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ABSTRACT

Acceleration of Advanced Encryption Standard

Algorithm on GPU Using CUDA C

Saifullah

Advisor : Prof. Inkyu Moon, Ph.D.

Department of Computer Science

Graduate School of Chosun University

Application of image utilization and processing has exploded in the past few 

years. Progressively effortless access to unauthorized data and increasingly 

powerful digital media manipulation tools has made multimedia security a very 

important issue. Many complementary techniques have been developed to address 

content security and digital rights management. Some of them are multimedia 

encryption/scrambling, digital holographic encoding and etc. The key outcome 

of this work is to propose and validate a fast and robust encryption of large 

data size files particularly images by using symmetrical Advanced Encryption 

standard (AES) algorithm. The obstacle in encrypting an image with the above 

mentioned techniques is the size of the input data, as the size of the data 

continues to grow, the speed of encryption must increase to keep up or it will 

become a bottleneck. The recent developments in parallel industry by GPUs have 
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shown to offer performance improvements versus conventional CPUs for data 

intensive problems. Cryptography is the main mechanism to secure digital 

information data. The encryption of multimedia data are very time consuming so 

for the pursuit of achieving better performance in terms of execution for 

cryptographic process, many researchers tried to use the graphical processing 

unit as a cryptographic co-processor. The spotlight of the research is to 

explore the compatibility of symmetric key cipher for multimedia data on 

graphics processor. The proposed methodology for GPU based AES surpassed the 

fastest CPU based implementation. The versatility, easily availability of GPU 

and the increase in performance opens new door for the cryptographic encoding 

of heavy data. In this project, we illustrated the performance of AES for 

multimedia data on three different platforms i.e. MATLAB, Visual Studio (C++) 

and GPU.  Experimental results validating our approach of parallel AES are 

obtained with a prototype based on GPU implementation of the AES algorithm 

using NVIDIA GPU GeForce 310 processor and test samples of image size 256*256 

pixels with each pixel having depth of 32 bits. The achieved outputs reflect 

the superiority of GPU over CPU by significant figures. Based on our results, 

we present an application characteristic to accelerator platform mapping, 

which can aid developers in selecting appropriate target architecture for 

their chosen application.
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한글 요약

GPU 병렬 컴퓨팅 기반 고속 AES 알고리즘 설계 

사이플라흐

지도 교수 : 문 인규.

