by the critical timing path of circuit and roughly estimated by [4]: 

delaypaddelaywiringlevelsgatett gatecycle ___#  ++×≈   (2) 

The pad_delay can be avoided by using the single chip fabrication and depending on 

the dimensions of mask-layers scale with the minimal feature size (mfs), the switching 

time of a gate tgate reduces at least linearly with mfs [4]. It is possible to reduce the 

effective number of gate levels, #gate_levels using pipelining. 
 

2.3 Overview of Architecture Developments 
 

In the evaluation of VLSI technology, CISC was dominating in the decade of 

seventies. It is necessary for computer architecture to maximize the performance, or 

performance-cost ratio, through the perfect exploitation of VLSI capabilities. As it is 

mentioned in Eq. (1) that the performance of architecture will be improved by 

reducing the parameters of right hand side of Eq. (1). So, there are three techniques to 

improve the performance of the processor [4]: (Super)-pipelining, Powerful 

instructions, and Multiple instruction issue. Super-pipelining reduces the CPI and 

tcycle. Pipelining is related to the execution of an instruction. So there are several steps 

are required for execution of an instruction. Those are fetching the instruction from 

memory, decode it, get the required operands, execute the specific operation and 

finally write back the result of the operation. These steps are known as the well-

known Von Neumann cycle. For implementation of every instruction these steps are 

repeatedly occurred. In early of the seventies, CISC architecture took very long cycle 

time because of missing pipelined. If it is possible to overlap or pipeline the execution 

of instructions, then the throughput of instructions increases and therefore CPI 

decreases.   However, this requires a streamlined instruction set, that means each 

instruction can be split into the same number of stages and each stage takes the same 

time and different hardware. So, this concept of execution is not possible in CISC; 
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therefore RISC evolved. RISCs have a reduced instruction set and support a very 

limited number of addressing mode like instructions fits well in a sample pipeline 

scheme. In principle, RISCs can issue one instruction each cycle and giving a 

theoretical CPI of one. There is another pipelining concept to reduce the cycle time. 

This is known as superpipelining. Using superpipelining #gate_levels can be reduced 

in critical path [4]. The result of RISC pipelining is interpreted as to reduce the CPI 

close to one but superpipelining decreases tcycle and in fact superpipelining lead to 

increase of CPI. Besides using the pipelining and superpipelining concept, the 

processor configuration can reduce the number of instructions by adding more 

powerful instructions to the processor’s instruction set. Powerful instructions are 

performing more work per instruction. There are two techniques for applying 

powerful instructions. The first one is MD-technique results in data parallel 

architectures  and the second one is MO-technique results in operation parallel 

architectures. CISC architectures already applied both techniques in limited extend. 

The MD-technique is multiple sets of data operands per operation. That means one 

operation is applied to multiple set of data operands. In MD-technique, vector and 

SIMD (single instruction multiple data) processors both exploit the use of multiple 

data operands per specified operation. Both configurations implement the data 

parallelism differently. For example, vector processors execute a vector operation by 

applying this operation to a vector of data elements sequentially in time. In SIMD 

processors, it applies the operation concurrently to all the data elements. Figure 4 

shows the execution method of vector and SIMD execution.  This figure portrays both 

types of data parallel execution and shows how instructions are executed on a vector 

processor with K FUs and on a SIMD processor with K nodes. In the vector processor, 

each instruction uses only one FU and has a very long execution time. If the required 

resources are available then the next instruction can be issued even the previous 

instruction is still executing on different FU. Similarly, an SIMD processor executes 

instructions one at a time and each instruction may require all the available nodes. The 
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later case MO-technique is multiple operations per instruction. MO-technique is 

exploited by VLIW processors that have horizontally encoded instructions.  Each 

instruction consists O fields, where O is the number of operations which can be 

executed concurrently. VLIWs have much in common with SIMDs.  Both 

architectures accept a single instruction stream and each instruction specifies many 

operations. Although it seems more complex but it may reduce the #Instr. The 

following properties show the basic difference VLIWs and SIMDs architectures [4]: 

• VLIWs can implement any mixture of FUs. 

• VLIW instructions allow the different types of operation within a single 

instruction. 

• VLIWs exploits fine grain parallelism i.e. parallelism that exists in a very 

small scale signal operation. 

• In order to exploit a very fine grain parallelism, VLIWs requires a large 

communication bandwidth between FUs. In general, FUs use the register file 

to communicate. 

• VLIW instructions are large compared to SIMD 

The former three characteristics are very useful properties of VLIW and suitable for 

designing application specific processor. 
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2.3.1 Multiple Instruction Issue 

In order to gear up the processor speed, multiple instruction techniques are very 

powerful idea, which means multiple instructions per cycle. Multiple Instruction 

Multiple Data (MIMD) processor has the capabilities to look ahead in the stream in 

order to detect multiple instructions which can be issued concurrently. Recently, 

multiple instruction issue architectures have attempted to improve processor 

performance by fetching and dispatching more than one instruction in each processor 

cycle. This capability is known as superscalar. In MIMD processors, communication 

between two instructions is extremely specified by the instruction themselves. 

 

2.3.2 Architecture Design Space 
 

The former explanations presented the different techniques to enhance the 

performance of the computer architecture. In this section, I will present the design 

spaces to explain the processor architecture. Each architecture of the processor can be 

specified as four variables like : I is the issue rate (instruction per cycle), O is the 

number of operations specified per instruction, D is the number of operand pairs to 

which the operation is applied and finally S is the superpipelining degree. Figure 5 

shows the four dimensional representation of processor architecture [4]. 

 

 

 

 

 

 

 

 

 

 

 

 

Architecture K I O D S Mpar 

CISC 1 0.2 1.2 1.1 1 0.26 

RISC 1 1 1 1 1.2 1.2 

VLIW 10 1 10 1 1.2 12 

Superscalar 3 3 1 1 1.2 3.6 

Superpipelined 1 1 1 1 3 3 

Vector 7 0.1 1 64 5 32 

SIMD 128 1 1 128 1.2 154 

MIMD 32 32 1 1 1.2 38 

Dataflow 10 10 1 1 1.2 12 

 

(b) 
Figure 5: Architecture design space (a) Four dimensional representation 

(b) Typical values of design spaces for different architectures[4]. 
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From the figure 5 (a), RISC architectures are very close to the center (1,1,1,1) of 

the architectural design space. That means for RISC processor, the potential issues are 

consisted like one instruction per cycle (I = 1), where each instruction specifies one 

operation (O = 1), each operation applies to a single or a single pair of operands (D = 

1), and the superpipelining degree equals to one (S ≈ 1). Figure 5 (b) shows a table 

that represents the typical values of (I,O,D,S) for different processor configuration. 

Here, the amount of parallelism Mpar and values of K, the number of FUs are also 

calculated for every processor architecture. This amount of parallelism Mpar is 

calculated as the following equation defined by [4]: 

SDOIM par ×××=     (3) 

As portrayed in figure 5, to achieve a high Mpar these four orthogonal techniques can 

be combined to create a hybrid architectures. One question can be raised that what 

should be the best combination of design space parameters (I,O,D,S)-tuple for getting 

maximum benefit of parallelism? The answer of this question depends on the 

application domain. Therefore, processors for different application domain have 

different architectures and amounts of parallelism. 
 

2.4 Application Oriented Architecture 

To satisfy the high requirement demands from users, it is necessary to increase the 

performance of hardware system. There are some issues that cause these requirements 

to increase the demand of application oriented architectures. Those issues are 

described as below[4]: 

Functionality: That means, the functionalities of user applications are increasing day 

by day. 

Larger data sets: In order to get better accuracy or more compatibility with physical 

reality programs are applied to larger data sets. 
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Merging with new domains: Sometimes, the processor configurations should be 

required to compatible with new eras like neural networks, expert systems, genetic 

algorithm based applications and so on. 

Real time requirements: Several applications require making analysis with real time 

signals like real time image and signaling processing, control systems etc. 

In order to meet the above requirements, it requires for computer architect to increase 

the degree of parallelism Mpar. However, all times a parallelism Mpar does not 

guarantee a speedup of architecture. So target speed is largely application dependent. 

The following discussion shows the difference between different application domains: 

Scalar domain: This is considered as the general purpose computing domain where 

the compilers, text formatters and symbolic programs are mainly used. In this scalar 

domain, programs may use many pointers, allocate heap area, and spend a lot of time 

in the operating system. In these program most of the operations are 32 bit integer 

based operations rather than floating point operation. 

Vector domain: Programs in this vector domain use many operations like scientific 

and highly numeric applications based functions. Typical operation in this domain is 

is the dot-product on double precision floating point vectors. 

Application specific domain: The performance of the processor configuration greatly 

depends on the specification of input application. For example, signal processing 

applications fit into this domain. The nature of operations in  this domain may be 

integer based and also floating point as well. 

From the above discussion, it can be said that the processor configurations supporting 

these three domains are called general purpose, super or vector and application 

specific processor respectively. Among them, application specific processor domain 

has more exploitable parallelism as compared to scalar or vector processor domain.  

There are two types of exploitable parallelism as below: 

Operational parallelism: This kind of parallelism occurs between different 

operations of a single threaded program. 
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Data Parallelism: This parallelism exists when one or more operations can be applied 

to many data elements in parallel. It focuses on distributing the data across different 

parallel computing nodes. In a multiprocessor system, data parallelism is achieved 

when each processor performs the same task on different pieces of distributed data. In 

some situations, a single execution thread controls operations on all pieces of data. In 

others, different threads control the operation, but they execute the same code. 

To explain the difference of operational and data parallelism, let us take a function F 

to  a vector b and assigns the result to array vector a : 

for i from lower_limit to upper_limit  

do a[i]= F(b[i]) 

If the vectors a and b does not overlap then operation F can be applied to all set of 

data in parallel. That all iterations in this loop can be executed concurrently. 

Therefore, this is called as data parallelism. On the other hand, operation level 

parallelism depends on the number of operations executed during the compilation of 

F. In general, all programs contains limited amount of operation parallelism besides 

the data parallelism in scientific and application specific domain. 

According to the characteristics of the Single Instruction Stream Computers (SISCs), 

the parallelism can be described as per the orientation of processor. So this types of 

parallelism can be written as below: 

Instruction level parallel processors (ILPPs): The main aim of ILPPs is to support 

the exploitation of operational parallelism. Under this category, processors have 

multiple FUs those are usually used to support different types of operations. Besides 

this ILPPs apply the superpipeling technique that means I, O, or S are greater than 

one. Superscalar, VLIWs, superpipelined, dataflow processors and processors using 

TTA are usually belonged to ILPPs category. 

Data level parallel processors (DLPPs): This kind of processors supports data 

parallelism. In  DLPPs, the value of D is in the range from tens to thousands and I and 

O are usually one. SIMD and vector processor are the example of DLPPs. 
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Operational parallelism is not much easy like data parallelism. Operational 

parallelism is limited but it is available in every processor operation. Therefore, this 

technique being exploiting the parallelism will always increase performance of 

processor. As it is mentioned earlier that ILPPs use operational parallelism but it also 

gets benefit from data parallelism as well [4]. However theoretically, ILPPs are more 

powerful than DLPPs. Nevertheless, there are some complexities in current ILPPs like 

VLIW and I will discuss in next chapter regarding this complexity. For  this reason, 

this current ILPPs do not allow a very high degree of parallelism. The solution of this 

problem is to bring the concept of transport triggered architecture (TTA) which will 

be discussed in later. 

On the other hand, depending on the supported application, application specific 

processors (ASPs) can exploit both types of parallelism. In ASPs it is possible to 

eliminate unnecessary features like, virtual memory, high precision integer to floating 

point support cache memory etc. For this reason ASPs require less power, reduce 

complexities and allow to support higher Mpar values or same Mpar value at lower cost. 

In case of SISCs, it becomes also powerful by exploiting both types of parallelism. 

But it creates problem when the control flow of a program is strongly data dependent. 

To answer this problem multiple instruction stream computers (MISCs) may be the 

solution to the high power demand. It contains many nodes, which exploit operation 

or data parallelism. In this thesis, I will mainly exploit the TTA architectures and its 

implementation tool, so the discussion on MISC is not further explained. 

 

 

2.5 Parallel Computing: Amdahl’s Law 
 

Amdahl's law is also known as Amdahl's argument and people who practice the 

parallelization of code all experienced Amdahl’s law. This is used to find the 

maximum expected improvement to an overall system when only part of the system is 

improved. It is often used in parallel computing to predict the theoretical maximum 
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speed up using multiple processors. So, Amdahl’s law states that the speedup achieved 

when parallelizing an application using N processor is limited by [4]: 

fNf
Speedup

−+
≤≡

1/

1

 timeprocessing parallel

 timeprocessing serial
   (4) 

 

where f is the fraction of program that can be parallelized  and the serial function 1 – f 

cannot be parallelized. So, from the equation 4, it will give a relationship between 

number of processors and overall speedup. It is not true that if we apply parallel 

processors or increase the value of N then no matter speedup will be increasing 

linearly with  respect to N. There should be a certain point after that the speedup will 

be independent with respect to N. The speedup of a program using multiple processors 

in parallel computing is limited by the time needed for the sequential fraction of the 

program. For example, making a microprocessor twice does not mean that the 

computer system shows a speedup of two. It depends on the number of parallel 

portion of the executed program. 

 

2.6 Complexity of Instruction Level Parallel Processors 
 

In previous sections, I have discussed about the instruction level parallel processors 

but it has several limitations. Due to the complexities of design, it will take long time 

to market and high cost. Therefore, in this chapter, I will discuss the nature of 

complexities for implementing the ILPPs. The VLIW and superpipelined processors 

are traditional ILPPs. In these processors, they clearly illustrate what happens to the 

data path complexity when adding function units or increasing pipelining. 

 

2.6.1  Data Path Complexity 
 

 

In general there are several steps required to execute an instruction and as it is 

mentioned earlier that these steps are known as Von Neumann Cycle. These steps are 

explained as below: 
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Instruction fetch: Instructions are fetched from the instruction or cache memory. 

Fetching instructions is a main bottleneck due to the relative slow access times. This 

slow access time can be reduced by perfecting instructions before the processing unit 

requires them. The prefetched instructions are loaded into a prefetch buffer where they 

are retained until needed by the processor. 

Instruction decode: The instruction decode unit decodes and sequences all 

instructions and depending upon processor, it also includes debug control coprocessor, 

instructions and system control coprocessor etc. For example, in ARM cortex 

architecture, the instruction decode unit handles the sequence of exceptions, debug 

events, and memory built in self test (MBIST) etc. 

Issue the instruction: If the required resources are available and possible data & 

control hazards  are resolved then an instruction can be issued. 

Operand fetch: It fetches the required source operands and each operation may 

require zero or more source operands. It may require complex address arithmetic to 

fetch operands from data memory. 

Execute: This stage performs the operations specified in the instruction. For example 

in ARM cortex, the instruction execute unit consists of two symmetric Arithmetic 

Logical Unit (ALU) pipelines, an address generator for load and store instructions, 

and the multiply pipeline. The execute pipelines also perform register write back. 

Write-back: This stage writes the results of the operation to the locations specified by 

the destination operand. 

Using two source operands, most operations deliver only one result value. But for 

preparing the result value, it may require multiple succeeding operations. This section 

I discussed the basic steps for executing one instruction. In next section, I will explain 

the data path flow of a non pipelined processors. 
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2.6.2 Non-Pipelined Processor 
 

The above steps are executing in a sequential manner for non-pipelined processor. 

For example, the instruction fetch stage has to wait for the next instruction until the 

write-back of the current instruction has been completed. Figure 6 shows basic data 

path of a simple non-pipelined processor. In this data path, a general purpose register 

file (RF) is used for the operand and result values, and the task of specified FU is to 

perform the required operations fixed by the instruction set of this processor. A simple 

FU contains one output port and two input ports. To make this data path simple I did 

not include the immediate register and special purpose register like program counter in 

Fig. 6. So these RFs are also used as source and destination registers. Figure 6 (b) 

shows connectivity graph (CG) of the a simple non pipelined processor. The CG of 

processor is a bipartite graph required to mention the data transport in data path. The 

definition of CG is discussed in Appendix I. Therefore, this CG has a related 

architectural complexity. For the given data path showed in figure 6 (b), the 

architectural complexity is [4] 

)43,5,5()pipelined-non( +++= NNNAC compl
   (5) 

where N equals to the number of general purpose register. Although the connectivity 

graph shows the connection between source and destination, it does not tell how to 

implement this connectivity. Since, there are many options for the data path to 

implement this connection, so this architectural complexity fails to indicate the real 

measurement of complexity. It requires another quantities of complexity: the bus 

complexity and data path complexity those are described in Appendix I. As 

implementation of any connectivity graph requires at least one shared read write bus. 

This causes in a non-pipelined processor, because a maximum of only one data 

transport per cycles is supported. Figure 6 shows such an implementation of data path. 

Therefore, the data path complexity for this non-pipelined processor can be 

determined from figure 7 that shows a different view of the data path including all the 
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necessary read and write connections. It can be known as the connectivity model of 

the processor. Therefore, the data path complexity for this non pipelined processor is 

given by: 

)4,1,3,4,4()pipelinednon( +++=− NNNDPcompl
   (6) 

 

where DPcompl means the data path complexity. From figure 7, equation 6 can easily 

be derived and in which the maximum number of read connections to any bus and 

maximum number of write ports to any register is N + 2  and 1 respectively. So there 

is no register with more than one write port. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

If I analyze figure 7, it has four buses and among them three are very simple: they 

only serve to connect FU and outputs to corresponding to source operand and result 

registers. 

 

Figure 8: Connectivity model  

of a pipelined processor [4]. 

(a) (b) 

Figure 6: Data path and connectivity path of a simple non-pipelined processor 

(a) Data path (b) Connectivity graph [4]. 
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Figure 7: Connectivity model of a non-pipelined processor [4]. 
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2.6.3     Pipelined Processor 

There should be changed in connectivity model if we apply the pipelined feature in 

processor. Figure 8 shows the connectivity mode for pipelined processor. Figure 8 

shows that it has 6 buses: the source operands and the FU result value have to be read 

concurrently from and written to the RF. Its architectural complexity is same as the 

non-pipelined architecture. Nevertheless, its data path complexity can be written as 

below: 

)4 ,3 ,3,42 ,6()pipelined( +++= NNNDPcompl
    (7) 

If I compare equation 7 with equation 8 that means compared to the non-pipelined, 

pipelining contributes the following DPcoml.: 

)0,2,0,,2()pipelinednonpipelined,( NDPcompl =−∆     (8) 

From equation 8, the complexity of the pipelined processor is addition of extra buses 

and the corresponding to the register ports. 

 

2.7 Implementation Details of RISC Processors 

The pioneer development in designing computing system is the change of 

architectural design from CISC to RISC principles. This change shows that the extra 

functionality does not always decrease the execution time. On the other hand, CISC 

may increase the execution time. Sometimes, the extra functionality may add critical 

timing path within a processor, which increases the cycle time. It requires complex 

pipelining scheme for complex instructions. Similarly, this complex hardware will 

increase the design time. Hence, product cost & time-to-market will be increases [4]. 

RISC processors have only a small number of instructions compared to a CISC. The 

instructions are also smaller in size with a smaller number of fields and usually fixed 

length. Most instructions have the same format with limited number of addressing 

modes, which are executed by hardware. RISC processors have an instruction cache, a 

data cache, only load and store instructions reference memory [5]. The main 

bottleneck of RISC is to pipeline the execution of instructions, which reduces the CPI. 
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RISCs pipelined the Von Neumann Cycle and performed each step in a single cycle. 

As a result, the execution of each step has to be time balanced and the complexity of 

each step should be reduced. RISC has done pipelining through different ways: 

caching, uniform instruction format, large RF, one simple operation per instruction. 

On chip, caching for data and instruction reduces the time for instructions and data to 

single cycle. Due to the single instruction size, RISC reduces the instruction decoding 

time and complexity. RISC has large RF and most operations use operands located in 

registers only. Operand fetch and write back steps are performed very easily in a 

single cycle. For this reason in RISC the instruction set can easily be pipelined. Figure 

9 shows the pipelining diagram of the simple RISC processor. It has four pipeline 

stages: IF, DC, EX and WB stages. During the decode stage the instruction is 

decoded, issued, and concurrently the source operand values are fetched from the RF. 

During the execution stage all operations including the memory access operations are 

performed. In RISC processor, the data move instructions support only one additional 

addressing mode; besides the register-direct addressing mode supported by all 

operations, data moves may address one memory operand, using the resister indirect 

addressing mode [4]. Using the pipeline showed in figure 9, for a RISC architecture 

CPI equals to 1. However, absence of precautions the value of CPI may increase 

because of hazards and cache misses. There are three types of hazards: structural, 

control and data hazards. Because of insufficient hardware to fulfill the requirements 

of all instructions in the pipeline, structural hazard may occur. For example, a separate 

memory access path required to avoid the structural hazard between execute and 

instruction fetch stage. Instructions changing in the program counter can create the 

control hazards. For example, the address of the next instruction is not known at the 

end of the current instruction fetch stage. To solve this problem, branch target buffer 

(BTB) can be well known solution. A BTB is not visible to the architectural level. 

Instructions from specified address can be fetched and executed without changing the 

state of the processor. If the processors are strongly depending on the data dependent 
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operations then data hazards may occur. For example, in figure 9, instructions i and i + 

1 have data dependency condition. That means instruction i +1 uses the result of 

instruction i. Therefore, the decode stage of i +1 has to be locked until cycle 5. Here 2 

cycles are lost and the effective latency of an operation is 3 cycles. The result of 

instruction i would not be available until instruction i + 3. Therefore, in this case the 

instruction i has two delay slots. The compiler can solve this latency problem by 

putting the two independent instructions between this dependent time. This is not all 

time very easy task for compiler and this problem is getting worse to exploit the 

instruction level parallelism. 

This data hazard problem can be solved by implementing so-called bypass circuit in 

the configurations. This bypass circuit can directly forward the result value to the 

execution unit. Therefore, it is bypassing the RFs hence known as bypass circuit. In 

figure 9, this direct forwarding is shown by indicating the arrow mark. Figure 10 

shows the data path and figure 11 represents the connectivity graph including bypass 

circuit for simple RISC processor [4]. The FU executes all the arithmetic, logic and 

memory operations including load and store operations by using ALU (arithmetic 

logic unit) and memory unit. 

 

 

 

 

 

 

 

The FU takes data from two registers: op-1 and op-2, which can be fed by data 

from the RF or bypass circuit. The BP-wb (bypass write back) register is used to hold 

the result value for one cycle. After applying the bypass circuit, the architectural 

complexity for this RISC processor is equal to: 
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EX Execute 

WB Write Back 

 

Bypass circuit 

Figure 9: Four stage RISC pipelining diagram [4]. 
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)83,5,5()RISCsimple( +++=− NNNAC compl
   (9) 

For applying, the bypass four extra connections are required without changing the 

number of source and destination nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 shows the connectivity model of this RISC processor. It has divided into 

three parts: FU, Bypass and RF. Bypass circuit contains source operand registers, 

Figure 11: Connectivity graph of RISC processor. 

Figure 10: Data path of RISC processor [4]. 
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bypass write back register and their connectivity. From figure 12, the data path 

complexity can be written as below: 

)4,3,8,42,7()RISCsimple( +++=− NNNDPcompl
   (10) 

So, the differential data path complexity between bypassing and without bypassing is 

given by [4] 

)0 ,0 ,5 ,0 ,1(  )bypasswithout bypass,( =∆ complDP               (11) 

where maximum read connection and write port are RCmax = N and WPmax = 4 

respectively. The real difference is restricted to four write connections. 

 

 

 

 

 

 

 

 

 

 

2.7.1      Superpipelined Architecture 

In order to reduce the execution cycle time, superpipelined architectures extend the 

pipeline concept like instruction fetch, execute and memory stages are pipelined in its 

configuration. In superpipelined architectures, the execution stage is divided into S 

sections and depending on S there are two types of latencies: equal latency and non-

equal latency. In execution stage, for equal latency, all operations require S execution 

cycles. The connectivity model for superpipelined architecture is same as simple RISC 

processor and therefore the data complexity is also same as RISC processor.  

For non-equal latency, the FU supports operations having different latencies upto S. 

Let us assume that FU of superpipelined processor supports operations of all possible 

latencies SLL ...,3 ,2 ,1 , ∈ . The data path of superpipelined processor is shown in Fig.  

Figure 12: Connectivity model of a RISC processor [4]. 
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13. Figure 14 showed the connectivity model for S-stage superpipelined processor. So 

the data path complexity for this processor is given by [4]: 

)3,3,37,25,8()inedsuperpipel( SNSNSNSDPcompl +++++++=   (12) 

Therefore, by differentiating equation 12 with respect to S it is possible to calculate 

complexity added in each extra pipelining stage. 

)1 ,0 ,3 ,1 ,1(/)inedsuperpipel( =∂∂ SDPcompl
     (13) 

The bypass network complexity grows linearly with the number of superpipelined 

stages but it does not increase the complexity of RF unit. 

 
 

2.7.2   VLIW Architecture 

As it is mentioned in previous section that superpipelined processors exploit internal 

FU concurrency mentioned in figure 13 for reusing its hardware multiple times. 

Instead of internal FU concurrency, VLIWs exploit external FU concurrency where it 

contains multiple FUs and each FU supports RISC style operations. So, each VLIW 

instruction specifies multiple RISC operations. Figure 15 shows the data path of 

VLIW processor for two single cycle FUs. From Fig. 15, FUs share a bus for 

immediate values. That means only one immediate can be specified per instruction. 

Figure 16 shows the connectivity model for K single cycle FUs. The data path 

complexity for VLIW processor is given by [4]: 

)31,3,44,231,61()( 2 KNKKNKKNKKKVLIWDPcompl +++++++=  (14) 

Differentiating equation 14, the additional complexity for each extra FU is given by: 

)3,3,84,23,6(/)( KNNKVLIWDPcompl +++=∂∂    (15) 

where RCmax = N, WPmax = 2 +2K, and #BPcmp = 4K
2
. 

Therefore, the bypassing network complexity equals to the square of the number of 

FUs. The bypassing time is linearly proportional to the function of K. So, adding more 

FUs will increase the complexity of the VLIW processor. 
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Figure 13: Data path of a four stage superpipelined processor[4]. 
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2.7.3  Comparative Study on VLIW and Superpipelined 

Architectures 

From the discussions of the previous sections, a VLIW and superpipelined 

architectures have similar nature of behavior.  For example, for both architectures the 

compiler has to search for independent operations which can be scheduled into one 

VLIW instruction or pipelined fashion. The characteristics of superpipelined processor 

are given below:  

• It uses the hardware resources efficiently. 

• There is no classification of FU. So, for similar types of operational 

executions, there is no chance of FU conflicts. 

• It has scheduling advantage [4]. 

• Additional latency occurs during the operations of non-numeric scalar code. 

• In superpipelined architecture, its performance is limited by clock and data 

skew and its bypassing complexity is linearly proportional with S [4]. 

 

 

 

 

 

 

 

 

 

VLIW architectures are characterized by instructions that each specify several 

independent operations. This is compared to RISC instructions that typically specify 

one operation and CISC instructions that typically specify several dependent 

operations. The characteristics of VLIW architectures are given below: 

 

 

Figure 14: Connectivity model of an S – stage superpipelined processor [4]. 
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• For using the scalar code applications, VLIW configurations are suitable 

processor because it has no latching overhead. 

Figure 15: Data path diagram of VLIW processor with two FUs [4]. 

Figure 16: Connectivity graph of a VLIW processor with K FUs [4]. 
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• It uses different concurrency operation of FUs like integer adders, floating 

point adders, shifters (left and right) etc. 

• Number of FUs K is strongly limited by hardware constraints. 

• Bypass and RF complexity are defined as O(K
2
) and O(K) respectively. 

From the above characteristics, the combination of superpipelined and VLIW 

principles leads to a very powerful processor. It will support both vector and scalar 

code based on the specific applications. Figure 17 shows the connectivity model for 

combined processor technique of VLIW and superpipelined principles with K S cycle 

FUs. So the data path complexity is given by [4]: 

( ) ( ) ( ) ( )
( ) 











+++

+++++++++
=−

KSN

KKSKSNKSNKS
DPcompl

21

,3,123,221,51
)VLIWinedsuperpipel(

2

  (16) 

Differentiating equation 16, the additional complexity for each extra FU is given by: 

 
)2,3,)1(43,22,5()VLIWinedsuperpipel( SKSSNSNSDPcompl ++++++++=−∂  

(17) 

RCmax = N, WPmax = 2 + (S + 1) K and the number of bus complexity #BPcmp = 

2(S+1)K
2
. Though the superpipelined VLIW has high performance but it is suffering 

of bypassing network complexity for larger value of K or S. 

From the evolution of processor from CISC to superpipelined VLIW, for exploiting 

the large amount of concurrency, the complexity of bypass and RF components 

depends on the number of external FUs supported by the processor. For this 

superpipelined VLIW architecture, the area and timing parameters are a function of S 

and K during the fabrication process. The bypass complexity can be defined as 

following equation: 

BPcompl ≡ (#Bus, #RC, #WC, WPmax, #Regs, #BPcmp)   (18) 
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Table I(a): Summary of Bypass and RF complexity for different architectures [4]. 

 
 

Architecture Name 
Bypass Complexity Register file 

#Bus #RC #WC WPmax #Regs #BPcmp #RP 

Simple RISC 2 1 5 2 3 4 3 

Advanced RISC 3 2 11 3 5 9 3 

Superpipelined S+1 S 3S+2 S+1 S+2 2S 3 

VLIW 2K K 4K
2
+K 2K 3K 4K

2
 3K 

Superpipelined VLIW K(S+1) KS 2K
2
(S+1)+KS K(S+1) K(2+S) 2K

2
(S+1) 3K 

 
 

Table I (a) shows the bypass and RF complexities for different architectures. From 

this table I (a) it can be said that VLIW and superpipelined processors have several 

good features like capability to exploit instruction level parallelism and suited for 

application specific operations by tailoring their functionality.  

However, they are not fully scalable for large number of FUs. In next chapter, I 

will be discussing the different architecture to solve this problem and fully scalable to 

huge number of FUs.  

Figure 17: Connectivity graph of a superpipelined VLIW processor with K S cycle FUs [4]. 
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Chapter 3 

Transport Triggered Architecture (TTA) 

In the previous chapters, I have discussed that how the instruction level parallelism 

becomes one of the major architectural methods to increase the execution speed of 

single processing nodes. Superpipelined VLIW and VLIW are the main processors for 

exploiting this type of parallelism. VLIWs are more dominating because they avoid 

the large run-time control overhead of superscalar and dataflow processors. The 

performance of VLIWs is high because it has multiple FUs for executing operation 

concurrently. Moreover, VLIWs exploit pipelining  and their FUs can further 

superpipelined. 
 

 

3.1  VLIW to TTA 
 

To improve the execution speed of processor, exploiting concurrent execution of 

instructions which is known as Instruction Level Parallelism (ILP) is very important. 

This is an attractive approach to satisfy the high performance requirements. There are 

two main categories for exploiting the ILP. First category is like traditional CPU, such 

as superscalar processor and it can exploit the ILP at run time. This type of 

architecture is known as EIRT (exploiting ILP at run time) architecture [6]. The 

second category is VLIW and TTA based processors that exploit the ILP at compile 

time. It is known as EICT (exploiting ILP at compile time) architectures [6].  In this 

category the programmer or compiler finds the parallel instructions statistically before 

run time. Due to the flexibility and scalability behavior of VLIW architecture, it is an 

interesting choice for the design of ASIPs. VLIWs   are constructed from multiple, 

concurrently operating function units (FUs) where each FU supports RISC style 

operations. That means, a VLIW processor does not need to include a complex 

instruction dependency detection hardware logic which simplifies the processor 

implementation. In contrast, the scalability of a traditional VLIW processor is 
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seriously affected by the structure of the architecture. In VLIW, the reason to limit its 

scalability is the complexity of the connectivity of required data path especially for 

register file (RF) and bypass circuit. The data bandwidth between registers and FUs 

depends on the number of selected FUs. Similarly, the instruction bandwidth also 

depends on it. However, when all FUs are utilized, the available data bandwidth is still 

rarely utilized. So, a new architecture is required to reduce this underutilization of RF 

and bypass bandwidth. The concept of this new architecture is Transport Triggered 

Architecture (TTA) [4]. The three step process of this transport triggering concept is 

1) reducing the RF complexity, 2) reducing the bypass complexity and 3) the 

mirroring the programming paradigm [4]. 

 

3.1.1     Reducing the RF Complexity 

Generally, in VLIWs with K FUs need 3K ports from RF. 2K ports required for 

reading and K ports required for writing. These 3K ports are utilizing in worst case 

situation when each FU needs to perform two reads and one write  operations on  the 

RF simultaneously. This amount of traffic can be reduced because there are some 

reasons that not all these 3K ports of K FUs are required to keep the FUs busy. The 

following scenarios may occur during the operations or sequence of operations [4]: 

Source operands: Every operation does not require two RF source operands. For 

examples, register to register copies, operations with immediate operands, loads with 

direct, indirect or displacement (offset) addressing, jumps, and calls etc these 

operations only one source operand. Similarly not all operations like jumps, calls, and 

stores  produce a result for the RF. 

Bypassing: During the execution of FUs, FUs take values from RFs. But, in case of 

bypassing circuits are applied then bypassing values between FUs is needed when 

operations need operand values which are not yet available in the RF. Once the 

operations for which the results are not yet written back to the RFs, but some FUs are 

going to use of that result value then bypassing circuits bypass that value to the FUs. 
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For that reason when all usages of a value can be bypassed, it is not needed to write 

this value in the RF; in that case, the result value is said to be dead. 

Operand sharing: Sometimes, an operand value may be used multiple times by the 

following operations. If the operand value is still in the bypass, the RF read traffic can 

be further reduced by operand sharing. Similarly, a RF read port is shared by multiple 

read operations in case of reading the same register in same cycles during the multiple 

operations. 

Depending on the above explanation, it is possible to reduce the number of RF 

ports and number of RFs hence, RF complexities will be reduced. So, it is necessary to 

know the technique of how to control a RF with a limited number of ports. There are 

two control techniques for this option: 1) dynamic or run time control, and 2) static or 

compile time control [4]. 

Dynamic control: In this technique, the hardware will assign operands to port on 

basis of availability. In order to multiplex the available ports between the operands, 

hardware locks the ports for one or more cycles when there are many operands. So, 

the locking ports should be chosen such that locking does not contribute much to the 

CPI. 

Static control: it is very difficult for hardware to determine which RF operands are to 

be read and written by using dynamic control. Because at compile time this 

information should be preciously necessary. In static control technique, a separate FU 

named as register unit (RU) is implemented and it has  a limited number of read and 

write ports. Figure 18 shows the data path of a VLIW with 2 FUs and one RU. This 

RU has one write port and two read ports. So remarkable changes can be found 

between two data path of VLIW: one is using RU and another one is without RU. So 

in Fig. 18, BP-1 and BP-2 bypass registers and their associated bypass busses are 

disappeared. Because, this bypassing unit is localized within one unit. 
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independent from other and can be scheduled in cycle two on FU-2. The fourth 

instruction is scheduled in cycle three such that r3 need not to be stored in the RU. 

By this way, it will require less cycle to schedule these instructions. This frees a write 

port, which is needed in order to optimize the schedule. 

 

 

 

 

 

 

 

 

 

 

Figure 20 shows the connectivity graph of VLIW architecture with separate RU. 

From figure 20, the data path complexity can be written as: 












++++

+++++++++++
=

WRWKN

WNWRKKRNWKWRK
DPcompl

 ,12

 ,1)12(2 ,12 ,13 2

(19) 

Therefore, the extra FU adds a complexity as following equation: 

 

( )0 ,2 ,124 ,2 ,3/ +++=∂∂ WRKKDPcompl
              (20) 

 

where RCmax =  N and WPmax=  max(W, K + R + 1) 

If I compare this connectivity diagram with connectivity diagram diagram (without 

RU) then we notice a remarkable change I mean reduction in connectivity complexity.  

Still there is a major problem in this architecture like huge number of comparator. 

This is shown in following equation in terms of bypass complexity. 

)()2( RKWKBPcompl +×+=      (21) 

This can be modified by applying bypass complexity reducing technique. 
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Figure 19: Pipelining diagram of four instructions [4] 
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Figure 20: Connectivity diagram of VLIW processor with separate register unit (RU). 

Figure 21: Connectivity status of bypass register  

 (a) Fully (b) Limited read and (c) Limited write connectivity [4]. 
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3.1.2   Reducing Bypass Complexity 
 

Bypass complexity of VLIW processor depends on the operand identifiers, number 

of read and write connections and number of bypass buses or global buses. In case of 

placing RF as a separate FU, the compiler exactly knows which input the multiplexer 

should be read from. Therefore, it is possible to make the bypass circuit visible at the 

architectural level. There are several options for this data path visibility: fully 

connected, limited read connectivity and limited write connectivity. Figure 21 shows 

these visibility connections for bypass circuit. 

For fully connected network like figure 21 (a), all the read and write ports are 

connected with bypass network. Here, this is not an actual solution because the bypass 

is now considered as a shared registered file and this register file has to be bypassed as 

per the pipelining access by using separate stages for RR, EXE and WB. Therefore, to 

reduce this complexity, these connections (read and write ports of FUs in bypass 

network) should be limited. In order to do this, there are two possible options: one is 

to reduce the read connections and another one is to reduce the write connections. 

Figure 21 (b) shows the limited read connectivity for only one read connection per 

bypass register. For figure 21 (b), the bypass complexity can be written as [4]: 

),,1,,2,3()#,,#,#,(# NKKNKKRegsWPWRBusBP maxCCcompl =  (22) 

where N is equivalent as the number of operand registers ( ≈ 2K). If N = cK, c is a 

constant value, then the bypass complexity per FU increment is given below: 

) ,1 ,0 ,2 ,2 ,3(/ ccKKBPcompl =∂∂    (23) 

From equation 23, it can be said that 3 buses are added per FU. 

Limited write connectivity 

Figure 21 (c) shows the limited write connectivity of the FUs for VLIW processor. 

Therefore, the bypass complexity can be written as [4]: 

),1,,,2,3()#,,#,#,(# NNNKNKRegsWPWRBusBP maxCCcompl =   (24) 
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where N is the number of bypass registers, N ≥ K. Again N = cK, c is a constant value, 

and then the bypass complexity per FU increment is given below: 

) ,0 , , ,4 ,3(/ ccccKKBPcompl =∂∂     (25) 

According to the equation 25, the incremental complexity is more in limited write 

connectivity compared to limited read connectivity. Because, this limited write 

connectivity leads to 2K non-local bypass buses for reading operands. 

In VLIW architectures, still there is a problem. For example, the number of bypass 

buses is linearly proportional to the number of FUs. This number cannot be chosen 

independently. For example, suppose ALU is split into three major components: 

adder, shifter, and logical units. From a concurrency point of view, this splitting is 

very good but from a bypass complexity point of view, VLIW structure is not more 

attractive. It is trying to solve this problem in transport-triggered architecture (TTA). 

 

3.2      Transport Triggered Architecture (TTA) 
 

The connectivity diagram of bypass registers mentioned in figure 21 is not fully 

utilized during the execution time of FU. Because, it is necessary to design the bypass 

transport capacity for worst case traffic conditions. When the number of FU outputs is 

larger than the communication requirements, then it is required to reduce the bypass 

capacity. Number of FUs may increase in the following situations [4]: 

FU splitting: any FU can be split upon its different functionality. For example, an 

ALU has different execution units: adder/subtractor, a shifter and a logical unit. These 

units are split to reduce the FU resource conflicts during the operation mapping. So it 

allow more concurrency without a large increase of hardware. 

FUs with multiple outputs: sometimes FUs are generating multiple results. In this 

case, multiple outputs may share a single bypass bus. 

Superpipelined FUs: as it is mentioned earlier, in superpipelined architecture FUs are 

split into different stages and it may contain multiple outputs with different latency. 

Like FUs with multiple outputs, it may share a single bypass bus. 
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As per the previous discussion, it is required to reduce the number of busses for 

improving bypass utilization. A FU may write single or multiple buses depending on 

scheduling requirements. There are two types of scheduling activities: scheduling of 

operation and scheduling of transport. Based upon the scheduling of register port, 

scheduling of transport can be done either at run time or at compile time. As discussed 

earlier that run time scheduling is very expensive so, it was proposed to schedule these 

buses at compile time [4]. Besides reducing complexity, compiler intellectually 

handles the transport priority in more transport than available buses situation. These 

transports are separated from operations. Figure 22 shows these two different views of 

the resulting architectures for full connectivity on bypass buses. 

There are two types of views showed in figure 22. In the simple view the read and 

write connections are drawn as seen from the FU point of view. In this architecture, 

the bus connections are in cascade form that means a FU first writes its result on a 

local result bus the result is distributed to one of the operand register via global bypass 

buses. To avoid this cascade problem, the connectivity model is developed shown in 

figure 22 (b). For this connectivity model the the bypass complexity is given below 

[4]: 

( )KMKMKMKMKBPcompl 2,,),21(),2(,3 +++=    (26) 

M is number of bypass buses. M is a constant value, and then the bypass complexity 

per FU increment is given below: 

( )2,0,1,21,2,3/ MMKBPcompl ++=∂∂                 (27) 

From equation 26, among the total number of buses 3K + M only M of them are used 

for global inter FU communication. For constant value of M the bypass complexity is 

linearly proportional to the number of FUs. In practical equation 26 may be reduced as 

below 

 ( )KMKKKKBPcompl 2,1,/,3,3,3=                   (28) 

The bypass complexity per FU increment is: 
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( )2,0,/1,3,3,3/ MKBPcompl =∂∂      (29) 

Therefore, this complexity is extremely low. This connectivity as well as the 

complexity is highly application dependent. The transport is visible at the architectural 

level that implies that the specification of operation can be hidden. Here the data 

transport can trigger the operation as a side effect of operation. So no extra instruction 

required for triggering. 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to ref [4], this newly developed architecture is known as transport 

triggered architecture (TTA) and the traditional architectures are known as operation 

triggered architectures (OTA). 

TTAs are broader classification of VLIW architecture and it requires fewer 

constrains for scheduling data compared to VLIWs. By considering the conditions like 

having the same FUs, choosing the proper connectivity and selecting proper compiler 

schedules, TTAs become VLIW processor. Figure 23 represents the traditional VLIW 

architectures [4]. 
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One TTA instruction divided into several bus fields depends upon the number of 

buses in the architecture. Each bus-field specifies one move operation from source 

(src) to destination (dst). The i-bit indicates as source id and this source id may be 

interpreted as an immediate or as a register specification. The following example 

shows the programming in a TTA architecture. For example, TTA has three buses and 

this example represents the TTA scheduling of previous example. 

 

 

 

 
 

From this example, it requires 8 moves and four instructions to execute this operation. 
 

3.2.1      Hardware Aspects of TTAs 
 

The figure 24 shows an example of TTA processor. FUs, RFs, data memory, 

instruction memory and interconnection network are included in this architecture. An 

FU may contain a general purpose register file or logic units; in that case, it is named a 

register unit (RF) or arithmetic logic unit (ALU). Each FU is connected to the inter-

connection network with one or more so-called input and output sockets. In middle, 

there is an interconnection network, which consists transport bus, socket and 

connection. Input sockets contain multiplexers which feed data from the buses into the 

FUs. Output sockets contain de-multiplexers; they put FU results on the buses [4]. The 

transport buses are used to transfer operand i.e. it executes with instructions. Here the 

RISCs 

SISO 

Traditional VLIWs 

SIMO 

Transport triggered architectures 

SIMT 

Figure 23: Architectural view for OTAs and TTAs [4]. 
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number of buses is customized as to reduce the cycle counts. It is the task of the 

compiler to optimize the required transports, given a certain connectivity, such that the 

cycle count (the number of executed cycles) is minimized [4]. The FUs of TTA 

architecture are internally pipelined and it is possible to implement one or more 

operations by using TTA FUs. One of the input and output ports of FU is called 

trigger port and as its name when an operand is transferred to this port, the operation 

execution is triggered. Then the result can be read from the output port after the time 

defined by the static latency of the operation. One of the important aspects of this 

TTA architecture is that FUs are may be called as register which means that the values 

are stored in the port until the next operation overwrites that port. Thus the traffic on 

the register may be reduced [7]. 

The register files (RFs) do not differ much from the FUs that have discussed 

earlier. Like FU, the RFs are connected to the IC and their connections are visible to 

the programmer. The TTA template also allows the customization of the register files 

as well as function units by the programmer and this brings a tremendous 

improvement of performance to the processor. The following characteristics are 

observed for TTA architecture, which is very interesting from the hardware design 

point of view: 

Modularity: TTAs are constructed by using different FUs and bus connections. FUs 

are completely independent each other and connect with interconnection network 

mentioned in figure 24. Controller unit controls the FU pipeline. Under this 

modularity characteristic, the hardware design process is fully automated. 

Flexibility and scalability: TTA architectures are very much flexible. Because the 

interconnection network is separated from the FUs and both can be designed 

independently. But for VLIW its scenario is different. If the FU changes then it is 

required to modify the interconnection network. The FU of TTA architecture is 

flexible in terms of functionality. It may contain multiple inputs and outputs including 

different operands. 
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Processor cycle time: This is very important characteristics for TTA architectures. 

The processor can be optimized for operation throughput instead of latency. To 

optimize the processor, it requires superpipelining those FUs, which constrain the 

achievable cycle time. Advanced bus implementation techniques are required to 

optimize the processor. 