컴퓨터공학과

대학원, 조선대학교

이미지 활용 및 처리 응용 프로그램은 지난 몇 년 동안 폭발적으로 증가했다. 권

한이 없는 데이터에 대한 접근이 점차 쉬워지는 문제와 점점 강력해지는 디지털 미

디어 조작 도구들이 멀티미디어 보안을 매우 중요한 이슈로 만들었다. 많은 보완 기

술이 콘텐츠 보안 및 디지털 권한 관리를 해결하기 위해 개발되었다. 그들 중 일부

는 멀티미디어 암호화 / 혼합화, 디지털 홀로그램 인코딩 등이다. 연구의 주요 결과

는 대칭 고급 암호화 표준 (AES) 알고리즘을 사용하여 대규모 데이터 파일, 특히 이

미지의 빠르고 강력한 암호화를 제안하고 검증하는 것이다. 위에서 언급된 기술로 

이미지를 암호화할 때의 장애물은 데이터의 크기가 지속적으로 증가하는 것 같이 입

력 데이터의 크기인데 데이터의 크기 증가를 따라가기 위해 암호화의 속도를 증가시

켜야 하거나 또는 이것으로 인해 병목현상에 빠진다. GPU에 의한 병렬 산업의 최근 

발전은 데이터 집약적 인 문제에 대한 기존의 CPU에 비해 성능 향상을 제공하는 것

을 보여준다. 암호화는 디지털 정보 데이터를 보호하는 기본 메커니즘이다. 멀티미

디어 데이터의 암호화 연구는 암호화 프로세스에 대한 실행의 측면에서 더 나은 성



- viii -

능을 달성 추구하기 위해 많은 시간을 소비하고 있고, 많은 연구자가 암호화 보조 

프로세서 (co-processor)와 같은 그래픽 처리 장치를 사용하려고 노력했다. 연구의 

중점은 그래픽 프로세서 상에서 멀티미디어 데이터를 위한 대칭 키 암호의 호환성을 

살펴보는 것이다. GPU 기반의 AES에 대해 제안된 방법은 CPU 기반의 가장 빠른 실행

결과를넘어섰다. GPU의 다용도성과 쉬운 가용성과 성능의 증가는 대규모 데이터의 

암호화 인코딩을 위한 새로운 문을 연다. 이 프로젝트에서 우리는 세 가지 플랫폼 

즉, MATLAB, 비주얼 스튜디오(C++), GPU에서 멀티미디어 데이터를 위한 AES의 성능

을 보여준다. 병렬 AES의 우리의 접근 방식의 유효성을 검사하는 실험 결과는 

NVIDIA GPU 지포스 310 프로세서를 사용한 AES알고리즘의 GPU 수행을 기반으로 한 

프로토 타입과 함께 각각의 픽셀이 32bit인 이미지 크기 256*256의 테스트 샘플들을 

얻는다. 얻어진 결과들은 상당한 수치로 CPU에 비해 GPU의 우수성을 반영한다. 우리

의 결과를 바탕으로, 우리는 자신이 선택한 응용 프로그램에 대한 적절한 대상 아키

텍처를 선택하는 개발자들을 도울 수 있는 가속기 플랫폼 매핑 응용 프로그램 특성

을 제시한다.



- 1 -

1. Introduction

Multimedia information availability has increased dramatically with the 

advent of information technology industry. Multimedia content can be text, 

audio, still images, animation and video. But with this availability comes 

problems of maintaining the security of information that is displayed in public. 

Addressing this issue, many techniques have been proposed that are profoundly 

based on cryptography or phase encoding. The purpose of all such techniques is 

to provide confidentiality, availability, message integration between senders 

and receivers, implement accountability and accuracy. Cryptography [1] is the 

art of keeping information secret by transforming it into an unreadable format 

(encryption) by using special keys, then rendering the information readable 

again for trusted parties by using the same or other special keys (Decryption). 

Multimedia content encryption has drawn more and more researchers and 

engineers, owing to the challenging nature of the problem and its 

interdisciplinary nature in light of challenges faced with the requirements of 

multimedia communications, multimedia retrieval, multimedia compression and 

hardware resource usage. Multimedia encryption involves changing the multimedia 

data-stream itself to ensure secure transmission of video data between client 

and server (or two nodes). It can be accomplished by means of standard symmetric 

key cryptography where multimedia bit-stream is treated as a binary sequence and 

the whole data can be encrypted using conventional crypto-system such as DES [2] 

and AES [3].

However, traditional ciphers, such as DES, RSA or AES, are difficult to be 

used directly in multimedia data encryption, since multimedia data are often 

of large-volumes [4] with real-time requirement. Practically, multimedia data, 

such as image, video or audio, are often compressed [5] before transmission or 

storing. Scaling single-thread performance without excessive power dissipation 
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has faced many difficulties [6] in recent past, forcing CPU vendors to 

integrate multiple cores onto a single die. A good solution to this problem is 

recently released new technology of GPGPU (general purpose computing on 

graphics processing units) [7], which is software/ hardware co-design and is 

getting a lot of popularity in accelerating general purpose processors, 

performing complex and intensive computations on accelerator hardware. 

Accelerators range from general purpose processors optimized for throughput 

over single-thread performance, through programmable, domain-specific 

processors optimized for characteristics of a particular application domain, 

to custom, application specific chips which are possibly implemented with 

reconfigurable hardware such as FPGAs [8-9]. 

Figure.1. Simple Encoding Process

Accelerators' vast parallel computing resources and increasingly friendly 

programming environments make them good fits to accelerate compute-intensive and 

especially data parallel parts of applications. The process of executing AES in 

parallel manner can be divided into following five steps, 
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1. Carrying out the dependence analysis of a sequential source code in order to 

detect operations that can be processed in parallel loops 

2. Finding the dependence vector for the loops 

3. Selecting appropriate parallel methods and configuration of target hardware 

4. Estimating the algorithm, GPU memory relations and the kernel requirements 

5. Constructing the parallel forms of the source loops in accordance with the 

CUDA requirements.

The work explained in this research is concerned with the implementation of a 

robust AES which utilizes the Graphics Processing unit and shows improved 

performance over existing implementations. The Advanced Encryption Standard was 

chosen as a case study because the block cipher uses permutations and 

substitutions of data, rather than the arithmetic calculations which GPUs are 

known to excel in. The goal is to evaluate the potential of GPUs for encoding of 

image using AES and also to compare its performance with CPU implementation (C++ 

and MATLAB).
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2. Related Work

Images are routinely used in diverse areas such as medical, military, 

science, engineering, art, entertainment, advertising, education as well as 

training. To encrypt digital images data, lots of encryption techniques have 

been proposed [10-11]. In most of the efficient image encryption techniques, 

many researchers utilized chaos systems to fulfill the demand of reliable and 

secure protection/storage/transmission of digital images over public networks. 

This is because of the fact that the chaotic signals have cryptographically 

desirable features such as high sensitivity to initial conditions/parameters, 

long periodicity, high randomness and mixing. 