Hardware efficiency: Hardware efficiency of TTA processor is very high. It is very 

efficient to handle the hardware change aspects. TTA architecture supports one 

operation format and it uses reduced  decoding logic among the RISC design. In TTA 

architecture register efficiency and transport efficiency are very high. It is not required 

to allocate RF stages for all the values produced during the course of a program so, in 

TTA it requires less number of RF. FU splitting is another aspect of TTA processor. 

FU logic can be split into independent parts used for different functionality. For TTA 

architecture, splitting FU has no impact on interconnection network and splitting FU 

can be used concurrently which increases the efficiency of hardware use. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 24: Example of a Transport Triggered Architecture (TTA) [3]. 
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From the above discussion TTA architecture ensures the economy usage of hardware 

architecture. That means it will exchange the complexities between compiler 

(software) and hardware stage. Hence, this characteristics make TTAs a suitable 

architecture for application specific processors. 

Until chapter 3, I have discussed the different processor architectures. According to 

the ref [4], TTA style processor is very good for implementing the application specific 

design. To generate the application specific processor design, I took the LTcodec 

system as input design. So next chapter I will discuss the basic of LTcodec theorem 

followed by the related works regarding the implementation of LTcodec. 
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Chapter 4 

Luby Transform Encoder and Decoder  

The binary erasure channel (BEC) is a real world channel environment which is a 

common communication channel model used in coding theory and information theory. 

Since the absence of feedback concept in forward error correction channel, advanced 

adaptation schemes or reliable transmission modes are infeasible in the BEC 

environment [8]. Therefore, research has been done to fulfill the BEC requirements. 

Luby et. al. explained a channel code with potentially limitless redundancy (rateless) 

and used it to solve the reliable broadcast problem in BEC [9]. This coding scheme is 

known as the fountain code. Luby Transform (LT) code and Raptor code are two such 

fountain codes based on its degree distribution function. These codes have been 

extensively proposed to solve the transmission problem through wired internet and the 

resulting behaviors are investigated on erasure channels. Like the low density parity 

check (LDPC), the decoding part of the LT code includes an iterative belief 

propagation algorithm or Log-BP algorithm. So, the decoder architecture of the LT 

code has followed a similar architecture to that of the LDPC decoder. In [10], the 

LDPC decoder was implemented by using parity check matrix directly mapped into 

the hardware. In [11], the VLSI architecture of LDPC was studied and authors tried to 

reduce the gap between decoding throughput and hardware complexity.  

 

4.1      Coding Theory 

C. E. Shannon wrote in his paper [12] that “the fundamental problem of 

communication is that of reproducing at one point either exactly or approximately a 

message selected at another point.” According to Shannon, messages are referred to or 

are correlated according to some system with certain physical or conceptual entities. 

However, the solution of this fundamental communication problem is theoretical. The 
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ideology of this problem is related to the transmitting or receiving the message signal. 

In conventional procedure, we should encode the selected message by adding some 

redundant information, such that even if the transmitted encoded message is corrupted 

by noise, there will be sufficient redundancy in it to recover the original message. 

Regarding this statement two individual problems should be raised: how much 

redundancy is required? This is related to quantitative question. Another one is what 

kind of redundancy is the best choice? This is related to qualitative question. These 

are two interesting questions. In the receiving end, the original message recovery 

depends on the amount of redundancy. Therefore, how many redundant bits are 

required for recover the transmitted messages. Alternatively, it makes sense that what 

is the optimum use of the communication resources at this disposal, e.g., of channel 

bandwidth. Each and every coding scheme assigns a value known as information rate 

that means what portion of that transmitted signal is useful. The qualitative solution is 

seeking for actual coding schemes, which should not only optimally use the 

communication resources, but also be equipped with the set of encoding and decoding 

algorithms, which can be performed practically and efficiently. For this reason, the 

aim of the code designer is to apply the code scheme such a way that the maximum 

information rate may be achieve with a vanishing probability of decoding error and 

efficient encoding and decoding algorithms. Shannon showed the answer regarding 

the quantitative question and proved that for reliable transmission, there is a certain 

limit to the information rate over a noisy channel. According to Shannon’s theorem, 

for a communication channel C, the channel capacity ]1,0[)( ∈CCap and the 

information rate R are related as R < Cap (C) for reliable communication. That means 

it is necessary to exist a reliable coding scheme of information rate R. Therefore, the 

question is still remaining which coding scheme is more reliable and close to the 

channel capacity. Over the last few decades, this coding theory has been developed 

tremendously. Researches from various fields of mathematics and engineering are 

doing research on it, posing and answering beautiful problems of both the theories and 
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the practical. Still the efficient coding scheme has been searching. Among the 

researchers, Wozencraft and Reiffen [13] illustrated that “Any code of which we 

cannot think is good”. It was the predominant concept of early 90s. This dominant 

attitude should be changed after introducing the Turbo codes [13]. The IP of Turbo 

codes depends on using the pseudorandom interleavers in the encoding algorithm and  

iterative decoding algorithm. Turbo code has very structured encoding and decoding 

algorithm including enough randomness. After introducing the Turbo code, it was 

considered as the first practical codes which approached the channel capacity. Turbo 

codes played the vital role in the field of error correction coding. But in fact initially 

this code was rejected by the referees of the conference board. However today, Turbo 

code is an important tool of everyday technology making our lives very easier. It is 

employed in mobile communication, satellite communication standards, in IEEE 

802.16 metropolitan wireless network standards and so on. Immediate after Turbo 

code, low-density parity code (LDPC) was rediscovered by many researchers 

independently like MacKay, Neal, Wiberg, Sipser and Spielman [13]. They showed 

that LDPC codes have excellent performance comparable to and often exceeding that 

to Turbo codes. After that, huge research efforts devoted to understand of this new 

new approach as an efficient error correcting code. It overcomes the problem of 

classical coding theory, which deals mainly with the algebraic construction of codes. 

As a result, nowadays practical codes and their decoding algorithms have low 

computational complexity and are amenable to rigorous mathematical analysis [13]. 

From the ref [13], the new attitude of coding theory is: “Codes are viewed as large 

complex systems described by random sparse graphical models”. Therefore, decoding 

can be executed as the inference on the sparse graphical models. Bayesian procedure 

called the belief propagation algorithm is chosen as the decoding algorithm [13]. 

During the application of Bayesian procedure, it is realizes that Belief propagation is  

exceptionally efficient inference on sparse graphical models and in particular, on the 

sparse factor the graphical models corresponding to LDPC codes. This spare factor 
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graph is often called Tanner graphs [13]. Soon after the rediscovery of LDPC code, it 

has been realized that the iterative decoder of LDPC codes is a belief propagation 

decoder. Eventually, it has also been shown that decoding of Turbo codes is another 

representation of belief propagation algorithm [13]. Thus, belief propagation schemes 

changed the way of thinking of error correction coding. It seems that the best 

redundancy from the qualitative question of the code designer is the redundancy that 

can be represented by a sparse graphical model on which we can run a belief 

propagation algorithm. 

 

4.2         Fundamentals of Channel Coding 
 

Channel coding is very important for reliable data transmission and reception. When 

data carrying signal is propagated through channel then it is seriously affected by the 

response of the channel. So in the receiving end, receiver will receive this exhausted 

bit streams. So, successful recovery depends on the channel response. Therefore, a 

modeling like channel coding is mandatory for remove the effect of this unwanted 

noise or fading due to the channel. 

 

4.2.1     Channel Models 
 

To ensure the reliable transmission, channel coding is an obligatory part of 

communication. The main objective of channel coding is to transmit a message across 

a noisy channel. Here message is a sequence of k symbols ( ) k

k Xxxxx ∈= ,...,,, 321x , 

which are elements from a predetermined alphabet X. For this channel encoding 

purpose, the encoder maps the sequence x to the codeword ( ) n

n Yyyyy ∈= ,...,,, 321y

and then transmitted through the channel and impaired by the channel noise. 

The decoder observes a sequence of corrupted symbols, i.e. , a received word 

( ) n

n Zzzzz ∈= ,...,,, 321z and estimates y based on z. Vectors x, y, z can realized of 

random variables, X on X
k
, Y on Y

n
, Z on Z

n
, respectively. Similarly, each xi, yi, and zi 
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is a realization of scalar random variables Xi, Yi, and Zi respectively. In addition, we 

assume that each Xi, Yi, and Zi is independent and identically distributed (i.i.d) 

according to probability density function PX (x), PY (y), PZ (z) respectively. The 

relationship between Y and Z is modeled by a conditional probability density function 

PZ|Y(z|y). The meaning of communication channel modeling is to specify its 

probability density function. Figure 25 shows three communication channels named as 

symmetric channel, erasure channel and Zcha channel. 

 

 

 

 

 

 

 

 

 

Figure 25: Three communication channels (a) memoryless symmetric (b) binary erasure (c) 

Zcha channel (d) the 8-ary erasure channel [14]. 
 

4.2.1.1    Binary-Input, Memoryless and Symmetric (BIMS) Channels 
 

Here we assume that the channel models are binary-input, memoryless and 

symmetric (BIMS channels). In  memoryless case, for any input x = (x1, x2,…..,xN), the 

output message is a string of N letters, y = (y1, y2,…..yN), from the alphabet yi∈Y. 

Figure 25 (a) showed the model of BIMS channel. These channels have a binary 

codeword symbol alphabet Y represented either as F2 = { 0, 1 }  or as  set  {-1, +1}. 

BIMS channels have no memory that means the output of such channel at any time 

instant depends only on its input at that time instant, i.e.,  )|()(
1 | jj

n

j Yz yz
jj∏ =

Ρ=Ρ y|Y| zZ
. 

The meaning of symmetric channel is that the channel output is symmetric in its input. 

The maximum amount of information per symbol that can be conveyed about the 

codeword Y from the received word Z in the case of a memoryless channel C, is 

1 - ε 

ε 

(d) 

Xt 
Yt 

? 

(a) 

(b) (c) 
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referred to as the channel capacity [13]: 

( ) );(sup
)(

ZYICCap
yYΡ

= . Where sup is supreme function and I (Y;Z) denotes denotes 

mutual information between the random variables Y and Z. According to Shannon 

theorem, for reliable transmission the value of code rate R satisfies the condition 

R<Cap (C). 

 

4.2.1.2      Binary Erasure Channel   (BEC) 

The binary erasure channel (BEC) is the simplest non-trivial channel model. It was 

first introduced by Elias as a toy example in 1954 [15]. Nevertheless, nowadays this is 

a real world problem specially in Internet promoted area. Basically, erasure channel 

can be used to model data networks or packet switching networks, where packets 

either arrive correctly or are lost due to buffer overflows or excessive delays.  For 

example, files sent over the internet are chopped into packets, and each packet is 

either received without error or not received. Erasure channels model situations where 

information may be lost but is never corrupted. The BEC model the erasure in the 

simplest form like: signal bits are transmitted and either received correctly or known 

to be lost. It the receiving end, decoder will recovery this lost part of transmitted 

signal. Figure 25 (b) shows the BEC (ε). Time, indexed by t, is discrete and the 

transmitter and receiver are synchronized. The channel input at time t denoted by Xt, is 

binary { }1,0∈tX . The corresponding output Yt takes on values in the set {0, 1, *}, 

where * indicates an erasure. Each transmitted bit is either erased with probability ε, 

or received correctly: { },*tt XY ∈  and { } ε==Ρ *tY . Each erasure is t independent 

because of the memoryless channel. The capacity of the BEC (ε) is CBEC (ε) =1 – ε 

bits per channel use. Therefore, it can be shown that CBEC (ε) ≤ 1 – ε. Figure 25 (d) 

portrays a simple channel model describing the BEC situation with q-ary erasure 

channel. That means, all inputs are set of input alphabet {0, 1, 2, 3,……,q-1}. The 

alphabet size q is 2
l
, where l is the number of bits in a packet. The eight possible 
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inputs {0, 1,…..,7} are shown in figure 25 (d) by the binary packet 000, 001,…111. 

Instead of FEC technique, if the communication system is ARQ then the total number 

of retransmission depends on the value of ε. If the erasure probability ε is large, the 

number of feedback messages sent by the first protocol is very high. 

 

4.2.1.3       Zcha   Channel 

Zcha is also known as binary asymmetric channel. This channel contains binary 

input and output value where the cross over 1→ 0 occurs with probability p whereas 

the crossover 0←1 never occurs. Figure 25 (c) represents the scenario of Zcha channel. 

For example, X and Y are the random variables describing the probability distributions 

of the input and the output of the channel, respectively. So the crossovers of the 

channel are characterized by the conditional probabilities: { } 10|0 ===Ρ XY , 

{ } pXY ===Ρ 1|0 , { } 00|1 ===Ρ XY ,  and { } pXY −===Ρ 11|1 . That means for 

Zcha channel, a 0 is always transmitted correctly but a 1 becomes a 0 with probability p. 

The name of this channel comes from its graphical representation figure 25 (c). 

 

4.3          Linear Codes 

Linear codes are most common channel codes where both the message and the code 

word symbol alphabet restricted to F2. A binary linear coding scheme can be viewed 

as a linear mapping from the set of messages k

2F to the set of code words n
C 2F⊂ , 

where C forms a k dimensional vector subspace of n

2F . Generally, this vector space C 

is called as code that follows particular manner of the coding scheme. It is referred as 

(n, k) binary linear code, where n is the length of codeword, k is the dimension of the 

code and R is known code rate defined as k/n.  

Linear code can be fully described by its basis {g1, g2,….,gk}, where gi
n

2F∈ , leads to 

the generator matrix representation of a linier code. A kn× matrix G is called the 

generator matrix of code C if  cGxc =∈∃⇔∈ ;Fx k

2C  
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Note that any matrix with columns that form a basis of C is a generator matrix of C 

and that representation by generator matrix allows a simple mechanism of mapping 

the messages to the code words. On the other hand C can be specified as its dual 

(orthogonal) sub space ⊥
C within n

2F  and its basis {h1, h2,……,hn-k}. The dual 

subspace of C is defined as }0:F{ 2 CcC
n ∈∀=⋅′∈′=⊥ ccc . 

By this way, it is possible to represent a parity check matrix of a linear code. An 

nkn ×− )(  matrix H is the parity check matrix of C if 0=⇔∈ Hcc C . Therefore, it 

can be written that any matrix with rows that form a basis of ⊥
C is a parity check 

matrix of C. 

In fountain codes, coding schemes have no fixed rate. Each row of the generator 

matrix of such coding scheme can be viewed as a random variable on k

2F , where k is 

the dimension of the code. At any time instant Ν∈j , the fountain encoder generates 

a single encoded symbol xv ⋅= jjy from the message k

2F∈x where x is a randomly 

chosen row vector from k

2F . In this scheme the receiver observes a number of received 

word symbols 
niii zzz ,......, ,

21
corresponding to the transmitted symbols

niii yy ,......,y ,
21

. 

The resulting code at the receiver end is an (n, k) binary linear code described by a 

generator matrix with vectors 
niii vv ,......, v,

21
as its rows. If the decoder fails to decode 

then receiver will collect additional encoded symbols which result in a code of greater 

length. 

 

4.4        Belief Propagation Decoding Algorithm  
 

Like many other algorithms, decoding of linear codes deals with the optimization of 

a rather complicated global function of a large number of variables. For this reason, 

decoding is difficult compared to encoding procedure for this linear code. One 

important aspect of this decoding is the factorization of global product into a local 

functions i.e., functions defined on small subsets of the set of all variables. Then it is 
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possible to get a starting point in the construction of the efficient algorithm. This 

factorization is usually visualized with a bipartite graph, called factor graph. The 

factor graph is used to represent relations between local functions and variables. It 

describes which variables are arguments of which local functions. It can be said that a 

factor graph is a graphical model on which Bayesian inference can be performed and 

in particular the Belief Propagation (BP) algorithm [13]. In order to optimize Belief 

propagation algorithm simply exploits the factorization of the global function to 

efficiently compute the global function many times. This is on the same conceptual 

level as the distributive law computations. For example, a function of three variables 

can be formed as two ways: acabcbaf +=),,( and )(),,( cbacbaf += .Therefore it 

is clearly more efficient to compute the factorized version of the function (second 

function) compared to the first one. In first function, it requires two multiplications 

and one addition whereas in second form of function it requires one addition and one 

multiplication. 

The complete explanation of BP algorithm will be discussed in Appendix II. It is not 

only used in iterative decoding procedures for sparse matrix codes but also used in 

BCJR, Viterbi, Kalman filtering and certain instances of the fast Fourier 

transformation. Now I will discuss how BP algorithm relates to the decoding problem 

of binary linear codes. 

 

4.4.1      Binary-input MAP Decoding via Belief Propagation 
 

Let us assume that binary codewords of length n are transmitted through a binary 

input memoryless symmetric channel. Consider that the codeword x = (x1, x2,….,xn) 

n

2F∈ , is generated by an (n , k) linear code C described by its parity check matrix 

( ) nknj

ih
×−∈= )(

2FH . Note that the received word is y = (y1, y2,….,yn). Assume that the 

channel is described by its transition probability )|()(P
1 | jj

n

j XY xyP
jj∏ =

=x|yX|Y . 

Maximum a posteriori  (MAP) decoding problem can be described as the optimization 
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problem: 

{ }
( ) niX

x

MAP

i Nixx
i

i

∈Ρ=
∈

,|maxargˆ
|

1,0
yY .      (30) 

The previous can be transformed as follows 

{ }
( )∑ Ρ=

∈
i

i x
x

MAP

ix
~

|
1,0

|maxargˆ yxYX
    (31) 

Equation 31 is written from law of total probability and by applying the Bayes’s law 

 

{ }
( )

{ }
( ) }{x

~ 1

|
1,0

~

|
1,0

 |maxarg)( |maxargˆ
C

x

n

j

jjXY
x

x
x

MAP

i

i

jj
i

i
i

xyx ∈

=
∈∈

Χ









Ρ=ΡΡ= ∑ ∏∑ xxy XXY   (32) 

where  X{ ⋅ } is the indicator function. In the last step, we have used the fact that the 

channel is memoryless and that codewords have uniform prior. We write ∑
ix~

 to 

indicate a summation over all components of x (except xi) and not the components of y. 

Assume that the code indicator function X{ ⋅ } has a factorized form. From equation 32 

it is then clear that the bit-wise decoding problem is equivalent to calculating the 

marginal of a factorized function and choosing the value that maximizes this marginal. 

 

Example: Consider the binary linear code C(H) defined by the parity check matrix 
 



















=
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010

000
    

1000

1100

1011

7654321 xxxxxxx

H  

In this case 
{ }

( )yY |maxarg |
1,0

iX
x

x
i

i

Ρ
∈

 can be factorized as 

{ }
( ) }0{}0{}0{

~

7

1

|
1,0 754643421

 |maxarg =++=++=++

=
∈

ΧΧΧ









Ρ∑ ∏ xxxxxxxxx

x j

jjXY
x

i

jj
i

xy . 

The corresponding factor graph is shown in the figure 26. This graph includes the 

Tanner graph of H but additionally contains the factor nodes, which represent the 

effect of the channel. 
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Figure 26: Factor graph for the MAP decoding [15] 
 

For this particular case, the resulting graph is a tree. We can therefore apply the 

message-passing algorithm to this example to perform bitwise MAP decoding. 

Therefore, MAP decoding consists of the marginalization of the function 

( ) ( ) { }








=⋅










Ρ= ∏∏

−

==

kn

j

j

n

j

jjXYnn Xxyyyxxf
jj

11

|11 0xh|,........,;,.......,  

over each variable 
ni Nix ∈, , where 

knj Nj −∈,h , denotes the j-th row of the parity 

check matrix H. This marginalization can be performed by a belief propagation 

algorithm on a factor graph corresponding to the parity check matrix H. This is shown 

in the previous example. 

 

4.4.2       Message-Passing Rules for Bit-wise MAP Decoding 
 
 

In binary message domain u(x) is denoted as message signal and can be thought of as 

a real valued vector of length 2, (u(1), u(0)) (here we think of the bit values as {0,1}). 

The initial such message sent from the factor leaf node representing the i-th channel 

realization to the variable node i is ( )1|(| iXY yp
ii

, )0|(| iXY yp
ii

) as mentioned in figure 

26. A variable node of degree K + 1 showed in figure 27 the message passing rule 

calls for a pointwise multiplication [15]: 

( ) ∏
=

=
K

k

k

1

)1(1 µµ    ,    ( ) ∏
=

=
K

k

k

1

)0(0 µµ .    (33) 

Now take the ratio )0(/)1( kkkr µµ= . Now putting the relationship from equation 33, 

}0{ 421
X =++ xxx

 

}0{ 643
X =++ xxx

 

}05{ 74
X =++ xxx
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we have  

∏
∏

∏

=

=

= ===
K

k

kK

k

k

K

k

k

rr
1

1

1

)0(

)1(

)0(

)1(

µ

µ

µ

µ
     (32) 

That means that the ratio of the outgoing message at a variable node is the product of 

the incoming ratios. Again if take the log-likelihood ratios )ln( kk rl = , then processing 

rule is ∑
=

=
K

k

kll
1

. Therefore, ‘r’ and ‘l’ can be denoted as likelihood and log-likelihood 

ratios. 

Consider now the ratio of an outgoing message at a check node, which has degree J + 

1 showed in figure 27. 

 

 

 

 

 

Figure 27 : A variable node (v) with K + 1 neighbors and a check node (c) with J + 1 

neighbors. 
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 }x {

1

1

X,.......,
=∏

=

=

J

j

jx
nxxf . We assume that the 

xi takes values in {0, 1} and instead of ∑
=

=
J

j

j xx
1

 it can be written as ∏
=

=
J

j

j xx
1

.  

Therefore,  

∑ ∏

∑ ∏

∑ ∏

∑ ∏

∑ ∏

∑ ∏

∏

∏
=

∏

∏
===

=

=

=

=

=
=

=
=

=
=

=
=

=

=

J

j

jJ

J

j

jJ

J

j

jJ

J

j

jJ

xxx

J

j j

jj

xxx

J

j j

jj

xxx

J

j

jj

xxx

J

j

jj

x

J

j

jjJ

x

J

j

jjJ

x

x

x

x

xxxf

xxxf

r

1

1

1

1

1

1

1

1

0:,...
1

1:,...
1

0:,...
1

1:,...
1

~ 1

1

~ 1

1

)0(

)(

)0(

)(

)(

)(

)(),....,,0(

)(),....,,1(

)0(

)1(

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

 



 

-61- 

 

( ) ( )

( ) ( )∏ ∏

∏ ∏

∑ ∏

∑ ∏

= =

= =

=
=

+

=
=

+

−−+

−++

=

∏

∏
=

=

=

J

j

J

j

jj

J

j

J

j

jj

xxx

J

j

x

j

xxx

J

j

x

j

rr

rr

r

r

J

j

jJ

j

J

j

jJ

j

1 1

1 1

0:,...
1

2/)1(

1:,...
1

2/)1(

11

11

1

1

1

1

     (33) 

In the equation 33, it has a term like ( )∏
=

+
J

j

jr
1

1 , we get the sum of all products of the 

individual terms rj, j= 1,….,J.  