Accelerators such as FPGAs and GPUs, has demonstrated the ability to speed 

up a wide range of applications. Examples include image processing [12], data 

mining [13] and bio-informatics [14] for FPGAs, and linear algebra [15], 

database operations [16], K-Means [17], AES and DES encryption [18] and n-body 

simulations [19] on GPUs. Other work has compared GPUs with FPGAs for video 

processing applications [20], and similarly analyzed the performance 

characteristics of applications such as Monte-Carlo simulations and FFT [21]. 

NVIDIA's Compute Unified Device Architecture, or CUDA, and AMD's Compute 

Abstraction Layer, or CAL, are new language APIs and development environments 

for programming GPUs without the need to map traditional OpenGL and DirectX 

APIs to general purpose operations. Domain specific parallel libraries, such 

as a recent scan primitive’s implementation [22] can be used as building 

blocks to ease parallel programming on the GPU.

Bielecki et al. [23] and Beletskyy et al. [24] used parallel programming as 

a way to increase the performance of the cryptographic algorithm, targeting at 

a series of algorithms like DES, 3DES, AES, IDEA, Blowfish, RC5, LOK191, GOST, 

and RSA. Focusing on the loop structures, they performed data dependency 
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analysis on loops and used loop parallelization technology with OpenMP. They 

observed that the execution time can be decreased significantly with the usage 

of symmetric multiprocessing (SMP). The research in [25] and [26] used a 

dedicated cryptographic coprocessor to alleviate the CPU from cryptographic 

workload. Although this way of implementation is several orders of magnitude 

faster than the software implementation, coprocessors lack the flexibility to 

support different parameters such as the key size or the mode of operations. 

Moreover, the silicon area will be increased and the system bus connecting the 

CPU and coprocessor forms a performance bottleneck. With the rapid development 

and increasing popularity of graphic processing unit (GPU), people tried to 

implement cryptographic applications on it due to the high-level parallelism 

this many-core structure provides. Harrison et al. [27] implemented AES 

Encryption ECB mode on GPU, taking advantage of its large number of simple 

processing units and stream processing. They mapped the AES algorithm onto GPU 

by implementing XOR using the Raster Operation Unit and fragment processor 

hardware. They showed that GPU can run AES with high efficiency and alleviate 

the cryptographic loads from CPU if used as a coprocessor.
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3. Cryptography

Cryptography is generally understood to be the study of the principles and 

techniques by which information is converted into an encrypted version that is 

difficult (ideally impossible) for any unauthorized person to convert to the 

original information, while still allowing the intended reader to do so. In 

fact, cryptography covers rather more than merely encryption and decryption. 

It is, in practice, a specialized branch of information theory with 

substantial additions from other branches of mathematics. Cryptography is 

probably the most important aspect of communications security and is becoming 

increasingly important as a basic building block for computer security. The 

following four cryptographic goals form a framework from which other goals are 

derived: 

1. Confidentiality is a service used to keep the content of information from 

all but those authorized to have it. 

2. Data integrity is a service which addresses the unauthorized alteration of 

data. 

3. Authentication is a service related to identification. 

4. Non-repudiation is a service which prevents an entity from denying previous 

commitments or actions. 

When disputes arise due to an entity denying that certain actions were 

taken, a means to resolve the situation is necessary. A fundamental goal of 

cryptography is to adequately address these four areas in both theory and 

practice. 
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3.1 Symmetrical Cryptography

In general, symmetric key algorithms [28] use a single, shared secret key. 

The same key is used for both encrypting and decrypting the data. There are 

two primary types of symmetric algorithms: block and stream ciphers. A block 

cipher is used to encrypt a text to produce a ciphertext, which transforms a 

fixed length of block data size into same length block of ciphertext in which 

a secret key and algorithm are applied to the block of data. For example, a 

block cipher might take a 64-bit block of plaintext as input, and output a 

corresponding 64-bit block of ciphertext. This transformation process should 

be conducted by a user providing a secret key and the decryption process is 

the inverse transformation to the ciphertext using the same key. AES, 

Blowfish, Data Encryption Standard (DES), Triple-DES, IDEA, Rijdael and RC2 

are examples of symmetric block cipher. 

Figure.2. Symmetric Key Cryptography

3.2 Asymmetrical Cryptography

In the 1970s Martin Hellman, Whitfield Diffie, and, independently, Ralph 

Merkle invented a beautiful cryptographic idea [29]. Their idea was to solve 
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the key exchange and trust problems of symmetric cryptography by replacing the 

single shared secret key with a pair of mathematically related keys, one of 

which can be made publicly available and another that must be kept secret by 

the individual who generated the key pair. The advantages are obvious. First, 

no key agreement is required in advance, since the only key that needs to be 

shared with the other party is a public key that can be safely shared with 

everyone. Second, whereas the security of a symmetric algorithm depends on two 

parties successfully keeping a key secret, an asymmetric algorithm requires 

only the party that generated it to keep it secret. This is clearly much less 

problematic. Third, the issue of trusting the other party disappears in many 

scenarios, since without knowledge of your secret key, that party cannot do 

certain evil deeds, such as digitally sign a document with your private key or 

divulge your secret key to others.