For example ( )
321133221321

3

1

11 rrrrrrrrrrrrr
j

j +++++++=+∏
=

. Similar fashion can also 

be applied for ( )∏
=

−
J

j

jr
1

1 . For this reason equation 33 is developed by using the 

following relationship 

( ) ( )∏ ∏ ∑ ∏
= =
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+
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Now, in equation 33, divide the numerator and denominator by ∏
=

+
J

j

jr
1

)1( , it can be 

written as  

∏

∏

+

−
−

+

−
+

=

j j

j

j j

j

r

r

r

r

r

1

1
1
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1
1
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So, ∏
+

−
=

+

−

j j

j

r

r

r

r

1

1

1

1
. Now if l

er = then we see that )2/tanh(
1

1
l

r

r
=

+

−
. Combining these 

two statements, it can be written as  
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            (34) 

For the case of binary input memoryless channels, we discussed the message passing 

rules for bit-wise MAP decoding of a parity check code and saw that if the factor 

graph of a code is a tree, the sum-product solution is equal to the MAP decoding 

solution. The message passing algorithm can efficiently perform MAP decoding for 

the codes whose corresponding factor graph is a tree. But the class of code that has a 

tree like factor graph is not powerful enough to perform well using this message 

passing algorithm. Because it may contain low weight codewords and has a large 

probability of error. 

Two fundamentals rules are derived by these equations.  Equation 33 represented as 

‘sum’ rule and equation 34 portrays ‘tanh’ rule. These rules are important for the 

belief propagation algorithm in decoding of binary linear codes over BIMS channels.  

In another sense, these rules are the base for decoding of LDPC, LDGM, LT and any 

fountain codes. 

 

4.5       Fountain Codes 

It is very easy to imagine that users are receiving data from satellite during the car 

driving or the vehicles are receiving navigation updates data from the satellite. In this 

case, the packet may be lost for many reasons like car is in deep signal fading tunnel, 

or the channel erasure property is too high for signal degradation. Therefore, whatever 

the reasons, there are packets lost in this communication. If the communication system 

is ARQ then the system throughput degenerates as the number of receivers become 

large. Indeed, if each of the hundreds of thousands of receivers drops only a small 

fraction of packets and requests their retransmission, chances are that every packet 

must be retransmitted, and that the broadcaster will need to repeat the entire 
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transmission several times. As it is mentioned earlier that the above channel is known 

as binary erasure channel, let us assume that the transmitter needs to communicate a 

certain message of k packets to a large number of receivers. Each receiver j∈Nr, where 

r is the number of receivers correctly receives a certain fraction ( )( )j

ep−1  of all 

transmitted signal. Therefore, ( )j

ep is the instantaneous packet loss rate observed by 

the j
th 

receiver. In order to avoid feedback request, it requires some form of channel 

coding mechanism applicable for erasure channels. The classic block codes for erasure 

correction are called Reed–Solomon codes [16]. An ( N, K) Reed–Solomon code (over 

an alphabet of size q = 2
l
) has the ideal property that if any K of the N transmitted 

symbols are received then the original K source symbols can be recovered (Reed–

Solomon codes exist for N <q). Practically RS code is applicable for small value of K, 

N and q. In RS coding, standard implementations of encoding and decoding consume 

the cost order of K(N - K)log2N packet operations. Moreover, like other block code, in 

RS code it is required to know the value of code rate R and erasure probability p 

before transmission. If p is larger than the expected value then the receiver will 

receive fewer than K. Therefore, another encoding technique pioneered by Michael 

Luby [17] is required to overcome this problem. Soon, fountain codes [13] would be 

born. 

 

4.5.1        Properties of  Fountain Codes 

In order to avoid the necessity to modify the encoding scheme whenever conditions 

in a loss prone network change, the idea of a digital fountain arose rather naturally. 

The digital fountain encoder should be able to produce an endless supply of encoded 

packets per message and these packets are then just sprayed across the network, 

finally each receiver simply keeps on collecting them until their number  reaches some 

threshold larger than message length. They can then attempt the reconstruction of the 

original message, and a judicious choice of encoding scheme should be the one that 

provides high probability of successful reconstruction when received bit are only 
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marginally larger than message bit. In such schemes, no feedback is ever required. 

The encoder of a fountain code is a metaphorical fountainthat produces an endless 

supply of water drops that means encoded packets. Suppose the original file  has a size 

of Kl bits where K is the number of packets and each drop contains l encoded bits. 

Now any receiver wishes to receive the encoded file then it will hold the bucket under 

the fountain and collects the the number of drops the bucket is a little larger than K so 

that it can recover the original message. In fountain code, the number of encoded bit 

generated from the source message is potentially limitless. For this reason, it is known 

as rateless code. In fact, it simultaneously supports both extremes of packet loss rates, 

since the users with low packet loss can collect their packets very quickly and tune out 

of the broadcast. Furthermore, it assumes that each produced encoded packet is 

equally useful to the receiver. The size of the encoded packet is determined on the fly 

that means depending on its erasure characteristics, every receiver will receive 

different size of packets. Fountain code is near optimal for every erasure channel. 

Regardless of the statistics of the erasure scenario of the channel, encoder will 

generate packets as are needed to recover the source data. The source data should be 

recovered from K΄ encoded data where K΄ is slightly larger than K. Moreover, the 

fountain code has very less encoding and decoding complexities. A digital fountain 

that transmits the encoded packet should have the following properties: 

• It can generate an endless supply of encoding packets with constant encoding 

cost per packet in terms of time or arithmetic operations. 

• A user can reconstruct the message using any K packets with constant 

decoding cost per packet, meaning the decoding is linear in K. 

• The space needed to store any data during encoding and decoding is linear in K. 

These properties show digital fountains are as reliable and efficient as TCP systems, 

but also universal and tolerant, properties desired in networks. 

 

 



 

-65- 

 

4.5.2         The Random Linear Fountain 
 

Based on the above properties, we can identify the fountain-coding scheme for an 

arbitrary channel model with a probabilistic process that assigns to the message an 

infinite sequence of encoded symbols, all of which are the evaluations of an 

independently selected function of the message. Assume that an encoder has a file of 

size K packets s1, s2, s3,….,sK. Here, the concept of packet is an elementary unit that is 

either transmitted intact or erased by the erasure channel. Let us assume that in n clock 

cycle the encoder generates K random bits {Gkn} and the transmitted packet tn is set to 

the bitwise sum, modulo 2 of the source packets for which Gkn  is 1 [18]. 

 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28: Transmission scenario of binary fountain code over BEC [18]. 
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Figure 28 shows the transmission scenario through BEC using a generator matrix of 

a random linear code. 

The gray lines show the lost  packet sprayed from the transmitter and the bottom part 

of figure 28 shows the received packet be the receiver. Therefore, in the receiving 

matrix the lost packet columns are missing. Point should be noted that the top part of 

the figure 28 represents the original generator matrix but due to the erasure property of 

channel in receiving end receiver knows the fragment of the generator matrix G 

associated with its packets. Let we assume that after erasure, receiver collects N 

packets from the transmitted signal. Therefore, the dimension of G is K – by–N matrix. 

Now the question should be posted that, what is the chance that the receiver will 

recover the entire source file without error? 

For example if N<K, the receiver has not enough information to decode the 

transmitted file. If N = K the receiver will receive K – by–K matrix G and can be able 

to decode by using the following rule: 

∑
=

−=
N

n

nknk Gts
1

1        (35) 

where G
-1

 is the inverse of matrix G and is computed by Gaussian elimination. Let we 

calculate the probability of a random K-by-K binary matrix is invertible. It is the 

product of K probabilities, each of them the probability that a new column of G is 

linearly independent of the preceding columns. We need to ensure that G has K non-

zero columns. The probability that the first column of G has non-zero value is (1-2
-K

). 

Similarly the probability is (1-2
-(K-1)

) that the second column is equal neither to the all-

zero column nor to the first column of G. So the probability of invertibility is 
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invertible probability is very less and this expected value is close to one. 
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Now let E a small number means excess of packets and at receiving end receiver will 

receive this excess packets in addition with K then N = K + E. Therefore at receiving 

end the dimension of G is K – by – N. So, what is the probability that the G matrix 

contains an invertible K – by – K matrix? Let we assume the probability δ  that means 

the receiver will not be able to decode the file when E excess packets have been 

received. Hence,δ is failure probability and 1 – δ  is the probability that G matrix 

contains an invertible K – by – K matrix. Figure 29 shows the plotting of failure 

probability δ with respect to E for K = 100 [18]. δ is bounded by  E
E

−≤ 2)(δ for any 

value of K. 

In nutshell, for reliable communication, receiver has to receiver K + log21/ δ

encoded bit at 1 - δ probability condition. As excess packets E increase then the 

probability of success also increases to (1- δ ), where E−= 2δ . 

The above scenario can be portrays by the following example. We hypothetically 

think that we throw N balls independently at random into K bins, where K is very 

large like 1000 or 10,000. There are several questions: if N = K then what fraction of 

bins is empty? If N > 3K, is there any empty bin? Or minimum how many balls are 

required to ensure all bins will get at least one ball? 

After throwing N balls, then the probability that one particular bin is empty is 

KN

N

e
K

/1
1 −≈








− . Now if N = K and N = 3K then the probability of one particular bin 

is empty is approximately 1/e and 1/e
3
 respectively. To make sure that all the bins 

have a ball, we need to throw many balls. For general value of N the expected number 

of empty bins is Ke
-N/K

 . So this expected number is almost equal to δ . Therefore δ = 

Ke
-N/K

 ,
δ

K
KN elog=  and 

δ

K
KN elog> . This condition represents that if N satisfies 

this relation then each bin will get at least one ball after throwing. 
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Figure 29: Properties of failure probability δ against E the number of redundant packets [18]. 
 

4.6  Luby Transform Codes 

LT (Luby Transform) codes [17] are the first class of fountain codes fully realizing 

the digital fountain paradigm. LT codes are binary linear fountain rateless codes. The 

encoder can generate as many encoding symbols as required to decode k information 

symbols. The encoding and decoding algorithms of LT codes are simple; they are 

similar to parity-check processes. LT codes are efficient in the sense that the 

transmitter does not require an acknowledgement (ACK) from the receiver.  This 

property is especially desired in multicast channels because it will significantly 

decrease the overhead incurred by processing the ACKs from multiple receivers [14]. 

It has two parameters: the length of the message and degree distribution on the set of 

message alphabet. The output degree distribution of an LT code will be identified with 

its generating polynomial. The analysis of LT codes is based on the decoding 

algorithm and degree distribution properties. For this reason, Ideal Soliton distribution 

and Robust Soliton distribution are introduced as the degree distribution. The 

importance of having a good degree distribution of encoding symbols is also 

investigated under this analysis. LT codes are considered as very efficient if K 

information symbols can be recovered from any K + O( )/(ln 2 δKK ) encoding 

symbols with probability 1 - δ using O( )/ln( δKK ⋅ ) operations [14]. 



 

-69- 

 

4.6.1       Encoding Process 

Any number of encoding symbols tn can be independently generated from source 

file {s1,s2,s3,….,sK} information symbols by the following encoding process: 

• Determine the degree dn of the packet from a degree distribution.  This degree 

is chosen at random from a given node degree distribution )(dρ . The 

appropriate choice of ρ depends on the source file size K. 

Choose dn for distinct input packets and set tn equal to the bitwise sum, modulo 2, of 

those dn  packets. 

 

 

 

 

 

 

 

Figure 30: Encoding process of LT codes. 
 

This process is similar to the generating parity bits except that only the parity bits are 

transmitted. As shown in figure 30, the degree distribution )(dρ comes from the sense that 

the bipartite graph (shown in figure 30) consists of information symbols as variable nodes and 

encoding node as factor node. The degree value d determines the performance of the LT 

coding so that it will successfully decode the encoded signal with lower complexity. The 

algorithm of LT encoder can be described as the following way: 

LT encoding algorithm 

Input: message x = {s1,s2,s3,….,sK}, probability distribution )(dρ  on NK 

Output: an encoded symbol tn 

1. Sample an output degree d with probability )(dρ  

2. Sample d distinct message symbols { }
diii sss ,....,,

21
 uniformly at random 

XOR operation 
degree value d 
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from the message {s1,s2,s3,….,sK} and XOR them, 
ji

d

jn st 1=⊕= . 

LT codes hold two major benefits compared to the general binary linear fountain 

codes. Firstly, the code design is greatly simplified and the code designer needs only 

to specify the set of d numbers describing the degree distribution )(dρ . Secondly, it is 

possible to select the output degree distribution in such a way that the decoding of an 

LT code is possible with a version of a computationally efficient belief propagation 

algorithm. 

 

4.6.2   Decoding Process 

The decoding of an LT code utilizes a belief propagation (BP) algorithm on the 

factor graph of the linear encoder NK

22 FF →  obtained by the fountain encoder map. 

This factor graph has the incidence matrix formed by N active rows of the LT 

generator matrix, which correspond to N observed encoded symbols. Decoding of LT 

code is easy in the case of an erasure channel. Therefore the decoder’s task is to 

recover s from t = sG, where G is the generator matrix associated with the graph. The 

decoding is done by using the message passing algorithm like sum-product algorithm. 

In receiving end, all messages are either completely uncertain (message packet sk 

could have any value with equal probability) or completely certain (sk has a particular 

value with probability one). We assume that in the check node position encoder 

generates tn encoded signal. The simple decoding process is illustrated by the 

following way: 

1. Find a check node tn that is connected to only one source packet sk (if there is 

no such condition decoding halts). 

(a) Set sk = tn. 

(b) Do XOR sk to all checks 
nt ′ that are connected to sk: 

knn stt ⊕= ′′ for all n′  such that 1=′knG . 

Remove all the edges connected to the source packet sk. 
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2. Repeat (1) until all sk are determined. 

The above process is illustrated in figure 31 for a case where each packet is just one 

bit. There are three source packets (shown by the upper circles) and four received 

packets (shown by the lower check symbols), which have the values t1, t2, t3, t4 = 1011 

at the start of the application. 

 

 

 

 

 

Figure 31: Example of decoding LT code for K = 3 and N = 4 [18]. 

In figure 31, panel ‘a’ shows the first iteration where the only check node is 

connected to a sole source bit (variable node). Then in panel ‘b’ we set source bit s1 

accordingly to check node bit (here s1 = 1) then XOR the value of s1 (1) to the check 

nodes to which it is connected to s1 (panel ‘c’) and finally disconnecting s1 with its 

edges from the graph. Thus, first iteration is completed. Similarly, at the starting of the 

second iteration shown in panel ‘c’, the fourth check node is connected to a sole 

source bit, s2. Then we set s2 to t4 as shown in panel‘d’. Finally, in third iteration, two 

check nodes are both connected to s3 and they agree about the value of s3, which is 

restored in panel ‘f’. 

From the above explanation, the decoding process is bounded into three steps: release, 

cover and process. In release step all encoding symbols of degree one (those which are 

connected to one information symbol t1 in panel ‘a’ of figure 31) are released to cover 

their unique neighbor.  

In cover step, the released encoding symbols cover their unique neighbor information 

symbols. In this step, the covered but not processed input symbols are sent to ripple, 

which is a set of covered unprocessed information symbols gathered through the 

previous iterations. That is shown in figure 31 panel ‘b’. 

In process step, one information symbol in the ripple is chosen to be processed. In this 

a b c d e f 
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step, the edges connecting the information symbol to its neighbor encoding symbols 

are removed and the value of each encoding symbol changes according to the 

information symbol. The processed information symbol is removed from the ripple. 

This procedure is shown in figure 31 panel ‘c’. So, these working procedures 

explained in figure 31 had been translated into HLL for example C in this thesis work. 

Therefore, for implementation point of view, I make a structure of this algorithm 

efficiently. Otherwise, it will take more cycle for simulation using ASIP design tools. 

These HLL codes are transformed into the assembly instructions by the compiler of 

specific tool. For example in TTA, TCE compiler translates the input design into the 

TTA assembly code and this will be discussed in chapter 5. The following algorithm 

represents the LT decoding algorithm for BEC. 

LT decoding algorithm 

Input: channel output N

n Zt ∈ , factor graph LTG representing the active N rows in the 

LT generator matrix. 

Output: message x{ s1,s2,s3,….,sK } ∈X
K
  (or an indicator 0 that the decoding has 

failed) 

1. Assign an all-erasure vector x to variable nodes, 
Ki Nis ∈∗= ,  

2. while x at least one erased sample sj = * do 

find an unerased output node a, ∗≠at , connected to exactly one erased 

variable  node i, si = *. 

ifthere is no such output node return 0 (decoding fails) 

else 

 setsi = ta, ta = *; 

 set )(, iNbtst bib ∈∀⊕= ; 

end if 

3. end while 

4. return x 
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The decoding process continues by the iterating the above steps. From the above 

algorithm, to continue the decoding process each iteration can be triggered by the 

encoding symbol of degree one. It is important to guarantee that there always exist 

encoding symbols of degree one to release during the process for successful recovery. 

Note that information symbols in the ripple can reduce the degrees of decoding 

symbols. Information symbols in the ripple keep providing the encoding symbols of 

degree one after each iteration and, consequently, the decoding process ends when the 

ripple is empty. The decoding process succeeds if all information symbols are covered 

by the end. Therefore, generating ripple plays a vital role in decoding process of LT 

code. I will discuss the generating process of ripple in terms of degree distribution. 
 

 

4.6.3    Degree Distribution Design 
 

The degree distribution )(dρ is the critical part of LT codes design.  Sometimes the 

encoded packets must have high degree like K in order to ensure that there are not 

some packets connected to single node.  On the other hand, many packets must have 

low degree, so that the decoding process can get started, and keep going, and so that 

the total number of addition operations involved in the encoding and decoding is kept 

small. The guidelines of the distribution design are following [19]: 

• The sum of all degrees should be as small as possible since it corresponds to 

the necessary operations of decoding process.  

• As few as possible codewords are required to recover the message symbols. 

That means the release rate of encoding symbols is low in order to keep the 

size of the ripple small and prevent waste of encoding symbols. Similarly, the 

release rate of encoding symbols is high enough to keep the ripple from dying 

out. 

Therefore, it is required to design degree distribution of encoded signal carefully so 

that release rate will be balanced. This is the reason that the degree distribution plays 

an important role in LT codes. Moreover, the encoding and decoding complexity are 
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going to scale linearly with the number of edges in the graph. Now what should be the 

average degree of packets? As I took ball-bin example and let we think that each ball 

and bin are connected through edges. In order to complete successful decoding, every 

source packet must have at least one edge in it. The encoder throws the edges into 

source packets at random manner, so the number of edges must be at the order of  

Kloge K.  So the average degree of each packet must be at least loge K. The encoding 

and decoding complexity of LT code will definitely be at least of  Kloge K. Luby [17] 

shows that this bound of complexity can be achieved by carefully choosing the  degree 

distribution. 

 

4.6.3.1      Ideal Soliton Distribution 
 

The Ideal Soliton distribution displays ideal behavior in terms of the expected 

number of encoding symbols needed to recovery the data. Ideally this distribution 

ensures that one check node has degree one at each iteration. At each iteration, when 

this check node is processed, the degrees in the graph are reduced in such a way that 

one new degree-one check node appears. In expectation, this ideal behavior is 

achieved by this ideal soliton distribution. In this distribution, the degree distribution 

follows the following criteria: 

( )

( ) Kd
dd

d

dKd

,.....,3,2for   
)1(

1

;1for   /1

=
−

=

==

ρ

ρ

     (36) 

The expected degree under this distribution is roughly logeK. According to equation 

36, K/1)1( =ρ represents the initial ripple size is 1. Now to ensure the ripple size 

increase 1 in each iteration, all the rest )(dρ should satisfy 
K

d

Kdd

1

)(

1 −
=

⋅⋅ρ
 and 

hence equation 36 is derived. 
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Figure 32: Ideal Soliton Distribution for K = 10  and 100 [14]. 
 

 

Figure 32 shows the performance of ideal soliton distribution for different message 

size. The Ideal Soliton distribution works perfectly in the sense that only K encoding 

symbols are sufficient to cover the K information symbols and exactly one encoding 

symbol is expected to be realized each time an information symbol is processes. Also 

in this distribution, the ripple is expected manner and there is neither the waste of 

encoding symbols nor the exhaustion of the ripple. 

However, the practical scenario is different. In practice, the ideal soliton 

distribution shows very poor performance because fluctuations around the expected 

behavior make it very likely that at some point in the decoding process there will be 

no degree-one check nodes and, moreover, a few source nodes will receive no 

connections at all. Since the ripple size is one, it will disappear very easily during the 

decoding process, therefore the decoding will be failed under this distribution. 

Therefore, we need a distribution that ensures the ripple of large expected size enough 

to enable stable decoding as well as has the nice property of the Ideal Soliton 

distribution that maintains the expected ripple size constant in order not to waste 

encoding symbols. A small modification requires fixing these problems. 
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4.6.3.2 Robust Soliton Distribution 
 

The problem of Ideal Soliton distribution is that the ripple size is too small so it 

may disappears easily. The intuition of the Robust Soliton distribution is try to solve 

this problem by increasing the ripple size to prevent the ripple from disappearing 

during the decoding process. Note that the required number of codeword symbols will 

increase with the ripple size, so it is also crucial to keep the ripple size small enough. 

The robust soliton distribution makes the ripple size ( ) KKe δ/log through the whole 

decoding process. Therefore, the robust soliton distribution has two extra parameters c 

and δ ; it is designed to ensure that the expected number of degree-one checks is 

about ( ) KKcS e δ/log≡ rather than 1, throughout the decoding process. The 

parameter δ  is a bound on the probability that the decoding fails to run to completion 

after a certain number K′  of packets have been received. The parameter c is a 

constant of order 1. However, in practice, c can be a free parameter. Therefore, the 

robust soliton distribution is defined as below: 

 

(37) 

 

 

Then add the ideal soliton distribution ρ  to τ  and normalize to obtain the robust 

soliton distribution, µ  

Z

dd
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d

ddZ ))()(( τρ . 

In order to complete the whole decoding process, the number of encoded packets 

required at the receiving end with probability at least δ−1 is KZK =′ . The detailed 
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and mathematics of this codec. In this section, I will discuss some research articles 

those are related to the hardware implementation of LT codec system. I will discuss 

the proposed LT codec architecture in the next chapter. 