Figure.3. Asymmetric Key Cryptography

Asymmetric cryptography does not replace symmetric cryptography [30]. 
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Rather, it is important to recognize the relative strengths and weaknesses of 

both techniques so that they can be used appropriately and in a complementary 

manner. Symmetric algorithms tend to be much faster than asymmetric 

algorithms, especially for bulk data encryption. They also provide much 

greater security than asymmetric algorithms for a given key size. On the down 

side, symmetric key cryptography requires that the secret key be securely 

exchanged and then remain secret at both ends. In a large network using 

symmetric encryption many key pairs will proliferate, all of which must be 

securely managed. Because the secret key is exchanged and stored in more than 

one place, the symmetric key must be changed frequently, perhaps even on a 

per-session basis. Finally, although symmetric keys can be used for message 

authentication in the form of a keyed secure hash, the full functionality of a 

digital signature requires asymmetric encryption techniques, such as RSA or 

DSA. As we shall see in the next chapter, a symmetric keyed secure hash 

algorithm can be used to implement a MAC (Message Authentication Code), which 

provides authentication and integrity but not non repudiation. In contrast, 

asymmetric digital signature algorithms provide authentication, integrity, and 

non repudiation, and enable the services of certificate authorities (CAs).     

      



- 10 -

4. Advanced Encryption Standard

Joan Daemen and Vincent Rijmen urbanized a block cipher called Rijndael. In 

AES the span of each block and the key can be autonomously specified to be 

128, 192, or 256 bits. In this paper we will only stress on block length and 

key length of 128 bits of AES. The AES arrangement exploits data of 128 bits 

and same three key size alternatives. This 128 bit data can be divided into 

four operation blocks, which are represented as a square matrix of bytes. 

These operation blocks are copied into a state array. The state array is 

organized as a 4×4 matrix. The data is conceded through Nr rounds (Nr = 10, 

12, 14) for encryption [31]. These rounds are performed by the following 

transformations:

4.1.1. Byte-sub transformation 

In this process 8-bit block is replaced with another 8- bit block, for 

substitution purpose we use S-box. This stage (known as SubBytes) is simply a 

table lookup using a 16×16 matrix of byte values called an s-box. This matrix 

consists of all the possible combinations of an 8 bit sequence.  However, the 

s-box is not just a random permutation of these values and there is a well 

defined method for creating the s-box tables. The designers of Rijndael showed 

how this was done unlike the s-boxes in DES for which no rationale was given. 

We will not be too concerned here how the s-boxes are made up and can simply 

take them as table lookups.

                                
                  Figure.4. Sub-Bytes Transformation
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The s-box is designed to be resistant to known cryptanalytic attacks. 

Specifically, the Rijndael developers sought a design that has a low 

correlation between input bits and output bits, and the property that the 

output cannot be described as a simple mathematical function of the input.

4.2 Shift-Rows Transformation

In this process we leave the first row of data, perform once shift left on 

2nd row, two times shift left on 3rd row and three times shift left on 4th 

row. It is a simple Permutation. 

Figure.5. Shift-Rows Transformation

This operation may not appear to do much but if you think about how the 

bytes are ordered within state then it can be seen to have far more of an 

impact. Remember that state is treated as an array of four byte columns, i.e. 

the first column actually represents bytes 1, 2, 3 and 4. A one byte shift is 

therefore a linear distance of four bytes. The transformation also ensures 

that the four bytes of one column are spread out to four different columns.
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4.3 MixColumns Transformation

This stage (known as MixColumn) is basically a substitution but it makes use 

of arithmetic of GF( ). Each column is operated on individually. Each byte of 

a column is mapped into a new value that is a function of all four bytes in 

the column. The transformation can be determined by the following matrix 

multiplication on state

Figure.6. Mix-Columns Transformation

4.3 AddRoundKey

In this stage (known as AddRoundKey) the 128 bits of state are bitwise XORed 

with the 128 bits of the round key. The operation is viewed as a columnwise 

operation between the 4 bytes of a state column and one word of the round key. 

This transformation is as simple as possible which helps in efficiency but it 

also effects every bit of state.

 Figure.7. Add Round Key Transformation



- 13 -

5. Platform Overview

  GPUs are inexpensive, commodity parallel devices with huge market 

penetration. They have already been employed as powerful co-processors for a 

large number of applications including games and 3-D physics simulation. The 

main advantages of the GPU as an accelerator stem from its high memory 

bandwidth and a large number of programmable cores with thousands of hardware 

thread contexts executing programs in a single program, multiple data (SPMD) 

fashion. GPUs are flexible and easy to program using high level languages and 

APIs which abstract away hardware details. 

Compute Unified Device Architecture (CUDA) is an extension of C and an 

associated API for programming general purpose applications for all NVIDIA's 

architecture GPUs. CUDA has the advantage that is does not require programmers 

to master domain-specific languages to program the GPU. The GPU is treated as 

a coprocessor that executes data-parallel kernels with thousands of threads. 

Threads are grouped into thread blocks. Threads within a block can share data 

using fast shared-memory primitives and synchronize using hardware-supported 

barriers. Communication among thread blocks is limited to coordination through 

much slower global memory. The NVIDIA GeForce-310 GPU is comprised of 2 

streaming multiprocessors (SMs). Each SM has 8 streaming processors (SPs), so 

there are total 16 CUDA cores. 

5.1. Why GPGPU?

Commodity computer graphics chips, known generically as Graphics Processing 

Units or GPUs, are probably today’s most powerful computational hardware. 

Researchers and developers have become interested in harnessing this power for 

general-purpose computing, an effort known collectively as GPGPU (for 

“General-Purpose computing on the GPU”).
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Figure.8. Texture Processor Cluster

5.2. Many-Core Architecture:

Most CPU has two or four cores on it, but the major GPU card has about 16 or 

even more cores on it. If we can find a way to divide a computation-sensitive 

problem to many parallel threads, it might get better performance to run on 

the GPU hardware. However the mapping is not straightforward. We may need to 

design some special data structures and modify the algorithm in the way we do 

CUDA programming. There are now two most famous general purpose GPU 

architecture, CUDA and Open-CL. The powerful compute capabilities of GPU stem 

from their vast availability of parallelism. CUDA is currently best suited for 

a SPMD programming style in which threads execute the same kernel but may 

communicate and follow divergent paths through that kernel. Designers have the 
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flexibility to trade-off performance for resources. For example, in massively 

parallel algorithms, hardware programmers might duplicate the same functional 

units many times, with only the die area limiting the level of parallelism.

 

Figure.9. SM and SP of GPU

5.3. Parallel Architecture

Powerful and inexpensive: Recent graphics architectures provide tremendous 

memory bandwidth and computational horsepower. For example, the flagship 

NVIDIA GeForce 7900 GTX boasts 51.2 GB/sec memory bandwidth; the similarly 

priced ATI Radeon X1900 XTX can sustain a measured 240 GFLOPS, both measured 

with GPU Bench [BFH04a]. Nowadays GPU is not only the T&L (transform & 

lighting) and render hardware, but also the general purpose computation 

hardware.
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Figure.10. Graphics Pipeline of a GPU architecture

5.4. Compute Unified Device Architecture (CUDA)

The Compute Unified Device Architecture (CUDA) [32-33], proposed by NVIDIA 

for its graphics processors, exposes a programming model that integrates host 

(CPU) and GPU code in the same C++ source files. The main program introduced 

by the programming model is an explicitly parallel function invocation 

(kernel) which is executed by a user-specified number of threads. Every CUDA 

kernel is explicitly invoked by host code and executed by the device, while 

the host side code continues the execution asynchronously after instantiating 

the kernel. 

The advent of multicore CPUs and manycore GPUs means that mainstream 

processor chips are now parallel systems. Furthermore, their parallelism 

continues to scale with Moore's law. The challenge is to develop application 

software that transparently scales its parallelism to leverage the increasing 

number of processor cores, much as 3D graphics applications transparently 

scale their parallelism to manycore GPUs with widely varying numbers of cores.
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The CUDA parallel programming model is designed to overcome this challenge 

while maintaining a low learning curve for programmers familiar with standard 

programming languages such as C. At its core are three key abstractions – a 

hierarchy of thread groups, shared memories, and barrier synchronization – 

that are simply exposed to the programmer as a minimal set of language 

extensions. These abstractions provide fine-grained data parallelism and 

thread parallelism, nested within coarse-grained data parallelism and task 

parallelism. They guide the programmer to partition the problem into coarse 

sub-problems that can be solved independently in parallel by blocks of 

threads, and each sub-problem into finer pieces that can be solved 

cooperatively in parallel by all threads within the block.

This decomposition preserves language expressivity by allowing threads to 

cooperate when solving each sub-problem, and at the same time enables 

automatic scalability. Indeed, each block of threads can be scheduled on any 

of the available multiprocessors within a GPU, in any order, concurrently or 

sequentially, so that a compiled CUDA program can execute on any number of 

multiprocessors, and only the runtime system needs to know the physical 

multiprocessor count.