Hardware Designs for LT Coding by Han Wang, Delft University of Technology [19] 

 

In this research articles, two BEC models are proposed on different OSI layers and 

these channel models are used to analyze the performance of LT codec. Here H. Wang 

described an efficient architecture of LT codec that has a linear time complexity and 

the results of this architecture were measured in terms of time, area and coding 

performance. Now I will discuss the little bit more regarding this LT codec 

architecture. In broader aspect, total architecture divided into two parts: encoding 

architecture and decoding architecture. In encoding structure, the encoding steps are 

done by using c
T
 = Hs

T
 equation, where c and s are vectors and H is the generator 

matrix. Here special memory architecture is required for this matrix multiplication. In 

the encoder block architecture, index counter, degree counter and global counter are 

used for indexing the degree value and neighbor nodes information. In this encoding 

architecture, a bit selector selects the neighbors of the encoding the codeword symbol 

from vector s following the neighbor position saved in H matrix. The modulo 2 

operation is performed for generating the final value of codeword. The neighbor 

counting is indexed by the counter and sends to the index calculator. Finally the 

codeword is formed by applying the modulo 2 operation  on the information symbols 

equal to the codeword symbol’s degree value. Figure 34 shows the encoder 

architecture of LT codec. 
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Figure 34: Hardware architecture of LT encoder [19]. 
 

Similarly, in the decoding process executes a set of operations on the receives 

generator matrix H to get the decoded symbols from the encoded value. In this 

decoding architecture, it has three stages. That means three search operations so it 

implies the time complexity is O(n
3
). In the first stage it will search for a row i in H 

such that degree d(i) = 1. In the second stage, it will search for the column j in the row 

i where H(i)(j) = 1. Then it will set )()( icjs =′ , )()()( jskckc ′⊕=  and  H(k) (j) = 0. 

Finally it will search for all H(k) (j) =1 until there is no degree d(r) = 1. Figure 35 

shows the decoder architecture of LT codec. Two simulation environments are used 

for implementing these architectures. ANSI C was used for implementing the software 

part of LT codec. For hardware implementation, this architecture was translated into 

HDL form and Xilinx Modelsim was used to compile this HDL program. Speed and 

area are reported from this tools by varying different message block length and code 

block length. During the simulation different code rate should be taken. The 

Spartan3E FPGA prototyping board had been used to measure the functionality of the 

encoder and decoder of LT codec. Theirs results shows that the hardware 

implementation was 500 times faster that the software implementation. However, 

there were some limitations of this research article. For example, there are no 
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comparisons with other encoding or decoding algorithms. Since it was implemented 

on the prototyping board so the performance scenario is no real like the original 

implementation using the standard cell during the chip design process. 

 

 

 

 

 

 

 

 

 

Figure 35: Hardware architecture of LT decoder [19]. 
 

 

Soft Decoder Architecture of LT codes by K. Zhang et.al. [20] 
 

In this paper, K. Zhang et. al. presented an architecture of a soft decision LT decoder 

with a block length of 1024 bits and 100 iterations. Here, input node and output node 

processing techniques are described to accelerate the decoding speed. To apply these 

node-processing units, an efficient router and reverse router are designed to indicate 

the graphic connectivity between input and output nodes. The soft decoding procedure 

explained in this paper [20] is based on the sum product algorithm. In sum product 

algorithm LLR, message passing from check node to variable node or variable node 

check node operations are used which are elaborately explained in this paper. For 

implementation point of view, K. Zhang et. al. proposed an architecture for LT 

decoder which includes degree distribution generator (DDG), random number 

generator (RNG), message memory, connectivity memory, router and reverse router, 

output node processing  unit (ONU) and input node processing  unit (INU). Figure 36 
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(a) shows the LT decoder architecture proposed by K. Zhang. In this architecture, 

message memory is used to store the massage from check node node and variable 

node processing. ONUs are used for computing the message of check node using 

variable node message and the output of LLR memory. So the message memory stores 

the message from check node, variable node and LLR memory and fetched by ONU 

and INU during the time of iteration. In order to reduce the decoding latency partly 

parallel architecture is used in this architecture.  

 

 

 

 

 

 

 

 

Figure 36: Architecture of LT decoder (a) complete decoder unit. 
 

This architecture is responsible for concurrent use of input and output node 

processing.  RNG is used for generating the degree distribution. According to this 

paper, degree distribution should be unchanged during the LT encoding and decoding 

procedure. A simple method is used for generating degree distribution using RNG and 

ROM. The connectivity memory stores the connection information between input and 

output node. That means, this memory stores the non-zero location of the generator 

matrix. In this paper for LT decoding process, row processing and column processing 

(a) 
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are corresponding to the variable node processing (input node processing) and check 

node processing (output node processing). For this reason, a router block requires to 

control the proper memory location to store message from check node unit and 

variable node unit. Similarly, in this paper, architecture of output node processing unit 

and input node processing node unit are explained elaborately. In ONU look up tables 

are used for getting the ‘tanh’ result of message. Figure 36 (b) shows the ONU 

architecture for LT decoder.  This architecture was synthesized and prototyped on 

Xilinx-V XC5V1x330 board. It shows that ONU consumes maximum registers as well 

as LUTs on the FPGA prototyping board. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 

 

Figure 36 : Architecture of LT decoder (b) output node processing unit [20].  

 

A scalable LDPC decoder ASIC architecture with bit-serial message exchange by T. 

Brandon, et. al.[21] 

In this paper, T. Brandon et. al. presented a scalable bit serial architecture of LDPC 

decoder. Here the decoder was implemented for a (256,128) regular (3,6) LDPC code 

(b) 
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using TSMC 180-nm 6 metal CMOS technology. It has a decoded information 

throughput of 350 Mbps, core area is 6.96 mm
2 

and energy efficiency is 7.56 nJ per 

uncoded bit at low SNR. In this architecture the decoder is fully block parallel. All 

bits of 256 codeword are processed by 256 variable nodes and 128 parity check nodes 

that together form an 8-stage iteration pipeline. For decoding the LDPC code, sum 

product algorithm was used which is also known as min-sum algorithm. As it is 

mentioned earlier that it has 128 check nodes and 256 variable nodes, so in it’s 

decoder architecture 128 CNUs and 256 VNUs are interconnected by using interleaver 

network. In its VNU architecture, the variable nodes are connected into two 128-node 

arrays. Each array is linked by two 4-bit wide LLR buses. Similarly, each variable 

node contains two 4-bit registers for holding the LLR channel measurements for the 

two codewords being decoded. In addition, there are 4-bit shift registers for receiving 

the message from parity check node via interleaver network. These register holds the 

binary values that pass through the combinational logic that converts the values from 

sign-plus-magnitude format to two’s complement format, forms three 6-bit sums for 

the outgoing messages, and converts the 6-bit sums via a saturation operation to three 

4-bit sign-plus-magnitude output message values [21]. Three 4-bit shift registers are 

used to capture the new output messages. The pipelined interleaver contains two 4-

stage shift registers in the variable node, one flip-flop in each interleaver direction and 

one register in the parity check nodes, for a total eight pipeline stages. The parity 

check node receives six bit-serial input belief message from the interleaver and 

computes then corresponding six bit-serial output belief messages using the standard 

min–sum algorithm. The details algorithm of this check node unit was described in the 

ref [21] including sum product algorithm. This decoder architecture was fabricated in 

TSMC’s 180-nm 6-metal CMOS process using the SAGE-X standard cell library. 

Figure 37 shows the architecture of LDPC decoder proposed by T. Brandon et. al. To 

speed up the simulation run time and reduce the memory allocation, the variable nodes 

were grouped into pairs together with a small controller circuit and then these sub-
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blocks were synthesized. The dimensions of the resulting IC core for the (256,128) 

code are 2639.4 µm x 2639.4 µm = 6.96 mm
2
 and the total chip area is 10.82mm

2
. The 

logic utilization area in the core is 86%. There are 259 logic gates per check-node 

pair, 1183 gates per variable node pair, and a total of 188,84 8 gates before clock- tree 

generation and buffer insertion. During chip-level final synthesis, an addition 3557 

gates were added bringing the total gate count to 192,405. The operating voltage of 

this chip is 1.62 V and 4 ns clock period. The variable node unit consumes the 

maximum power which is almost the 75% of total power. This paper shows the ASIC 

implementation of LDPC decoder which is used the sum product algorithm as a part 

of decoding process. Since LT decoder also used the sum product algorithm, for this 

reason I have included this hardware architecture of this paper. 

 

 

 

 

 

 

Figure 37: LDPC decoder architecture (left) and variable node unit block diagram (right) [21]. 
 

 

These hardware architectures are designed for ASIC implementation of LT codec. At 

first, these structutres are translated into HDL which is known as RTL design and then 

this RTL design is ready for further processing of chip design procedure. In this thesis, 

we are interested about the application specific processor design of LT codec 

application. Moreover, at the end of this processor design, RTL design will be 

generated by the ASIP design tools. Next chapter, we will discuss the LT codec 

processor design techniques.  
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Chapter 5 

LT Codec Processor Design Using ASIP Tools 

In this chapter, we will show the processor design techniques using three tools: TCE, 

Tensilica and OpenRISC. For application specific processor design, at first it requires 

two design files: one is input application written in HLL (for example in this work 

ltcodec.c file) and second one is processor architecture file (for example architecture 

definition file .adf, configuration file .cfg etc). These two design files are key 

structutres for processor design in application specific domain. The response of the 

processor depends upon these input design files. For this reason, it is very important 

for designers to make efficient architecture of input application and configuration 

files. At first, we will discuss the proposed architecture of LT codec. Then processor 

design parts will be discussed. 

 

5.1      Proposed Architecture of LT Encoder and Decoder 

In order to understand the LT codec architectures, at first we present an architecture 

for ASIC realizations of the Luby Transform (LT) encoder and decoder. However, for 

processor design we required HLL translation of LT codec. After discussing RTL 

architecture, we will discuss HLL architecture in corresponding sections. 

To determine the efficiency of the LT codec architecture, the encoder and decoder 

are implemented with a core area of 9 mm
2
 in TSMC 180-nm 1-poly 6-metal and 

Samsung 130-nm complementary metal–oxide–semiconductor (CMOS) technology. 

An empirically modified Robust Soliton degree distribution technique is applied for 

LT codec implementation and its performance is analyzed in terms of chip area and 

cycle count. Instead of including a random generator in the register transfer level 

(RTL) design, we use different look-up tables (LUTs) for degree distribution, edge 

routing, addressing and inverse edge routing. Therefore, this architecture is efficient 
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for hardware implementation and occupies less area inside the chip. The result shows 

that an area of 2.3 mm
2
 is required for whole encoder and decoder implementation 

using TSMC library, of which 0.08 mm
2
 is used for encoder implementation. 

 

5.1.1      HW Architecture of Encoder 

In an encoder, a long output encoded sequence can be produced from k input 

symbols }.....,,,{ 4321 kSSSSS as 
diiiii SSSSc ,3,2,1, ........ ⊕⊕⊕⊕= . 

Output degree d is taken randomly from a degree distribution function explained in 

section 4.6.3. Figure 37.1 shows the hardware architecture of the LT encoder for 128 

input bits and 256 output bits. This HW architecture is compatible for implementing 

ASIC implementation of LT encoder. Therefore, in this paper, for ASIP 

implementation, we have written this architecture in C language. For example in 

figure 37.1, two look-up tables (LUTs) are used to satisfy the degree distribution.  If 

the degree distribution is 4, then pick 4 consecutive rows of address message column 

(4, 6, 3, 2) that point out the message value of the corresponding address of the 

message signal. But in our ASIP architecture instead of LUTs we have used 

mathematical expressions: Robust Soliton Distribution (RSD) and Ideal Soliton 

Distribution (ISD) for calculating degree distribution.  Moreover, a uniform Random 

Number Generator (RNG) is applied to get the degree value from this degree 

distribution. In contrast, for ASIC design, the address of the message signal is 

randomly distributed and the combined operations of the column for degree 

distribution and the address of the message satisfy the distribution mentioned in 

equation 37. These same LUTs are also used for decoding of the encoded signal. For 

this reason, in ASIP design, we have translated the encoding process of LT codec in 

HLL by satisfying the minimum execution of operation which is very simple 

compared to the use of LUTs. In figure 37.1, the message signals identified by one 

row of the degree distribution column are added and the result is stored in a temporary 

register. For example, in the degree distribution column, the degree value is 4 then 
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message signals of address (4, 6, 3, 2) positions are identified as (1, 0, 1, 0), 

respectively, and the result of this addition is stored in a temporary register as 2 and 

after applying the modulo 2 operation, the encoded signal for degree distribution 4 is 0. 

The 256 bit encoded signal is generated according to the same procedure  as used for 

the 128 rows of degree distribution column and 128 bit message signal.  

 

 

 

 

 

 

 

 

 

 

 

 

The following  process is compatible for encoder architecture mentioned in figure 

37.1. 

1. Create the two lists D and A that represent the degree and address of the message 

table, respectively. 

2. Take a variable x that indicates the first element of table D. 

3. Find the value of degree number d and let D(x) = d and let A(x) = A(x-1) +d. 

4. Take d numbers from 0 to k-1 message column, where k is the length of the original 

message by using the address A(x) and save the result of their addition into the 

 
Figure 37.1: Architecture of LT Encoder. 
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temporary register. 

5. Apply modulo 2 operation on the temporary register column. 

6. Repeat steps 1 to 5 until the codeword is formed.   

Here the LUTs D and A are generated from equation 1 using a computer program. 

The above-mentioned activities can be done very easily in HLL by obeying the 

following algorithm: 

Input: message x = { s1, s2, s3,….,sK }, probability distribution )(dρ  on NK 

Output: an encoded symbol tn 

1. Sample an output degree d with probability )(dρ  

2. Sample d distinct message symbols { }
diii sss ,....,,

21
 uniformly at random 

from the message  

{s1, s2, s3,….,sK} and XOR them, 
ji

d

jn st 1=⊕= . 

In this thesis, we have executing this algorithm as an encoder technique of LT code 

and designed encoder processor using ASIP tools. Now I will explain the decoding 

process of LT code. 

 

5.1.2    HW Architecture of Decoder 

In LT codec, decoder is more complex than encoding part. From this encoding 

explanation, it can be found that direct RTL mapping is quite difficult than HLL 

mapping. However, at first we will discuss the RTL design process of LT codec. Then 

we explain the decoding procedure using HLL mapping. In this LT codec 

implementation, we have taken 128 bits for information signal and 256 bits for 

encoded signal. In order to get decoded signal from encoded bit stream, soft decoding 

procedure is applied by using sum-product algorithm. 

Channel decoding in an LT decoder is based on the log likelihood ratio (LLR) of a 

binary random variable { }1±∈X   or { }1,0∈X  defined by the following equation, 
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where LLR(X) represents the LLR corresponding to bit X, and P(X = 0, 1) represents 

the probability that bit X is equal to 0 or 1. The LT decoder operates based on the sum 

product algorithm by passing the message (LLR values) on tanner graph. Let L(ti,j) 

denote an L value message passed from check node i to variable node j and L(hi,j) 

denote an L value message passed from variable node i  to check node j. Then from 

[8], L(ti,n) can be written as: 
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where )ˆ( icL denotes the received L value of the codeword from the channel. Similarly, 

the L value L(hi,j) depends on the messages passed to variable node i. So L(hi,j) can be 

obtained by [8] 
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Similarly the L value about the decoding decision [8] 
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(a) 

Figure 37.2: Hardware architecture of the LT Decoder: (a) CNU architecture. 
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During this decoding process, the messages are exchanged back and forth in a number 

of decoding iterations between the variable nodes and check nodes. The LT decoder 

operates based on the sum product algorithm by passing the message (LLR values) on 

tanner graph. For example, equations 40 and 41 are responsible for implementing the 

check node unit (CNU) and the variable node unit (VNU) and equation 42 is used as 

(b) 

(c) 

Figure 37.2: Hardware architecture of the LT Decoder: (b) VNU architecture, and (c) Final 

decoding stage 
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the decoding final stage. In decoding architecture, these equations are implemented in 

different stages and the working principle of this architecture is discussed in the next 

section.  
 

 CNU Operation: 

In the CNU module, LLR memory is used for check node operation while the 

message is passing through the check node. Like encoder, the same degree distribution 

table is used so that when the degree is one, the counter counts the position of unity 

degree and CNU memory stores the message of the count address value from LLR 

memory. Then, the counter counts further and when the degree is not equal to one, the 

message from LLR of that count address is multiplied with the message from VNU 

memory through the operations presented in figure 37.2 (a). The CNU memory 

therefore has messages for degree one and updated messages for a degree greater than 

one. Messages pass through these CNU nodes and updated messages are stored in the 

CNU memory. The operations of CNU are executed as below: 

1. Search for a row in degree table where d(i) =1. 

2. Take the message from LLR memory and store it in CNU memory, L(i) = C(i). 

3. Search for a row in degree table where d(i) = x, x ≠ 1. 

4. For each x, temporary register T(j) = T(j) * V(j) and C(j) = T(j)*L(j) where j = 

0,1…x-1. 

 

VNU Operation: 

As shown in figure 37.2(b), each variable node contains 4 LUTs. Two new LUTs 

termed as edge information and index tables are included in VNU operation. These 

additional tables consist of nodes and edge information provided by the degree 

distribution function. The VNU function unit takes data from CNU memory and stores 

it in VNU memory after following the operation of node routing and inverse node 

routing explained in figure 37.2(b). In VNU, the processing unit accumulates 

messages serially from the check node and stores them in the variable node memory. 
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The operation of VNU can be written as below: 

Search for a row in address table A(i) such that A(i) = K and the increment of K 

depends on index table I(j). Here, j is the variable of the Index table and its increment 

depends on Degree table D(l). Edge information table controls the value of l in a 

prescribed manner. So, for A(i) = K, VNU processing unit accumulates LLR message 

format from CNU memory and stores it in the VNU memory unit. 

Final Decoding Stage: 

After finishing the CNU and VNU operations, CNU memory contains all the nodes 

and edges of the processing information. Degree and address LUTs are used for 

generating addresses for the decoder memory. Then, data read from the decoder 

memory are taken as the decoded output. Figure 37.2 (c) shows the final decoding 

stage architecture. Its algorithm is given below: 

1. For each element of degree D(i), increase the index variable k until k = D(i). 

2. When k > D(i), then k = 0. 

3. For every value of i and k, take the value from the address table A. 

4. Using this address value, store the information from CNU memory in the decoder 

memory. 

5. Finally, the decoded output is generated from the decoder memory. 

From the above discussion, the whole decoding process is explained through the 

LLR operation, CNU and VNU processing unit and final decoding stage. It is 

performed by passing messages from check nodes to variable nodes and vice versa. 

Therefore, this decoding is an iterative process and messages are decoded from the 

code value after certain iterations. This 144 quad flat package pin LT Codec chip is 

fabricated by applying TSMC 180nm technology. 

 

5.1.3      Decoding Procedure Using HLL 

Decoding algorithm has been developed by using these three equations from eq. 40 

to eq. 42. Through these equations, the message information is  passing from check 
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node to variable node and variable node to check node of tanner graph. Figure 37.3 

shows the typical tanner graph of LT codec. Figure 37.4 shows the HLL mapping of 

LT decoder. In this case, we have followed the algorithm explained by equation 40 to 

42. According to this figure, first we have taken one 2D array (L(ti,j)) size of encoded 

signal length by maximum degree value. In encoding end, we have already generated 

the edge, index of those edges for variable node and degree value of check node that 

are explained in figure 37.3. At first we need to search which check node has single 

degree that means if degree is one then store the LLR values of that check node to 

L(ti,j) memory. Otherwise store the message passing value calculated by using eq. 40, 

41, edge and degree information in L(ti,j) memory. Then we have taken another 1D 

array (L(ui)) size of information signal length by one. According to eq. 42, the 

message value of each variable nodes should be stored in L(ui) memory. After that 

decoded signal is found by applying the hard decision according to figure 37.4. 

In this section, we have discussed the LT encoder and decoder architecture in terms of 

HLL format. After that, we need to explain LT codec processor generation techniques 

by using ASIP design tools. 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 37.3: LT Codec tanner graph. 
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(if degree = 1)  L (ti,j) = LLR of encoded signal value 

Figure 37.4: Decoder structure using HLL. 
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5.2       Processor Design Using ASIP Tools 

It is necessary one tool set for implementing application specific processors based on 

the TTA processor template. As mentioned earlier that there are different tools to 

satisfy this requirement. TTA based Co-Design environment (TCE) is one such tool 

set and its main goal is to provide a reliable and effective toolset for designing 

programmable application specific processors and generates machine code for them 

from applications written in high level language (HLL). This toolset is developed by 

Tampere University of Technology [22]. Processor Design (ProDe), a retargetable 

high level language compiler tcecc, the retargetable Instruction Set Simulator (ISS) 

ttasim (command line version) and proxim (graphical user interface version) and the 

processor generator ProGe are the most essential properties used in TCE. Using this 

tool, application written in high level language can be implemented in FPGA 

evaluation board through RTL design flow. The concept of retargetability of tools 

means that it can be automatically adapted to the processor architecture during run 

time. In TCE the designer can customize the TTA processor that means the 

architecture file can be modified by adding or removing FUs, RFs, data buses and 

even by using user defined FUs. The designer can also change the width and number 

of GPRs. So this tool is very flexible and customizable to improve the processor 

performance in terms of cycle count or other overheads. 

 

5.2.1        ASIP Design with TCE [23] 

 
The main goal of TCE ASIP design flow is to produce a processor in HDL language 

and implement this generated processor to chip design process or an FPGA evaluation 

board for checking functionality. Figure 38 (a) shows the complete design structure of 

TCE ASIP design flow. From this figure, it can be shown that the desired application 

in HLL and the design requirements are applied as inputs of the design flow. The 

design requirements may include the amount of FPGA resources, the target execution 
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time, the minimum clock frequency, as well as energy, area etc. So, at the beginning 

of the design flow it is required a starting point architecture which is known as 

Architecture Definition File (ADF). The structure of architecture is very important to 

meet the desired requirements and there are flexible activities to modify this 

architecture to meet the requirements. Therefore, the aim of this thesis is to depict the 

response of different ADFs to reduce the cycle counts to implement the input 

application. However, next this source code with starting point architecture (ADF) is 

compiled by the tcecc compiler and generates TTA Program Exchange Format 

(TPEF) binary file. Then the retargetable instruction set simulator ttasim receives 

these two files (TPEF and ADF) as input and produce the simulation results. 

Execution cycle count, processor resource utilization and optimally execution trace 

are included in this simulation result [3]. These simulation results are then feed backed 

to the starting point architecture (ADF) to adjust the parameters. If the minimal 

structure of ADF fails to meet the requirements then custom architecture is applied for 

simulation. However, this iteration process is known as manual processor Design 

Space Exploration (DSE) [3]. TCE also includes explorer tool to automate this DSE 

operation. On the other hand, TCE allows the designer to customize TTA processor 

that is FUs and transport buses etc are modified according the designer requirements. 

This custom operation is allowed to accelerate the application. The custom operation 

design flow is shown in the following figure 38 (b). From this figure, first, it is 

required to find a custom operation then the designers create a custom operation 

compiler definition by using Operation Set Editor tool (OSEd). In order to simulate 

the custom operation FUs, it is required simulation models written in C/C++. After 

this, the processor architecture and HLL source code are modified according the 

custom operation. In HLL source code this is done by calling the operation via TCE-

specific operation macros or intrinsic. Then the feedback is taken to get the response 

of the new custom design and if the result is not satisfying then it is modified or 

another custom operation can be tested [3]. In this thesis, I showed the performance of 
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this custom operation in terms of cycle count, resource utilization for LT encoder and 

decoder as an input application file. Figure 39 (a) shows the simulation behavior of 

the typical custom function unit. This figure describes the architectural simulation 

behavior of the ADD operation. The first and the second operand (id 1 and id 2) are 

added up and the result is written to the output with id 3. OSAL architecture does not 

include the operation latencies of the custom FU. 

Figure 39(b) shows an example of a TTA processor datapath using TCE tool that 

consists of FUs, RFs, a Boolean RF, and a custom interconnected network [24]. These 

data transports are clearly programmed and written to a trigger port of functional units. 

Figure 39 also represents instructions, defined as moves, for three buses [24]. An 

explanation of these instructions is given in the next section. In this figure, moves are 

defined for three buses performing an integer summation loaded from memory and a 

constant. 

 

 

 

 

 

 

 

 

 

 

Figure 38: TCE design flow: (a) from HLL to FPGA [3] (b) TCE custom operation design 

flow [3]. 
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Figure 39: TCE operation (a) simulation behavior of custom FU (b) Example of TTA 

processor data path with 3 instructions for three buses [2]. 

 

5.2.2      Processor Design Space Exploration 

Design space exploration is defined as the process of finding target processor 

architectures with desired performance for a given applications. In TCE this process 

can be largely automated but trial-and-error process should be followed to get more 

efficient target processor. Figure 40 represents the automatic design space exploration 

process of TCE. TPF is a suffix of the files used to store TTA programs stored in our 

TTA Program Exchange Format files. ADF and IDF are the two file formats for 

describing the architecture and implementation data of the processor, respectively, as 

presented in the previous section. A processor configuration consists of an ADF/IDF 

pair. The design space explorer modifies resources of a given architecture and passes 

the modified architecture to the code generation and analysis phase for evaluation. As 

a result, it will produce the estimate of consumed energy, number of cycles and cycle 

time. This process is repeated for each modified architecture until satisfy the target 

architecture goal. 
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Figure 40: Automated Design Space Exploration [23]. 
 

 

5.2.3    TTA Programming 

In TTA programming, data transports are required to read and write the operand 

values, and the operation is triggered when data is written to a trigger port. Sequential 

and parallel TTA programs represent the sequence of instructions depending on a 

number of buses. In sequential TTA programming, the moves are sequentially 

executed because of single bus architecture. Therefore, its code is not scheduled to be 

executed in a target structure. In a parallel TTA program, a set of moves is executed 

using a multiple bus structure. Therefore, each bus will be utilized in parallel in the 

same clock cycle. Thus, instruction level parallelism (ILP) is exploited in a parallel 

TTA architecture. An example of a simple TTA program is given below [25]: 

 

1: 100 ->RF.1 ; 500 -> RF.2 

2: RF.1 -> ALU.add.1; RF.2 -> ALU.sub.1 

3: 50 ->ALU.add.2 ; 100-> ALU.sub.2 

4: ALU.add.3 ->RF.1 ; ALU.sub.3 ->RF.2 

5: RF.1 ->ALU.EQ.1 ; RF.2 -> ALU. EQ.2 

6: !ALU. EQ.3->bool;  ……… 

7: !bool 2-> GCU.jamp.1 

 

Here two buses are used in TTA architecture so that a couple of instructions are 

executed in one clock cycle. In Line 1, two general-purpose registers (RF) take 
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constant values from the immediate unit and store those values in the ADD and SUB 

modules of ALU through a load store unit (LSU). This is explained in Line 2. After 

finishing the similar operations in Lines 3 and 4, RF1 and RF2 hold the output values 

of ADD and the SUB module of ALU. Line 5 shows that these two values from GPRs 

are applied to two inputs of the equator (EQ) module of ALU. In Line 6, the result of 

the comparison is transferred to a Boolean register, which is used in conditional 

execution. In the last line, the value of the Boolean register is evaluated and the jump 

operation of the global control unit (GCU) is triggered in case a Boolean register value 

is false. That means the program execution is transferred back to Line 2 when the 

values of RF1 and RF2 are not equal. For this example, the second operand of the 

ADD, SUB, and EQ operations, and the first operation of the JUMP operation, are 

triggering ports. Therefore, this whole comparison operation is done in 7 cycles, and 

each cycle executes two operations for two bus architectures. That means, depending 

on this ILP, the speed of the processor is identified. Single bus architecture would 

require almost 12 cycles to execute this operation. The assembly notations of this 

example are taken from the TTA Based Co-design Environment (TCE) tool [25]. 

In TTA architecture, it is possible to add a new instruction to the target processor 

which implements arbitrary functionality. This custom instruction reduces longer 

chain operations to a single custom operation. To add this custom instruction, the 

ADF files of the TTA processor should be modified by introducing a new FU. In this 

thesis paper, we showed the ways in which the instructions set are generated from 

each custom function unit. The generating procedure of each efficient custom function 

unit, modification of ADFs, and reference design are discussed in the author’s other 

paper [4]. The TTA code generation techniques for this FU, named CRCFAST, are 

discussed in detail. Moreover, this new custom architecture for implementing CRC is 

very efficient in terms of cycle count which is also discussed in-depth in [26]. 
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5.2.4      Code Generation Method Using TCE Tool 

In the previous section, we discussed the assembly instruction of the TTA processor, 

which was applied to Architecture Definition Files (ADFs) in the TCE tool [6]. In this 

section, we will discuss the code generation technique which is the main part of whole 

design flow in the TCE structure. Before going to discuss the code generation 

technique using TCE tool, we will show the advantage of customized code generation 

for TTAs. It is well-known that VLIW and TTA based processors exploit the ILP at 

compile time. Here, compiler finds the parallel instructions before run time. VLIWs 

are constructed from multiple, concurrently operating FUs where each FU supports 

RISC style operation. But the traditional VLIW processor architecture is not suitable 

for scalable operation because of its complex connectivity of required datapath 

especially for register file (RF) and bypass circuit. The data bandwidth and instruction 

bandwidth depend on the number of selected FUs. However, when all FUs are utilized, 

the available data bandwidth is still rarely utilized. For that reason, the concept of 

TTA and its code generation techniques are required.  The complete design flow is 

divided into four phases: Initialization, Design Space Exploration, Code Generation, 

and Processor & Program Image Generation [25]. In initialization phase, the 

sequential code form of the TPEF file format is generated by compiler like TCECC 

(TCE C Compiler) including the architecture definition file (ADF). If this compiler is 

provided with multiple compilation units, the TPEF linker links them to a single TTA 

Program Exchange Format (TPEF) binary file. This TPEF file format is used for 

storing unscheduled, partially scheduled, and scheduled TTA programs to apply input 

to TCE. The compiler used here is known as a frontend compiler because it has no 

more use in the rest of the TCE toolset. Now, for TCE version 1.5, this compiler can 

compile only in the high level C language. Design space exploration is used to 

estimate the cost for different starting point architectures (ADFs). The goal of this 

phase is to find an optimal architecture for input design. Here the explorer removes 

the unused connections and resources from the starting point architecture, which is 
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more beneficial in terms of area, power, and time. It should be noted that if a program 

is simulated using various types of efficient target architecture modified either 

automatically or manually, parallel simulation is invoked to increase processor speed. 

Therefore, the Explorer creates a database named the Exploration Result Database 

(ExpResDB), which contains the configuration of evaluations during exploration. It 

also creates an Implementation Definition File (IDF) for estimating the cost of each 

explored target architecture. 

 

 

 

 

 

 

Figure 41: Code generation and analysis [25]. 
 

The most influential and demanding part of TCE design flow is code generation 

and analysis. Figure 41 shows the code generation procedure of the TCE tool. In this 

stage, the sequential program is converted to parallel instructions by efficiently 

utilizing the given target architecture. It is very difficult for a programmer to write a 

thousand lines of a TTA program manually, even if there is a use of semi-automatic 

design space exploration. Moreover, hand written code is not always efficient. 

Therefore, in this stage, the scheduler takes all responsibility for the performance of 

the entire toolset [3]. Figure 42 (a) shows the important concepts regarding an 

instruction scheduling compiler for the TTA architecture. Generally, the main working 

principle of a compiler is to translate a program written in a source language to 

another target language. 

In TCE, the compiler is used to translate HLL like C into executable code for TTA. It 
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should be noted that, during this compilation, it assigns processor resources to every 

data transport, while avoiding any conflicts in resource usage [5]. Moreover, at the 

same time, all possible ILP should be exploited to facilitate efficient code execution 

[5]. Figure 42(a) shows that an ILP compiler has three parts: a front-end, a middle-end, 

and a back-end [5]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 42 : Compiler structure of TCE tool (a) data flow in the ILP compiler [27] (b) structure 

and data flow in a TCE compiler [27]. 
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The front-end translates the source application code written in HLL into intermediate 

program representation (IR), and this IR is not compiled for any particular target 

architecture. All possible auxiliary data, including IR, is the input to the middle-end of 

compiler (or back-end if there is no optimization performed on IR). The middle-end 

executes high-level language and architecture-independent optimization on IR 

produced by the front-end. To increase efficient ILP, this optimization includes dead-

code elimination, function inlining, and loop unrolling. In the back-end, the compiler 

reads machine-independent IR, the architecture description file (ADF), and profiling 

information. Then it translates the code into parallel code for the target architecture. 

The back-end performs several optimizations using control analysis, data flow 

analysis, and memory reference disambiguation analysis. These optimizations 

comprise register allocation and instruction scheduling, which are important parts of 

generating efficient code executables for the target processor [27]. 

Figure 42 (b) shows the basic structure of the TCE compiler, which follows the same 

configuration of the re-targetable ILP compiler explained in Figure 42(a). The front-

end of the TCE compiler is the Low Level Virtual Machine (LLVM) C front-end, 

which transforms an application written in C to LLVM byte-code. This LLVM byte-

code, known as IR, is an architecture-independent intermediate program 

representation used in the LLVM framework [27]. Then this IR is optimized in the 

middle-end and simulated with the LLI for verification. The back-end of the TCE 

compiler requires the architecture definition file of the target processor. In this stage, 

the LLVM back-end performs machine-dependent code transformations like 

instruction selection and register selection. After passing this stage, the optimized 

code contains both machine independent and dependent information. Then this 

optimized code is applied to the input of the TCE back-end. The back-end performs 

instruction scheduling, applies TTA specific optimizations, and executes the code 

generation process. The optimized codes shown in table I(b), for a custom CRC 

architecture are generated by TCE tool [28]. 
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Table I(b): TCE assembly instructions for CRC implementation with crcfast.adf. 
 

Cycle Bus 1 Bus 2 

1 4 -> ALU.in2, 16777208 -> ALU.in1t.sub ; 

2 0 -> CRCFAST.trigger.crcfast, ALU.out1 -> RF.0 ; 

3 gcu.ra -> LSU.in2, _exit -> gcu.pc.call ; 

4 ALU.out1 -> LSU.in1t.stw, ... ; 

5 8 -> LSU.in1t.stw, CRCFAST.output1 ->LSU.in2; 

6 ..., ... ; 

7 0 -> LSU.in2, 4 -> LSU.in1t.stq ; 

 

5.2.5   Program image and Processor Generation 

This is the final stage of TCE design flow. This includes generation of HDL files of 

the selected TTA designs and bit images of the program. Program Image Generator 

(PIG) processes a scheduled program stored in a TPEF file and generates bit images of 

the programs that can be uploaded into the instruction memory of the target processor. 

Figure 43 shows the processor generation technique using TCE tool. 

 

 

 

 

 

 

Figure 43 Block diagram of processor generation technique using TCE tool [23]. 
 

Program Image Generator (PIG) processes a scheduled program stored in a TPEF file 

and generates bit images of the programs that can be uploaded into the instruction 

memory of the target processor. Binary Encoding Map (BEM) can be generated 

manually or can be obtained by BEM generator. In figure 43, instruction compressed 

plugins are used to compress the program images and generate a corresponding 
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decompression block to the control unit of the target processor. Program Generator 

reads the ADF and IDF files of the target processor and finally produces the HDL files 

of the implementations and generates the interconnection network and the control 

logic by using Hardware Database (HDB) files. 

 

5.3      ASIP Design Flow Using Xtensa Xplorer (XX): Tensilica Tools 

Tensilica is very popular in the area of customizable processor design. It was 

founded by former employees of Silicon valley and EDA companies like MIPS in 

1997. Like TCE tool, Tensilica also develops application specific processor for use in 

synthesized chip design for embedded system. Under Tensilica Xtensa Xplorer is 

processor IP architecture used to generate processor for input application. Besides the 

application of TTA-based Co-design Environment (TCE), a comparison between TCE 

and Tensilica tools is displayed in terms of cycle count. At first, I will discuss an ASIP 

oriented design flow using Xtensa Xplorer (XX) integrated development environment 

(IDE) as the design framework under Tensilica tool. Using the XX, it is possible to 

integrate software development, processor optimization and multiple-processor 

system-on chip (SoC) architecture into one common platform. From it, we can profile 

our input application code to identify the cycle consumed by the function used in input 

design. Then we can make necessary change to speed up that code. There are various 

building blocks in the Xtensa architecture. Figure 44 (a) shows the structure of Xtensa 

architecture. This figure shows the range of configurability, extensibility with Xtensa 

processor. In this architecture, system designer should specify the different blocks of 

configuration function units. Advanced designer-defined functions are one kind of 

hardware execution units and registers. 
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Figure 44: Configuration of Xtensa Xplorer 

(a) Xtensa architecture [29] (b) Xtensa design Flow. 
 

Figure 44 (b) represents overall design flow of XX. In this figure, the fist block 

contains different configurations selected upon the nature of input application. Based 
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on these properties of this architecture, I have taken different configurations of 

architectures to simulate our input application. For this reason, I have taken 16 

preconfigured cores and the result is tabulated after simulating the input application 

using those cores. Then we apply some custom logic levels to processor for 

accelerating the processor performance. These preconfigured cores are divided into 

four broad categories; Communication, HiFi/Audio, Video/Imaging and Diamond or 

General Purpose Controller. The Communication configuration core is known as 

ConnX D2 DSP engine. In this thesis, two ConnX configurations known as 

XRC_D2MR and XRC_D2SA are used for simulation and show very good 

performance between all other configurations. The XRC_D2xx configuration includes 

dual 16-bit multiply-accumulate (MAC) units and 40-bit register file to the base RISC 

architecture of the Xtensa LX processor. This engine uses two-way SIMD (single 

instruction, multiple data) instructions to provide high performance on vectorizable C 

code. It implements an improved form of VLIW instructions and five-stage pipeline. 

Figure 45 shows the basic architecture of the ConnX D2 engine with two MAC units 

with register banks [30]. The ConnX D2 instruction set is designed for numeric 

computations like add-subtract, add-compare or add-modulo etc required for digital 

signal processing. This ConnX D2 core exploits seven DSP-centric addressing scheme 

mentioned in figure 45. In order to provide excellent performance, it includes data 

manipulation instructions like shifting, swapping, and logical operations. Our input 

design is LT codec and it has huge number of shifting, swapping and logical 

operations. So, this processor architecture is suitable for our input design. Besides this, 

I have simulated our LT codec design using other configurations. So, I have briefly 

explained these architecture. For more interest, it is recommended to study the 

reference manual of Tensilica tool. The HiFi/Audio engine (330HiFi) is optimized for 

audio processor, voice codecs and pre- and post-processing modules. This 

configuration includes the Xtensa LX processor that is the basis of the 330HiFi 

processor. It extends the HiFi 2 Audio Engine ISA for hardware perfecting, 32 x 24 
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bit multiply/accumulate operations, circular buffer loads and stores and bidirectional 

shift. There are two main components in this engine: a DSP subsystem that operates 

primarily on 24-bit data items and other one is a subsystem to assist with bit stream 

access and variable length encoding and decoding [8]. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 45: A simplified architecture of ConnXD2 DSP engine [30]. 
 

So this architecture is fully compatible for audio/video compression or processing 

operation. Another category of processor known as Diamond or General Purpose 

Controllers are optimized for SoC design and it can be used in any application where a 

controller is required. Diamond controllers are based on a modern RISC 

architecture.Among these controllers Diamond 106Micro and 108Mini are cache-less 

controllers and designed for lowest area and power. The Diamond 106Micro has an 

iterative, multicycle multiplier and uses a non-windowed 16-entry AR register file. So 
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it is ideal for fast context switching and does better performance for nested function 

calls. The diamond 108Mini has full 32x32 multiplier and divider and 32-bit input and 

output general-purpose I/O (GPIO) ports. The Diamond 212GP and 233L are 

applicable for medium level performance and they have caches, local memories, 

divider, 32-bit input/output GPIO ports and other DSP instructions. Therefore, 

Diamond 212GP and 33L are ideal for hard drive controller, imaging, printing, 

networking etc. The Diamond 570T can generate up to 64-bit Very Long Instruction 

Word (VLIW) instruction bundles as per the requirement of input design. This VLIW 

instruction contains two or three operations or instructions. The 570T processor also 

includes 32-bit input and output GPIO ports with 32-bit input and output FIFO 

interface. Therefore, this FIFO interface provides a very useful mechanism for the 

processor to communicate with other RTL blocks, devices and processors [31]. Next, 

we will show the comparative performance of all these processor architecture. 

 

5.3.1       Extension via TIE 

Tensilica Instruction Extension (TIE) is a language that lets designers incorporate 

application-specific functionality in the processor by adding new instructions. To 

accelerate the speed of the processor, in Tensilica, it is possible to apply the custom 

operation in input design. Tensilica Instruction Extension (TIE) language is a 

powerful way to optimize the processor and is used to describe new instructions, new 

registers and execution units that are automatically added to the Xtensa processor.  

Xtensa cores take TIE files as input and create a version of Xtensa processor to 

complete the tool chain incorporate with new TIE instruction. The processor 

architect’s job is to decide which applications are common enough to warrant some 

level of support through dedicated instructions. 

Figure 46 shows the TIE generation technique using Xtensa processor. This TIE can 

be generated automatically or manually, depends on the performance of TIE 

instructions. In this work, we have used TIE instructions generated automatically to 
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profile our input design and it shows good performance. So using TIE instruction, 

processor creates single instructions that perform the multiple general purpose 

instruction 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 46: Generation of custom TIE instructions [29]. 
 

As mentioned above, TIE instructions improve the execution speed of the input 

application running on Xtensa processor. Some other techniques like Flexible 

Instruction Extensions (FLIX), Single Instruction Multiple Data (SIMD) and Fusion 

can be executable through TIE operation. In this paper, we applied only FLIX 

instruction to the input application. In Xtensa, FLIX instructions are multi-operation 

instructions (32-bit or 64-bit long) that allow a processor to perform multiple, 

simultaneous, independent operations. In FLIX, processors are encoding the multiple 

operations into a wide instruction word. The XCC compiler takes the FLIX operation 
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and converts it into FLIX format instruction as per the requirements to accelerate the 

input code [32]. The performance of FLIX instruction is discussed in simulation result 

chapter. 

 

5.4       OpenRISC Tool 

The OpenRISC architecture is one of the latest in the development of modern open 

architectures. It consists a family of 32- and 64-bit RISC/DSP processors. This kind of 

architecture allows a spectrum of chip and system implementations at a variety of 

price/performance points for a range of applications. OpenRISC 1200 is a 

synthesizable processor developed and managed by  OpenCores and using this OR 

1200 processor, systems are designed with emphasis on performance, simplicity, low 

power consumption, scalability, and versatility. It targets medium and high 

performance networking, portable, embedded, and automotive applications. Therefore, 

OR 1200 is an open source IP-core available from the OpenCores website as a Verilog 

HDL model. 

By using this tool, the design can be simulated by two ways. The first uses the RTL 

simulation of primary design by using Icarus Verilog or Mentor Graphic’s Modelsim 

and the second method involves creating a cycle accurate from hardware description 

language using verilator tool. 

In this thesis, RTL simulation (Icarus Verilog Simulator) is donefor reference designs 

by using OpenRisc architecture, which consists 5-stage single-issue integer pipeline, 

virtual memory support and basic DSP capabilities [33]. Figure 47(a) shows an 

overview of OpenRisc 1200 core architecture. For RTL implementation, all the blocks 

of OpenRisc 1200 IP core are written in Verilog HDL and are published under the 

GNU License. Here the test programs are compiled to Executable and Linkable 

Format (ELF) file format, which can be executed both in ISS and RTL simulator.  
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for making comparison between TTA and OpenRisc processor. 

Memory Addressing is one of the important operations of OpenRisc architecture. 

The processor computes an effective address when memory access instruction is 

executed. This addressing is also applicable for fetching the next sequential instruction. 

Fetching instructions from main memory is the main bottleneck of RISC processor. 

The access time depends on the fetching instructions and this can be alleviated by 

perfecting instructions before they are required by the processing unit [5]. The 

memory operand warps around from the maximum effective address and Load/Store 

instructions using these address mode contain a signed 16-bit immediate value and 

add to contents of a general purpose register specified in the instruction [34]. 

OpenRisc 1200 implements 32-bit 32 general-purpose registers (GPRs). The 

Load/Store Unit (LSU) transfers all data between the GPRs and CPU’s internal bus. In 

figure 47(b), the instruction unit implements the basic instruction pipeline, fetching 

instructions from memory subsystem, disfetches them to available execution units and 

maintains a state history to ensure a precise execution model. It implements the 32 bit 

part of the OpenRISC 1000 architecture. Figure 47 (b) shows the different units of 

CPU architecture in OpenRISC processor. 

 

 

 

 

 

 

 

 

 

 

 

Figure 47 (c): Architecture overview:  OpenRISC 1200 5 stages pipeline. 
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The instruction unit implements the basic instruction sets of the OR1200 core. This 

instruction unit fetches instruction from the memory system and dispatches them to 

the available execution units like LSU, ALU, MAC units. The basic operation of 

instruction unit is similar to that of the RISC processor which is already discussed in 

the previous chapter. But The OpenRISC1000 architecture defines five instruction’s 

formats and two addressing modes those are explained elaborately in its product ref 

manual [34]. Besides the GPRs and SPRs, OR 1200 has some important registers like 

Supervision register, Exception supervision register, Program counter register, 

exception program counter register and exception effective address registers. 

OR 1200 has LSU which is responsible for transferring data between GPRs and the 

internal data bus of CPU. The LSU has been implemented as as independent unit OR 

1200 architecture so that if there is a data dependency then memory system only be 

affected. The LSU can execute one load instruction every two clock cycles. It has 

ALU like RISC processor architecture. 

MAC unit executes the basic DSP operations and MAC instructions. In OR 1200 

MAC unit is fully pipelined. In every clock cycle, it has ability to accept new MAC 

operation. The MAC instruction has 32-bit operands and a 48-bit accumulator. 

System unit connects all the CPU signals to the system signals except those which 

are connected through  the Wishbone interfaces. 

The exception unit oversees the exceptions generated by the OR1200 processor core. 