This scalable programming model allows the GPU architecture to span a wide 

market range by simply scaling the number of multiprocessors and memory 

partitions: from the high-performance enthusiast GeForce GPUs and professional 

Quadro and Tesla computing products to a variety of inexpensive, mainstream 

GeForce GPUs 

     



- 18 -

Figure.11.NVIDIA GeForce Graphical Interface 

CUDA's runtime library provides programmers with a specific barrier statement, 

syncthreads(), but the limitation of this function is that it can only 

synchronize all the threads within a thread block. To achieve global barrier 

functionality, the programmer must allow the current kernel to complete and 

start a new kernel. This is currently fairly expensive, thus rewarding 

algorithms which keep communication and synchronization localized within 

thread blocks as long as possible. Fine-grained synchronization is also 

feasible so that execution units need only be synchronized with a select set 

of threads. 
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6. Parallel Advanced Encryption Standard Algorithm 

 6.1 Pre-processing

Block ciphers are one of the most important primitives in cryptography. They 

are based on well understood mathematical and cryptographic principles. Due to 

their inherent efficiency, these ciphers are used in many kinds of 

applications which require bulk encryption at high speed.

6.1.1. Data size

The input data is an image whose dimension is 256*256 pixels with each pixel 

having depth of 32 bit. So the total data size is 256*256*32 (N), equals to 

2097152 bits. The image is further divided into corresponding blocks according 

to the algorithm which is discussed in the next section. The GPU exploited in 

the experiments has 16 CUDA cores and has the ability to accommodate maximum 

of 65536 blocks (B) in a grid (G) where each blocks can further accommodate 

maximum of 512 threads (T), so the total numbers of threads available in grid 

for processing is B*T (65536*512). 

GPU configuration for AES: The input data size for AES will be N bits. 

According to the specification of the AES the input data size is 128 (s2) bits 

per block, so the number of block in the grid will be will be 

                   
blocks 16384

128
32*256*256

2
==

s
N

where each block of AES have 128 bits or 4 pixels. For the GPU case there 

will be 16384 blocks in the grid where each blocks will further have 128 

threads.



- 20 -

6.1.2. Electronic Codebook Mode (ECB)

 The modes specify how data will be encrypted (protected) and decrypted 

(returned to original form). The modes included in this standard are the 

Electronic Codebook (ECB) mode, the Cipher Block Chaining (CBC) mode, the 

Cipher Feedback (CFB) mode, and the Output Feedback (OFB) mode. Out of these 

ECB is the basic mode so for our experiment this mode has been utilized.

The Electronic Codebook (ECB) mode is a basic, block, cryptographic method 

which transforms 128 bits of input to 128 bits of output. The analogy to a 

codebook arises because the same plain text block always produces the same 

cipher text block for a given cryptographic key. Thus a list (or codebook) of 

plain text blocks and corresponding cipher text blocks theoretically could be 

constructed for any given key. In electronic implementation the codebook 

entries are calculated each time for the plain text to be encrypted and, 

inversely, for the cipher text to be decrypted. 

Figure.12. ECB Mode of Operation
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6.2. Parallel Algorithm

6.2.1. Key Scheduling: 

A key length of 128 bits involves 10 rounds, 192 bits entails 12 rounds and 

a key length of 256 bits entails 14 rounds. The key expansion algorithm must 

obviously generate a longer schedule for the 12 rounds required by a 192 bit 

key and the 14 rounds required by a 256 bit keys. Keeping in mind how we used 

the key schedule for the case of a 128 bit key, we are going to need 52 words 

in the key schedule for the case of 192-bit keys and 60 words for the case of 

256-bit keys

For our project we are using 128-bit key, the key is also arranged in the 

form of a matrix of 4 × 4 bytes. As with the input block, the first word from 

the key fills the first column of the matrix, and so on. The four column words 

of the key matrix are expanded into a schedule of 44 words. Each round 

consumes four words from the key schedule. The figure below depicts the 

arrangement of the encryption key in the form of 4-byte words and the 

expansion of the key into a key schedule consisting of 44 4-byte words. 

Key expansion takes place on a four-word to four-word basis, in the sense 

that each grouping of four words decides what the next grouping of four words 

will be. Let’s say that we have the four words of the round key for the
thi

round:

             321 ,,, +++ iiii wwww

For these to serve as the round key for the 
thi  round, i must be a 

multiple of 4.These will obviously serve as the round key for the
thi )4/(  
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round. For example, 7654 ,,, wwww  is the round key for round 1, the 

sequence of words 111098 ,,, wwww  the round key for round 2, and so on. 

                          
Figure.13. Key Scheduling 

Now we need to determine the words 7654 ,,, ++++ iiii wwww from the words       

                           321 ,,, +++ iiii wwww .