For example the system calls, memory access conditions, interrupt request etc are 

handles by the exception units. 

For this OpenRisc processor, there are five-stage pipeline named as fetch, decode, 

execution, memory and write-back [34]. These five instructions are in progress at any 

given clock cycle and each stage of the pipeline performs its task in parallel with all 

other stages. So in this thesis, the execution clock cycles are counted for OpenRisc 

processor by applying two reference designs named as LT encoder and LT decoder 

architectures. The result will be discussed elaborately in experimental result section. 
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Figure 47 (c) shows the five stages pipeline architecture of OpenRISC processor. As it 

is mentioned earlier that pipelining is one of the most important phenomenon to verify 

the processor. It has strong effort to speed up the processor. Using this Pipelining 

technique an instruction’ execution is divide into a number of independent steps to 

improve the throughput of a processor. These independent steps are called pipeline 

stages. Each pipeline stage ends up in a storage (pipeline registers) of its execution so 

that the subsequent stages can use the result. Therefore the pipelining architecture of 

OR 1200 processor is similar to the pipelining that I have discussed elaborately in 

previous chapters. 

In this chapter, I have discussed proposed architecture of LT codec, processor design 

three different ASIP design tools and their architectures. Nevertheless, this discussion 

is not sufficient for understanding the complete tools. To get adequate information 

reference manual and user guides of corresponding are recommended. However, there 

are many other tools, mentioned in earlier chapter for designing and simulating ASIP 

work. In this thesis, I took only three tools for comparing their results. 
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Chapter 6 

Simulation Result 

I have implemented and generated application specific processor for LT codec using 

TCE, Xtensa and OpenRISC processor design tools. I took TCE as a main designing 

tool and other two tools have been taken for comparing the results using TCE. 

I have translated the complete encoding and decoding algorithm using C program. 

Before feeding in the decoding module, I apply noise to corrupt the transmitted signal 

through the channel. Therefore, the overall communication can be modeled by the 

figure 48. 

 

 

 

 

 

Figure 48: Simulation model of LT codec communication. 

 

The main aim of this thesis is to implement figure 48 using ASIP design tools. The 

results of this implementation based how efficiently I will produce LT codec 

processor and its efficiency should be calculated in terms of cycle count and time 

required for simulation. Area, number of gates and cells required to implement this 

architecture have been discussed in reference [35].  

 

6.1      LT Codec Simulation Using TCE Tool  
 

Simulation procedures using TCE tool have been discussed elaborately for CRC 

application in ref [26]. First, we need to compile the input design by TCE C compiler 

(TCECC). Then, the starting point architecture is required as input for retargetable 

compiler TCECC. The structure of this ADF depends on the input application system 

Message 

Generator 

LT 

Encoder 
Channel 

AWGN 

Noise 

LLR 

Receiver 

LT 

Decoder 

Error 

Calculator 

x tn w 

r = tn + w 

x 

L x′
e 



 

-118- 

 

written in HLL. As it is known that this starting point architecture contains collection 

of FUs, RFs, Immediate Units (IUs), and transport buses. FUs perform operations, 

RFs provide temporary fast accessible storage, the network of buses performs data 

transports between the FU’s and RF’s, and sockets interface FU’s and RF’s to 

transport buses [3]. At first, the minimum structure of architecture known as 

minimal.adf is used which describes a minimalistic architecture containing minimum 

resource that TCE compiler can perform to compile C code. So minimal.adf 

architecture is mandatory architecture and new architectures are formed by adding or 

modifying custom FU with this minimal.adf architecture. Figure 49 shows the TTA 

structure of minimal.adf. 

 

 

 

 

 

 

Figure 49 : Structure of minimal.adf architecture. 

 

 Instead of copying whole FUs, duplicating the specific operation of that FU will 

reduce the total cycle count [26]. For this reason, moderate.adf is developed by 

including its resources with minimal architecture. In order to increase the performance 

of the processor, new FUs and RFs are added to minimal.adf file and these new 

architectures are listed in table II. I developed hierarchy of processors for LT codec 

and its performances are tabulated in terms of cycle counts, time counts and resource 

utilization. There are various ways to increase the performance of the processor. For 

example increasing the width of RFs, duplicating the FUs, increasing the number of 

transport buses, modifying the design architectures and generating the custom FU for 

specific operation are popular useful techniques for improving the performance of the 
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processor. However, in this thesis I emphasized on the modification of LT codec input 

design structure and generating the custom FU for LT codec architecture. Other 

techniques are explained elaborately in the ref [26].  After finishing the simulation 

with minimal.adf by using ttasim, the result shows cycle execution counts, time 

required for simulation and processor utilization which are tabulated in table III. 

Table II: Resources of all architecture definition files (ADFs) 
 

Name of ADFs Resource Name No. Description 

minimal 

LSU 1 FU with 

operation:ldh,ldhu,ldq,ldqu,ldw,sth,stq,stw 

ALU 1 FU with 

operation:add,and,eq,gt,gtu,ior,shl,shr,shru,sub,xor 

RF 1 Includes 5x32 bit registers, 1 read and 1 write port 

IO 1 FU with operation: stdout 

TIMER 1 FU with operation: rtc,rtimer 

Boolean RF 1 Includes 2x1 bit registers, 1 read and 1 write port 

GCU 1 Global Control Unit of the Processor 

Transport Bus 1 Fully connected transport bus 

moderate 

FU_1 2 FU with operation : ldw 

FU_2 2 FU with operation : stw 

FU_3 2 FU with operation : add 

FU_4 1 FU with operation : ldq 

Custom Random 1 FU with operation : random number generator 

Encoder CUS_ENC 1 FU with operation : LT encoding operation 

Decoder 
DEGREE 1 FU with operation : LT degree distribution, edges 

information 

Decoder_llr 

DEGREE 1 FU with operation : LT degree distribution, edges 

information 

LLR 1 FU with operation : tanh function generation 

LT_CODEC Encoder_Decoder 1 FU with operation : LT encoder and decoder 
 

Therefore, table III shows the implementation result of minimal, moderate and 

custom architectures of LT codec. From this table, it can be shown that the minimal 

architecture does not offer good performance. It consumes huge cycle counts and 

takes more time for simulation. By using this architecture, ADD, LDW and STW 

consume maximum cycles. Therefore, this architecture can be moderated by 
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duplicating specific operations like ADD, LDW and STW as separate FUs. A new 

architecture is formed named as moderate.adf that shows good performance compared 

to the minimal architecture. This way of improvement is not much explained in this 

thesis. However, it is discussed earlier that the RNG is very important in this LT 

encoder and decoder operation. In HLL, default C random function was used to 

generate this random number. I therefore, generated one new FU name as RANDOM 

that generates the random number and use this FU in architecture named as 

custom.adf. Result shows that this custom FU takes only 230 cycle counts and reduces 

almost 84,900 cycles compared to moderate architecture. Using this custom.adf 

architecture LT codec takes 195,431,136 cycles and 1,954,311 ms time for 

implementation. Still this is not sufficient reduction of cycle count for implementing 

LTcodec. I need to develop more efficient processor. 

It is mentioned earlier that there are several ways to improve the performance of the 

processor. At first I step by step modified the input design of LT codec. For example, 

the random number generator is widely used in encoder and channel noise generator. 

If this RNG is included as part of input design then it will consume (84,900/230) 

almost 370 cycles per function call as compared to RNG is included as part of 

compiler design (architecture definition file). So it can be easily shown that if there 

are huge calling of RNG function in  HLL then it will consume huge cycle counts. 

One possible solution of this problem is to design  uniform random number generator. 

But it is very difficult to generate uniform RNG by satisfying the functionality of the 

encoder and decoder. I have modified the input design depending upon the 

expectation of random number. For example, in order to generating the degree 

distribution in encoding part rand() is used through its prescribed manner. On the 

other hand, for noise generation, I have used LUTs instead of RNG. 

Similarly it is mentioned earlier that the decoding process of LT codec is based on 

the iterative manner. Now we need to design a decoder that will take less iteration and 

this iteration depends on the degree distribution and number of redundant bit to 
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decode the encoded signal. However in this thesis, satisfying the functionality of LT 

codec I modify the degree distribution for reducing the cycles and simulation time. 

Later I will show the design of custom FU for LT decoder. Now I am going to explain 

the cost statement for different parts of the LT codec. 

Before discussing this thing, I will explain the implementation of printf() command 

for printing values using this TCE tool. This implementation is not like the operation 

of any standard compiler. 

Table III: Comparison of cycle counts and resource utilization of LT codec 

 for minimal, moderate and custom ADFs. 
 

Name of 

Arch(.adf) 

Cycle & Time 

Count 
Other Parameters Operation executed in function units 

minimal 

Time (ms) 

1958958 

Name Number Name of FUs Name of 

Operations 

Number of 

executions 

% of 

Utilization 

Tran. Bus 1 

LSU 

LDQ 189945 0.1 

Cycle 

195,895,926 

Registers in 

Register 

Files 

16 

LDW 11124970 5.7 

STW 11626063 5.9 

STQ 171904 0.1 

LDQU 79160 0 

ALU 

ADD 21431038 10.9 

SUB 803811 0.4 

AND 2858751 1.5 

EQ 2754354 1.4 

IOR 360951 0.2 

XOR 2365888 1.2 

moderate 

Time (ms) 

1,955,159 

Tran. Bus 1 
LSU 

STQ 171904 0.09 

Registers in 

Register 

Files 

16 

LDQU 79160 0.04 

ALU 

SUB 803811 0.41 

Cycle 

195,516,036 

AND 2858751 1.46 

EQ 2754354 1.41 

IOR 360951 0.18 

XOR 2365888 1.21 

SHL 4024325 2.06 

SHR 1784612 0.91 

FU_1 LDW 7009118 3.58 

FU_2 STW 7177559 3.67 

FU_1 LDW 4115852 2.11 

FU_2 STW 4448504 2.28 

FU_3 ADD 12295030 6.29 

FU_3 ADD 9136008 4.67 

FU_4 LDQ 189945 0.1 

custom 

Time (ms) 

1,954,311 
Tran. Bus 1 

RANDOM RAND 230 0.000118 
Cycle 

195,431,136 
RFs 16 

 

Since TCE is operating system free platform so, printf () implementation does not 

follow the straightforward approach. To make this job easy it is required to include an 
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operation name as STDOUT.  This operation reads its input from the bus connected to 

the architecture, expected it to be a 8-bit char and writes the char verbatim to the 

simulator host’s standard output. Software floating point support is necessary (swfp 

flag) because this tells the compiler to link the program with the floating point 

emulation library. Therefore, printf() function includes support for printing floating 

point values and our architecture does not contain floating point function units. This 

operation consumes huge cycles that is shown in the next simulation results. After 

verifying the system, this FU should be removed completely.   

Table IV shows the simulation result for the LT encoder using different 

architectures. According to the previous discussion for using the printf command the 

Encoder processor takes more than 1,583,000 cycles compared to the without printf 

processor operation. However, at first I have simulated the LT encoder using 

minimal.adf architecture and it takes huge time and cycles because of missing custom 

FU. Then in Encoder.adf I have included one custom FU named as CUS_ENC to 

transfer the major operation of encoding algorithm to the compiler part (hardware 

architecture). From table IV it can be shown that the this custom operation takes only 

230 operations and reduces the clock cycles almost 7,717,027. This shows the 

significant improvement in performance. 

Table IV: Comparison of cycle counts and resource utilization  

of LT encoder for Encoder and minimal.ADFs 
 

Name of 

Arch(.adf) 

Cycle Count Time Count (ms) Operation executed in function units 

Encoder 

23,946 

(Without Print 

Operation) 

238 

Name of FUs Name of 

Operations 

Number of 

executions 

% of 

Utilization 

CUS_ENC CUS_ENC 230 1 

ALU ADD 2499 10.5 

Encoder 

1,606,946 

(With Print 

Operation) 

16068 

 

FU_3 CUS_ENC 230 0.01 

ALU ADD 202425 12.5 

minimal 7,740,973 77409 ALU ADD 792444 10.23 

 

After generating the processor for LT encoder, I will generate efficient LT decoder 

processors. In table III it is shown that for minimal.adf architecture LT codec takes 

highest number of cycles and from the theory of LT decoding algorithm, decoding of 
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LT codec is very much complex compared to encoder algorithm. Before designing the 

custom FU for implementation of LT decoder, I will explain the main bottleneck of 

decoding algorithm. In decoding algorithm, soft decoding procedure has been used 

through the check node and variable node operations. So VNU operation, it requires to 

know that how many edges are formed for each variable node that means it will tell 

the degree distribution of the message signal. Similarly, in CNU operation it will 

require to know that how many variable nodes are connected with each check node. 

That means the edge information of the check nodes. It is mandatory to find the single 

edge check node (degree 1 value of check node per update), so it is required to index 

the edges of the check nodes. Figure 50 shows the pictorial information of this 

decoding scenario. So to make the custom FU for LT decoder, I need to include these 

three information to this custom FU and use the required output properly fetching 

from this custom FU. The name of this custom FU is DEGREE. Moreover, in the 

decoding end, the encoded signal should be taken from the DEGREE FU. 

 

 

 

 

 

Figure 50: LT codec tanner graph for understanding the algorithm of LT decoder. 
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Figure 51: Architecture of custom function unit (DEGREE) for LT decoding application. 
 

Figure 51 represents the structure of custom FU DEGREE and this FU is for 

decoding algorithm of LT codec. This DEGREE function unit gives four outputs those 

are labeled in the figure 51. Now degree, edge and index information generations are 

the part of compiler that means architecture through this FU. As a result the new ADF 

file Decoder will take less cycle counts for implementing the decoding operation and 

in this ADF architecture, whole encoding operations: generation of  encoded signal, 

degree, index and edge information are part of the DEGREE FU. So I can remove the 

coding related to activities of DEGREE FU from the main input design written in C 

language. The custom FU DEGREE is written in C++ programming language. So, this 

is a powerful technique used in TCE tool. Table V shows the simulation  result of LT 

decoder using Decoder ADF. Result shows that Decoder.adf configuration takes 

184,541,996 cycles which is less than 10,889,140 cycles compared to the result of 

custom.adf architecture. From table V, it can be shown that DEGREE  FU takes only 

358 cycles when its operations are as a part of ADF architecture. Behind this 

operation the processor improves its efficiency by reducing the 10,889,140 cycles 

compared to custom.adf. Still, it is not sufficient in terms of cycle reduction. 

Therefore, I need to modify more. 
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Table V: Cycle counts and resource utilization of LT decoder for Decoder ADF 
 

Name of 

Arch(.adf) 
Cycle Count Time Count (ms) Operation executed in function units 

Decoder 

184,554,925 

(With Print 

Operation) 

1,845,549 

Name of FUs Name of 

Operations 

Number of 

executions 

% of 

Utilization 

DEGREE DEGREE 358 ~0 

ALU ADD 18171801 10 

LSU LDW 9437612 5.1 

Decoder 184,541,996 1,845,418 

FU_3 DEGREE 358 ~0 

ALU ADD 2433650 1.3 

LSU LDW 170573 0.1 
 

 

According to the sum product algorithm, in CNU and VNU operation ‘tanh’ is used 

for sign identification. Therefore, I make a custom FU for ‘tanh’ function which is 

included in the architecture named as Decoder_llr. Table VI shows the result of this 

processor. From the comparison of table V and VI, LLR custom FU reduces the 

163,425,299 compared to Decoder.adf processor. LLR itself consumes only 1380 

cycles. 

 

Table VI: Cycle counts and resource utilization of LT decoder for Decoder_llr ADF 
 

Name of 

Arch(.adf) 

Cycle Count Time Count (ms) Operation executed in function units 

Decoder_llr 

21,129,626  

(With Print 

Operation) 

211,296 

Name of FUs Name of 

Operations 

Number of 

executions 

% of 

Utilization 

FU_3 DEGREE 358 0.001 

LLR LLR 1380 0.006 

ALU ADD 2185800 10.3 

LSU LDW 1123666 5.3 

Decoder_llr 21,116,697 211,166 

FU_3 DEGREE 358 0.001 

LLR LLR 1380 0.006 

ALU ADD 2184203 10.3 

LSU LDW 1122914 5.3 
 

 

Yet, it is not sufficient the status of cycle count. According to table VI, it takes more 

that 21M cycles. But I want to reduce cycle count more. If I analysis the decoding part 

of input design, the whole complexity of decoding algorithm drops to the number of 

iterations of the message passing algorithm. Moreover, this number of iterations 

depends on the degree distribution of encoded signal. For constant degree distribution, 

error (e) of figure 48 is inversely proportional to the number of iterations. I actually in 

this thesis, focused on the implementation of the encoder and the decoding so, I 
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slightly modify the degree distribution to ensure the error (e) is zero and calculate the 

cycle count w.r.t. number of iteration. Table VII shows the result of this analysis. Here 

I have used the same architecture Decoder_llr and mimimal.adf that for simulating 

with different iteration number. Table VII shows the comparative result between two 

different architectures. For example for 7 iterations, minimal.adf took huge cycles 

because of input design. In this input design, I have included channel noise and there 

is no optimization of degree distribution. Moreover, the minimal.adf architecture is a 

simple processor structure. 

 

Table VII: Comparison of cycle counts of LT decoder using two ADFs for different iterations. 
 

 Decoder_llr.adf architecture minimal.adf architecture 

# of Iterations Cycle Count Time Count (ms) Cycle Count Time Count (ms) 

1 6,581,637 65,816 168,851,862 1,688,518 

2 9,488,649 94,886 532,749,722 5,327,497 

3 12,395,661 123,956 943,238,922 9,432,389 

4 15,302,673 153,026 1,378,119,387 13,781,193 

5 18,209,685 182,096 1,835,020,463 18,350,204 

6 21,116,697 211,166 2,306,948,480 23,069,484 

7 24,023,709 240,237 2,789,089,682 27,890,896 
 

Up to this point, Decoder_llr architecture takes minimum cycles to process the LT 

decoder. This architecture can be further modified by generating a custom FU using 

Encoder.adf and Decoder_llr.adf architectures. The name of this FU is 

Encoder_Decoder. Using this FU the final architecture is formed as LT_CODEC.adf. 

Table VIII shows the final result using this architecture. It takes very less cycle counts 

compared to all other architectures. When an operation is included as function of input 

design, it will take more cycles to generate the TTA instructions for this particular 

operation. TTA compiler will translate this specific operation instructions by using 

ALU and LSU FUs. On the other hand, when the specific operation is included as a 

part of custom FU then the TCE compiler can easily generate the TTA instructions 

independently. This is explained in the code generation technique of TCE tool [28]. 

However, figure 52 show the complete scenario of all architectures. After designing 
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this architecture, TCE will generate the complete processor for specific application 

input design in VHDL HDL. 

Table VIII: Cycle counts and resource utilization of LT decoder for LT_CODEC.adf 

 
Name of 

Arch(.adf) 

Cycle 

 Count 

Time 

Count 

(ms) 

 

Operation executed in function units 

LT_CODEC 4,466 43 

Name of FUs Name of Operations Number of 

executions 

% of 

Utilization 

Encoder_Decoder Encoding &Decoding 1 0.02 

ALU ADD 666 15 

LSU LDW 305 7 
 

 

 

 

 

 

 

 

Figure 52: Comparative performance of different architectures for LTcodec implementation. 

 

These are the step by step procedures for generating the application specific processor 

like LT codec. According to the performance of the processor, LT_OCDEC processor 

shows very good performance compared to the other architectures. Moreover, these 

architectures can be further modified by duplicating the custom FUs, adding more 

data BUS or changing the RFs. However, after generating the optimized processor as 

HDL formation, it will be applied in prototyping board, or chip design procedures for 

getting the real information about timing, area or power reports. In the next section, I 

will discuss the simulation result using Tensilica tool. 

 

Architecture Name Cycle Count 

minimal 195,895,926 

moderate 195,516,036 

custom 195,431,136 

Decoder 184,541,996 

Decoder_llr 21,116,697 

LT_CODEC 4,466 
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6.2       SimulationResult Using Tensilica Tool 

 
To compile an application in XX, we required to inform Xplorer the project to 

compile the processor configuration to compile the project on and the build target. A 

set of build properties like compiler, assembler and linker contains in a build target. In 

this work, we took the “release” version of the target library using level 3 optimization 

and apply FLIX & TIE instructions. Figure 53 shows the configuration overview of 

the ltcodec_tie processor configuration. From figure 53, this processor is developed 

using TIE instruction set for LT codec input design and then add this TIE instruction 

with core processor named as XRC_D2SA.  

Now I am compiling the LTcodec input design as reference code along with its 

library for each of the sixteen target cores and then run a profile execution. 

 
Configuration Overview 

User Name chosun_ice_edu/sub2 

Core Name ltcodec_tie 

Core Description XRC_D2SA 

Configuration Detail 

TIE sources for configuration ltcodec.tdb contains ltcodec.tie 

Xtensa ISA version LX4.0 

Instruction options 

16-bit MAC with 40 bit Accumulator no 

MUL 32 no 

32 bit integer divider  no 

Single Precision FP no 

Double Precision FP Accelerator no 

Synchronize instruction no 

Conditional store synchronize instruction no 

MUL 16 yes 

CLAMPS yes 

NSA/NSAU yes 

MIN/MAX and MINU/MAXU yes 

SEXT yes 

Boolean Registers yes 

Number of  Coprocessor(NCP) 3 

Enable Density Instruction yes 

Enable Processor ID yes 

Zero-overhead loop instruction yes 

TIE arbitrary byte enables  yes 

Figure 53: Processor configuration of ltcodec_tie architecture 
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Table IX: Comparison of cycle counts for different configurations of Tensilca tool. 
 

Active Processor Configuration Total cycles Required Time (s) 

DC_C_106micro 229,213,917 163.71 

DC_C_108mini 219,797,553 171.82 

DC_C_212GP 204,964,527 164.23 

DC_C_233L 204,968,307 170.19 

DC_C_330HiFi 202,604,066 165.85 

DC_C_545CK 201,013,597 180.24 

DC_C_570T 170,170,153 153.52 

DC_D_106micro 229,213,920 162.71 

DC_D_108mini 219,797,557 170.46 

DC_D_212GP 204,964,531 163.87 

DC_D_233L 204,968,281 169.39 

DC_D_330HiFi 202,604,071 166.68 

DC_D_545CK 202,604,071 179.79 

DC_D_570T 170,170,158 154.26 

XRC_D2MR 164,231,379 137.86 

XRC_D2MR_FLIX 162,629,766 135.66 

XRC_D2SA 208,465,165 157.37 

XRC_D2SA_FLIX 206,444,710 202.20 
 
 

Table IX represents the comparison of cycle counts for all processor configurations. 