                            
367

256

145

+++

+++

+++

Ä=
Ä=
Ä=

iii

iii

iii

www
www
www

Note that except for the first word in a new 4-word grouping, each word is 

an XOR of the previous word and the corresponding word in the previous 4-word 

grouping.
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So now we only need to figure out 4+iw  This is the beginning word of 

each 4-word grouping in the key expansion. The beginning word of each round 

key is obtained by:

                

Figure.14. Round Key Expansion Algorithm

)3(4 +Ä=+ iii wgww

That is, the first word of the new 4-word grouping is to be obtained by 

doing XOR’ing the first word of the last grouping with what is returned by 

applying a function g() to the last word of the previous 4-word grouping. The 

function g() consists of the following three steps: (i) Perform a one-byte 

left circular rotation on the argument 4- byte word, (ii) Perform a byte 

substitution for each byte of the word returned by the previous step by using 

the same 16 × 16 lookup table as used in the SubBytes step of the encryption 

rounds, and iii) XOR the bytes obtained from the previous step with what is 

known as a round constant. The round constant is a word whose three rightmost 

bytes are always zero. Therefore, XOR’ing with the round constant amounts to 

XOR’ing with just its leftmost byte. 
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The round constant for the 
thi  round is denoted Rcon[i]. Since, by 

specification, the three rightmost bytes of the round constant are zero, we 

can write it as shown below. The left hand side of the equation below stands 

for the round constant to be used in the 
thi  round. The right hand side of 

the equation says that the rightmost three bytes of the round constant are 

zero.  

                     Rcon[i]=([RC[i],0,0,0)

 The only non-zero byte in the round constants, RC[i],obeys the following 

recursion:

                        RC[1] = 1

                    RC[j] = 2 × RC[j − 1]

 

The addition of the round constants is for the purpose of destroying any 

symmetry that may have been introduced by the other steps in the key expansion 

algorithm.

The key scheduling is performed on CPU before storing this into the constant 

memory of the GPU. As the same key will be used for the respective round of 

the algorithm, so the key for the ten rounds is scheduled and stored in the 

constant memory. Whenever the round will need the key for doing modulo-2 

addition it will make a call to constant memory and after inspecting the round 

number, respective key will be provided to it.

6.2.2. Parallel Byte-Sub Transformation

The substitution process in symmetrical process plays an important role in 

both encrypting and decrypting the input data. This is a byte-by-byte 

substitution. The substitution byte for each input byte is found by using the 

same lookup table. The size of the lookup table is 16*16. To find the 
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substitute byte for a given input byte, we divide the input byte into two 

4-bit patterns, each yielding an integer value between 0 and 15. (We can 

represent these by their hex values 0 through F.) One of the hex values is 

used as a row index and the other as a column index for reaching into the 

16*16 lookup table. 

           

Figure.15. Parallel Byte-Sub Transformation

The goal of the substitution step is to reduce the correlation between input 

bits and output bits (at the byte level). The bit mangling part of the 

substitution step ensures that the substitution cannot be described in the 

form of evaluating a simple mathematical function. The total numbers of bits 

on which substitution operations will be performed are 

                  
2097152128*

128
32*256*256128*

2
==

s
N

Where N is the data size, s1 is the size of each block and 128 will be the 

bits in each block on which the operations will be performed. One thing to 

remember here that this is a parallel process and all the bits will take place 



- 26 -

in the operations to substitute themselves with the new value chosen from the 

S-Box. The S-Box substitution will remain same for each round and also for 

each data set of 128 bit, so they will also be stored in the constant memory 

of the GPU and whenever their turn for contribution will arrive they will be 

called from the kernel and their execution will takes place.

  

6.2.3. Parallel Shift-Rows Transformation 

This is where the matrix representation of the state array be- comes 

important. The ShiftRows transformation consists of (i) not shifting the first 

row of the state array at all, (ii) circularly shifting the second row by one 

byte to the left, (iii) circularly shifting the third row by two bytes to the 

left, iv) and circularly shifting the last row by three bytes to the left. 

This will be serial process. The function will be called whenever its turn for 

contribution will come. As the input block is written column-wise, so the 

first four bytes of the input block fill the first column of the state array, 

then next four bytes the second column, and so on. As a result, shifting the 

rows in the manner indicated scrambles up the byte order of the input block.

Figure.16. Parallel Shift-Rows Transformation

6.2.4. Parallel Mix-Columns Transformation

This step replaces each byte of a column by a function of all the bytes in 

the same column. More precisely, each byte in a column is replaced by two 
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times that byte, plus three times the next byte, plus the byte that comes 

next, plus the byte that follows. The words ‘next’ and ‘follow’ refer to 

bytes in the same column, and their meaning is circular, in the sense that the 

byte that is next to the one in the last row is the one in the first row. By 

‘two times’ and ‘three times’, we mean multiplications in GF(28) by the 

bit patterns 000000010 and 00000011, respectively.