As shown in figure 53, the configuration components are designed according to the 

implementation of input design. Based on this, ConnXD2 category processor shows 

very good result compared to the other processor configurations. If we study the cycle 

consumed by different operations using TCE tool, there are huge addition and logical 

operations taken by the LT codec design. Due to this reason, ConnXD2 type processor 

is suitable for simulating this LT encoder and decoder. From table IX, We can see that, 

without custom instruction operation XRC_D2MR is the best in comparison to other 

processors. Moreover, in Diamond controller processor, 570T configuration 

outperforms compare to others. We see that, 570T processor contains many DSP 

instruction extensions and SIMD execution units. If we see the disassembly 

information of input function, it is easily possible to find the step-by-step cycle 

consumptions by main and children functions as per their configuration details. We 

are not going to discuss all these architectural analysis. As it is mentioned earlier that 

ConnX D2 architecture is suitable for communication and for its rich hardware 
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resources,  XRC_D2MR configuration without TIE or FLIX instruction, takes 

164,231,379 total cycles for LT codec application. From its profile status, main 

function consumes highest 7,585,908 cycles and if we see the disassembly profile of 

main function, it takes many load, add, move and logical operations. So, when we 

think in terms of hardware, these operations are rewiring certain bits from input to 

output. For this reason, we develop TIE and FLIX instructions and include these 

custom instructions to the processor. Table IX shows the result of all target processor 

in terms of cycles. Significant improvement in terms of cycle counts was found and 

from this table, the XRC_D2MR_FLIX configuration took 162,629,766 cycles and 

main function took only 5,984,295 cycles which reduces 1,601,613 cycles compared 

to without FLIX operation. These architectures can be further modified by introducing 

the custom TIE instructions. I have generated TIE instruction by using automatic TIE 

generation techniques as mentioned in Figure 46. Now I will show the behavior of 

iteration vs cycle counts of LT codec implementation. 

 

Table X: Simulation for different number of iteration using Tensilica tool 
 

# of 

Iterations 

XRC_D2MR_MAC DC_C_106micro 

Cycle Count  Time Count (s) Cycle Count Time Count (s) 
1 5,204,861 4.43 6,983,593 4.97 

2 19,182,518 15.60 26,034,519 18.31 

3 35,128,884 27.71 48,036,337 33.79 

4 52,840,982 42.21 72,696,444 50.98 

5 71,951,305 57.18 99,135,487 69.74 

6 92,160,200 74.41 127,678,043 90.72 

7 115,082,566 92.73 159,731,114 113.43 

8 164,837,807 128.70 194,314,345 137.03 

10 189,915,708 151.39 264,271,320 185.73 

16 340,940,055 283.37 475,626,960 335.57 

 

It is mentioned earlier that the decoding complexities depend on the number of 

iterations required for recovering message from encoded signal. For XX it takes 9 

iterations for successfully decoding the encoded signal. However, it is possible to 

reduce the number of required iterations by modifying the degree distribution in the 

encoder. Table X was simulated for fixed degree distributions using highest and 
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lowest configurations. Therefore, number of cycles are increasing exponentially with 

respect to the number of  iterations. So it is very important to trade off  between 

several issues: degree distribution, architecture structure of processor configuration, 

architecture of LT encoder and decoder, and finally the status of BEC. Because, the 

value of δ depends on the characteristics of the channel and the average number of 

degree connected with variable node depends on the value of δ . For example, 

according to the table X, for fixed value of δ , XRC_D2MR takes more that 340M 

cycles for 16 iterations on the other hand for diamond controller 106mico, it takes 

more than 475M cycles for 16 iterations. Moreover, simulating time behaves same as 

the manner of cycle counts. 

 

6.3        Simulation Result Using OpenRisc Tool 
 

For OpenRisc processor, “.cfg” file contains the default configurations and a set of 

simulation environments, which are similar to the actual hardware situation. For RTL 

simulator, the verilog files of all IP cores are included by using MAKE file. So once 

the environment is configured then the simulator generated the “.log” files under “out” 

and “run” folder. The minimal architecture of reference design is shown in table XI. 

In the OpenRisc processor, the reference design is compiled using OpenRisc tool 

chain (or32-elf) and a memory image is generated (.vmem). Then this program image 

is used in simulation to fill the RAM. Next, the verilog RTL sources check, compile, 

and simulate the result. Therefore, the OpenRISC processor will generate all the 

required signals to execute the operation. 

There is no GUI for processor configuration in OpenRisc tool. So this reference 

design can be modified by setting the enable value 0/1 in the configuration file. For 

example in DMMU, entry size means the instruction size in bytes, the typical value of 

entry size is 64. SIM section of this configuration is one of the major parts in this 

configuration. This section specifies the behavior of the or1ksim processor. Under this 

section, it includes the operations like verbose used for printing extra message, debug 
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used for debugging, profile, mprofile used for memory profiling, exe_log etc. 

Similarly, CPU section ensures the operations like ver used for version, sr used for 

supervision register, sbuf_len used for length of store buffer etc. PM section is used 

for power management. UART section is used for creating an interactive terminal 

window like xterminal window. By setting or modifying the above parameters, new 

processor can be designed through observing their performances. 

 

Table XI: Resources of OpenRisc processor for reference design 

Resource Name No. Description Processor  

IMMU 1 Instruction Memory management Unit 

OpenRisc 

DMMU 1 Data Memory Management Unit 

IC 1 Instruction Cache 

DC 1 Data Cache 

CPU 1 Central Processing Unit 

PM 1 Power Management 

UART 1 Universal Asynchronous Receiver/Transmitter 

 

Table XII: Simulation result by using OpenRisc processor encoder and decoder. 

 

OpenRISC Processor 

Encoder Decoder 

cycle Time (ns) cycle Time (ns) 

142,015 6,174,570 153,353 6,712,850 
 

 

 

 

 

 

 

Figure 54: Different signal waveforms of instruction wishbone bus for OpenRisc-1200 core. 

 

As it is mentioned, earlier that custom operation or instruction generation is one of 

the powerful techniques to reduce the cycle count. In OpenRisc processor tool, I did 

not find such option like designing custom FU in TCE or TIE and FLIX instruction 

generation technique in Tensilica tool. Therefore, in OpenRisc tool only modifying 
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the CPU configuration is not sufficient to reduce the cycle count. For implementing 

the technique of sum product algorithm, it is required to use the sign function (tanh or 

tanh
-1

) in LT decoding algorithm. In OpenRisc C compiler it does not support to 

include the “math.h” header file. Therefore, I modify the decoding architecture of 

LTcodec design as per requirements of OR C compiler by including the LUTs. But 

these LUTs are not efficient because of random number generator. For each new 

simulation this LUT should be changed due to change of RNG. But for implementing 

the LT encoder, it does not require any mathematical operation. So it is easily 

synthesized by OpenRisc core. However table XII represents the simulation result 

using this processor. Here I have simulated encoder and decoder independently due to 

the missing support of math.h header file. While simulation, by enabling the option 

VCD = 1, value change dump (VCD) file had been generated under ‘out’ folder. Then 

‘signal.wav’ file has been loaded and we can see the output waveform of OpenRISC 

processor instruction wishbone bus by GTK wave tool using “or1200-lttest.vcd” file. 

It is also possible to get the wave form of other signals like uart, ram, data wishbone 

bus etc. Figure 54 shows different signal of instruction wishbone bus for OpenRisc-

1200 core. In this figure iwb_clk_i means instruction_wishbone_clock_input signal. 

Similarly, iwb_ack_i means acknowledgement signal. 

There are some limitations for simulating LT codec design using OpenRisc 

processor. I successfully completed the implementation of encoder but in the decoding 

part implementation didn’t work properly. Due to the problem of header file, I 

mentioned earlier that LUTs had been used there and these LUTs have been changed 

in each simulation because of random degree distribution. So it is not possible to 

calculate the error calculation of the LT codec. Since there is no option to transfer load 

from input design to compiler or simulator, so it is not possible to include the custom 

FU like TCE or custom instruction set like TIE and FLIX in OpenRisc processor. 

Only modification can be achievable by designing LTcodec architecture as input 

design or changing the CPU architecture of the processor. But the effect of changing 
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CPU or simulation architecture shows very less impact on cycles count or simulation 

time. For this reason I didn’t represent the CPU architecture modification in this thesis, 

although I have done this by changing setting the enable condition of different 

parameters under CPU section in reference configuration. 

 

6.4       Comparison between All LT Codec Processsors 
 

Now, it is necessary to mention that we already developed hierarchy of different 

architectures for LT codec by using TCE, Tensilica and OpenRisc tools. First, I will 

show the comparison between TCE and Tensilica tool for LT codec implementation. 

Then, the comparison between TCE, Tensilica and OpenRisc will be displayed. Table 

XIII shows the comparison between TCE and Tensilica processor. 

Table XIII compares the performance results of Xtensa Xplorer and TCE tools. While 

simulating the instruction set simulator of TCE, tool run time count (RTC) is 

measured in millisecond and clock frequency is 100 MHz. From this table 

LT_CODEC.adf architecture takes minimum cycles compared to other architectures 

of TCE and Tensilica tools for implementing LT encoder and decoder. Moreover, this 

architecture took only 43 ms which is very less compared to the Tensilica tool. If we 

analysis the structure of XX core, it satisfies the class of RISC processor including the 

five and seven stage pipeline design. In this design, five-stage pipelining had been 

used for implementation. On the other hand, TCE tool is for implementing input 

design on TTA. It is mentioned earlier that the TTA structure has more benefits 

compared to the OTA processor domain. In OTA domain, it takes separate 

instructions for executing the instructions using ISS environment. For this reason 

Xtensa tool takes more cycles for implementation. However, the simulation speed is 

very high compared to the TCE tool. From table XIII,  it can easily be calculated that 

TCE executes almost 100 K cycles per second using 100 MHz clock. However, 

Tensilica runs 1 M cycles per second using ConnX D2 engine. Now to make a fair 

comparison with three tools I have simulated encoder part of LT codec by using these 
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tools. Table XIV shows this comparison result, which is responsible for getting the 

scenario of these three tools. 

Table XIII: Comparison of cycle counts for the TCE and Tensilica processors 
 

TCE Tensilica 

Architecture 

Name 

Time(ms) Cycle Count Cycle Count Time(s) Architecture Name 

custom 1,954,311 195,431,136 204,968,307 170.19 DC_C_233L 

Decoder 1,845,419 184,541,996 202,604,071 179.79 DC_D_545CK 

Decoder_llr 211,166 21,116,697 170,170,158 154.26 DC_D_570T 

LT_CODEC 43 4,466 162,629,766 135.66 XRC_D2MR_FLIX 
 

Table XIV: Comparison of cycle counts for the TCE, Tensilica and OpenRISC processors 

TCE Tensilica OpenRISC 

Architecture 

Name 

Time(ms) Cycle 

Count 

Cycle 

Count 

Time(s) Architecture 

Name 

Cycle Time (ns) 

Encoder 238 23,946 142,557 0.11 XRC_D2MR 
142,015 6,174,570 

minimal 77,409 7,740,973 212,886 0.20 DC_D_570T 

 

From this table, it can be shown that Tensilica tool takes more cycles than others and 

the performance of the TCE is very good compared to others. Like Tensilica, 

OpenRisc takes separate cycles for executing the instructions, which is a common 

behavior of the OTA class processor tools. On the other hand, for TCE tool it is 

occurred as the side effect of data transport. However, all the architectures of these 

three tools can be further modified by using their own techniques. Besides this, the 

modifications of LT codec i.e. degree distribution, number of decoding iteration, or 

input and encoded message length have huge influence on this hardware throughput. 

Within these three tools, Tensilica tool is very easy in terms of use and optimization. 

In this thesis, I have used the Optimization level 3, automatic TIE and FLIX options 

of Tensilica tool. Moreover, the modification of configuration parameters of XX is not 

sufficient for designing the high performance LT codec design. Similarly, for TCE 

tool still, it can be modified by introducing more buses (presently I have used 9 buses), 

duplicating FUs, RFs and adding more efficient custom FUs etc. Therefore, an 

efficient trade off is required between all these observations to satisfy an excellent 

processor based on the input application.   
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Chapter 7 

Conclusions 

The step by step techniques of application specific processor design using TCE, 

Tensilica and OpenRISC tools have been discussed elaborately in the previous 

chapters. Finally in the result chapter, the comparisons of these three tools are 

presented in different aspects. In this chapter, the summary of whole thesis and some 

future ideas will be presented for extending of this thesis work. 

 

7.1          Summary 

The whole work of thesis can be divided into three parts: efficient processor 

selection, state of the art input design selection and finally generation of processor for 

that input design. Figure 55 shows the pictorial presentation of this thesis activity. 

This figure represents the algorithmic architecture for LT codec ASIP implementation. 

Accodring to the figure 55, processor platform selection is an important  block in this 

design flow. For that reason, in the first couple of chapters I have discussed what kind 

of processor we should select. For explain this thing, I have started from RISC class 

processor and tried to explain the development of other efficient processor by 

removing the step by step shortcomings of RISC, Superpilelined and finally VLIW 

processor. Therefore, for designing application specific system TTA is promising 

processor family for getting high speed response. After selecting the efficient 

processor class, for generating application specific processor, we required to take a 

state-of-the-art system as input design. Nowadays the fountain code is very promising 

in the area of channel coding. Under this fountain code class we have selected LT 

codec channel coding technique compatible for BEC. Many researchers are interested 

due to comparatively simple and efficient manner of LT codec. Although due to some 

problems of LT codec some other fountain codes like Raptor code has been developed. 
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However, in this thesis we have elaborately discussed regarding the implementation 

issues of this LT encoder and decoder.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 55: Design Flow of this thesis work. 

For processor generation, we took three tools like TCE, Tensilica and OpenRISC. 

TCE is working for developing the TTA based processor. OpenRISC tool is executing 

under the concept of pure pipelined RISC processor. On the other hand, XX of 
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Tensilica shows the behavior like VLIW processor. As we discussed earlier that TTA 

is very suitable for applying custom FU to the architecture. Therefore, I have designed 

different custom FU for LT encoder and decoder. Similarly, in Tensilica tool, the 

processor configuration can be modified as per the input application in various ways. 

In this thesis, TIE and FLIX technique are applied to improve the performance of 

processor in terms of cycle count. Finally the performance of the OpenRISC processor 

has been studied. I find some limitations while using the OpenRISC processor. For 

simulating the input design written in HLL, it does not support many of the header 

files. As a result, there should take some alternative solutions like LUTs or other 

functional program based on mathematical operations for generating the processor. 

However, the response of the processor are not solely depends on the processor 

architecture. This performance also depends on the input design architecture. 

Therefore, besides the designing of custom processor part, we need to design LT 

codec as a reference input efficiently. We have discussed this proposed design 

technique in chapter 5. In this thesis work, there are some observations I find during 

simulation time. There are many reconfigurable techniques for every tool. It is not 

possible to take all these optimization techniques. For example,   I have used the 

Optimization level 3, automatic TIE and FLIX options for Tensilica tool. Moreover, 

the modification of configuration parameters of XX is not sufficient for designing the 

high performance LT codec design. Similarly, for TCE tool still, it can be modified by 

introducing more buses (presently I have used 9 buses), duplicating FUs, RFs and 

adding more efficient custom FU etc. Therefore, an efficient trade off is required 

between all these observations to satisfy an excellent processor based on the input 

application. 
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Figure 56: Design Flow of Chip design procedure. 

 

7.2     Future Work 

Currently I have used only three tools for getting the application specific processor 

of LT codec. In addition, from this comparison I found that this LT codec processor 

by TCE tool is good in terms of cycle count and required time. However, some other 

efficient tools like LISA, Coware etc. are required to make comparison with this 

current one. To make the LT codec processor efficient, it is also required to apply 

more optimization on the degree distribution of the LT encoder. It is already explained 

that, the whole complexity of LT codec depends on this degree distribution i.e. the 

maximum degree value in encoding part. Based on it, in the decoding part it requires 
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more iteration. Therefore, it is also be a part of future work to generate more efficient 

degree distribution. 

The processors I have generated by using these three tools are not the ultimate goal 

of System on Chip (SoC) design. The first part of SoC (system design) has been done 

through this thesis work presented in figure 55. The second part of SoC (Chip design) 

has been remaining as shown in figure 56. Although I have done chip design 

procedures for LT codec but I did not use the RTL code generated from ASIP tools. 

Therefore, as mentioned in figure 55, at the end of this design flow, the target 

processors are generated in HDL form and it should be the input of figure 56. That 

means, the next step is to apply this HDL module into the chip design procedure. 

After checking the logic simulation, these modules should be synthesized by Synopsys 

or other tools using TSMC or Samsung DB files. Then the real scenario in term of 

area, power and time (although these parameters are also shown in the ASIP tool but 

those reports are not practical) will be found and finally we come to know which 

processor is very suitable for commercial use. 
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Appendix I 
 

Architecture and Bypass Complexity 
 

The definitions of Connectivity Graph are written below [4]: 

A1. The connectivity graph CG of a processor is a bipartite graph CG (Sn, Dn, E), where:  

1. },......,,{
21 mnnnn SSSS = is a set of source nodes. All producers of values are treated 

as source nodes. 

2. },......,,{
21 nnnnn DDDD = is a set of destination nodes. This node is considered as 

consumers of operand and result values. 

3. 
nn DSE ×⊂ is a set of directed edges. 

A2. The architectural connectivity complexity, ACcompl of a connectivity graph CG (S,D,E), is 

defined as a (#S,#D,#E), where: 

1. #Sn is the number of source nodes. 

2. #Dn is the number of destination nodes. 

3. #E is the number of edges contained in the graph CG. 

For example, the architectural complexity of non-pipelined processor is given below: 

  ACcompl(non-pipelined) = (N+5, N+5, 3N+4) 

where  N is the number of general purpose processors.  

A3. The bus complexity of a single bus, Bcompl is defined as a 2-tuple (#RC, #WC), where 

1. #RC is the number of read connections. 

2. #WC is the number of write connection ports attached to the bus. 

A4. The data path complexity, DPcompl, of a processor data path is defined as a 5-tuple (#Bus, 

#Rc, #Wc, #RP, #Regs), where 

1. #Bus is the number of data buses. 

2. #Rc the number of read connections in the data path. 

3. #Wc  the number of write connections in the data path. 

4. #RP the number of ports on the RF and 

5. #Regs the total number of registers required, including the general purpose registers and 

registers to hold immediate but exclusive internal FU registers. 

A5. RCmax is the maximum number of read connections to any bus, and WPmax is the maximum 

number of write ports to any register. 
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Appendix II 
 

Belief Propagation (BP) Algorithm [36] 
 

BP is widely used for identifying the marginal probability in Markov models. For this reason, it 

is widely used in statistical interference, pattern recognition, Artificial intelligence and recently in 

forward error correction. Belief propagation is an inference algorithm for a particular kind of 

factorized joint probability distribution. The distribution is represented as a graph and the 

algorithm proceeds by passing messages along the edges of the graph according to a set of 

message-passing rules. Therefore, when it is required to solve the modeling problem then it is best 

to portray as a directed and undirected model but it cannot be translated or compiled into a factor 

graph. For example, consider the ubiquitous problem of computing marginal probability of a 

graphical model with N variables ),....,( 1 Nxxx = taking the values in a finite alphabet X. For 

conventional computing algorithm, it will take a time of order 
N

Χ . If factor graph FG is applied 

then the computation complexity can be reduced dramatically. This recursive procedure can be 

known as message passing algorithm. Message passing algorithms operate on messages associated 

with edges of the FG, and update them recursively through local computations done at the vertices 

of the graph. Figure A2.1 shows the generation technique of FG 

 

 

 

Figure A2.1: Generation technique of FG. 

B is expressed by probability p(B), similarly we have unary factor C is expressed by p(C). Then 

we have a ternary factor X giving the conditional probability p(X|B,C) and finally the binary factor 

K depends on B p(K|B). This Bipartite graph can be alternatively written as the right of figure A2.  

Therefore, a factor graph can express compilations in both directed and undirected GMs. Figure 

A2.2 shows an example of FG. In this figure the round nodes represents the variable nodes and the 

square node corresponds the factor/function. The distribution corresponding to this graph is 

factorized as : 
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),(),,(),(
1

),,,( 42431214321 xxxxxxx
Z

xxxxp cba ψψψ ××=  

Suppose x1, x2,…,xn be the variables of a finite domain D. Subsets { }naV ,......,1)( ⊂  are indexed 

by Ca∈ , where |C| = m. Given a subset { }nS ,.......,2,1⊆ , we define { }SixiS ∈= |:X . 

Consider a probability distribution p over x1, x2,…,xn that can be factorized as  

( ) ∏ ∏
= ∈

=
n

i Ca

aVaiin x
Z

xxxp
1

)(21 )()(
1

,......,, Xψψ      (A2) 

where )( ii xψ and )( )(aVa Xψ are non negative real functions, referred to as compatibility functions 

and  

∑ ∏ ∏ 







=

= ∈nxx

n

i Ca

aVaii xZ
,........, 1

)(

1

)()(: Xψψ is the normalized constant or partition factor [36]. A 

factor graph has represented this probability explained in equation A2 through a bipartite graph 

with V variables and C (set of V(a)) factors or functions. There is an edge between a variable node 

i and function node a if and only if i∈V(a). We define also C(i) := {a∈C : i∈V(a)}[36]. Now if we 

want to compute the marginal probability of any variable i, as following  

( ) ∑∑ ∑∑
∈∈ ∈∈ − +

=
Dx

n

Dx DxDx

i

n

xxpxp ),......,(.......... 1

11 111

   (A2.1) 

Now, the question is how efficiently we calculate this marginal probability. The BP algorithm 

is an efficient algorithm for computing the marginal probability distribution of each variable of 

non-loop tree factor graph. 

Let us draw the factor graph as in Figure A2.3, i.e., as a tree T rooted in xi. Then, the children 

of xi are the factors which contain xi. The essential idea is to use the distributive property of the 

sum and product operations to compute independent terms for each sub tree recursively. This 

recursion can be cast as a message-passing algorithm, in which messages are passed up the tree. 

 

 

 

 

 

 

Figure A2.2: An example of a factor graph [36]. 
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Figure A2.3: Cycle free Factor Graph with a recursive marginalization. 

 

Let we assume that the vector Mi→a denote the message passed by variable node i to function 

node a. Similarly, the quantity Ma→i denotes the message passes from function node a to variable 

node i. Therefore, the messages from variable to function and function to variable nodes are 

updates as the following way [36]: 

∑ ∏
∈

→→

{i}\V(a)

)]()([   )(
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a

x

x j

iaVj

ajV(a)iia xMxM ψα .    (A2.2) 
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i i

aiCb
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∈

→→ ψα .     (A2.3) 

 It can be shown that for open FG, these updates will be converging after a linear number of 

iterations. After this convergence, the local marginal distribution at variable node and factor nodes 

can be computed as below: 

∏
∈

→

)(

)(ˆ)(       )(
iCb

iibiiii xMxxF ψα     (A2.4) 

∏
∈

→

)(

)()( )(ˆ)(       )(
aVj

jijaVaaVa xMxxF ψα    (A2.5) 

Nowadays the BP algorithm can be used in error control coding like LT codes, LDPC or Raptor 

codes etc. It shows excellent result for error recovery when data are transmitted through BEC 

model. 
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