For the bytes in the first to fourth row of the state array, the operation 

can be stated as

                jjjjj sssss ,3,2,1,0,0 )3()2( ÄÄ´Ä´=¢ ,    

                jjjjj sssss ,3,2,1,0,1 )3()2( Ä´Ä´Ä=¢

                )3()2( ,3,2,1,0,2 jjjjj sssss ´Ä´ÄÄ=¢ ,                          

                )2()3( ,3,2,1,0,3 jjjjj sssss ´ÄÄÄ´=¢
 

Or in matrix form as 

Figure.17. Parallel Mix-Columns Transformation

This portion is the most important part of the AES algorithm and if we see 

on the constant matrix then we can easily make a distinction that each row can 

be processed in parallel. This is a matrix multiplication whose parallel 

processing is achieved in a simple way.
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Figure.18. Parallel AES Algorithm
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6.3. Summarize parallel Algorithm 

1. Reading the input image using simple C++ language code (256*256).

2. Dividing the image into blocks of 128 bit each i.e. 1 pixel is 32 bit so 4 

pixels will constitute one block of 128 bit.

3. Total no of input bits will be 256*256*32=2097152, therefore total no of 

input blocks will be 2097152/128=16384.

4. GPU Specification: there will be 16384 blocks (0-16383) with each block 

having 128 threads and each thread will contain one bits of input.

5. 128 threads in each block will constitute 4 columns of the state matrix as 

per AES specifications.

6. This strategy will help to fully utilize the concept of warps.

7. Allocating memory in GPU device and transferring data to GPU memory.

8. Round Key and S-Boxes data will also be transferred to GPU memory 

(constant).

9. After the initialization of kernel, all blocks will execute the first round 

in a parallel manner.                 

10. All the four process that is SubBytes, ShiftRows, Mixcolumns and 

AddRoundKey will be performed by all the blocks.

11. The remaining 9 rounds will be performed in a similar way.

12. The internal execution of each round is parallel but execution of 10 

rounds will be serial as every new round depends on the output of its 

earlier round. 

A multiprocessor is able to concurrently execute groups of 32 threads called 

warps. Since each thread in a warp may follow a different control flow, their 

execution paths may diverge due to the independent evaluation of conditional 

statements; in these cases the warp serially executes each path, disabling the 

computation for all threads that have not taken the one under execution. If 
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the control flow ever converges back, the warp is able to return to a single, 

parallel execution of all threads. Each multiprocessor executes warps much 

like the Single Instruction Multiple Data (SIMD) paradigm, as every thread is 

assigned to a different SP and every active thread executes the same 

instruction on different data. So now 16384 blocks will run in parallel for 

executing each round but the 10 rounds will be executed one after the other 

means serially. 

Figure.19. Parallel Flow of AES Algorithm in GPU Platform
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7. Experimental Results:

The CUDA device accelerates the execution by harvesting a large amount of 

data parallelism. Data parallelism refers to the program property whereby many 

arithmetic operations can be safely performed on the data structures in a 

simultaneous manner. For the add round key, the output is generated by 

performing a XOR operaton between the state matrix and respective round key. 

As CUDA threads are of much lighter weight than the CPU threads, so these 

threads take very few cycles to generate and schedule due to efficient 

hardware support. This is in contrast with the CPU threads that typically 

require thousands of clock cycles to generate and schedule. 

In CUDA, the host and devices have separate memory spaces. This reflects the 

reality that devices are typically hardware cards that come with their own 

dynamic random access memory (DRAM). In order to execute a kernel on a device, 

we allocated memory on the device and transfer pertinent data from the host 

memory to the allocated device memory, after device execution, the result is 

transferred from the device memory back to the host memory and free up the 

device memory that is no longer needed. The CUDA runtime system provides 

application programming interface (API) functions to perform these activities 

on behalf of the programmer. 

In CUDA, a kernel function specifies the code to be executed by all threads 

during a parallel phase. Because all of these threads execute the same code, 

CUDA programming is an instance of the well known single-program, 

multiple-data (SPMD) parallel programming style [Atallah 1998], a popular 

programming style for massively parallel computing systems. As all the threads 

execute the same kernel code, there needs to be a mechanism to allow them to 
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distinguish themselves and direct themselves toward the particular parts of 

the data structure that they are designated to work on. So for this different 

threads will see different values in their threadIdx.x, threadIdx.y and 

threadIdx.z. Instead of having the loop increment like loop iteration, the 

CUDA threading hardware generates all of the threadIdx.x and threadIdx.y 

values for each thread. The code fragment uses the threadID=blockIDx.x * 

blockDim + threadIdx.x for one dimensional to identify the part of the input 

data to read from and the part of the output data structure to write on.

The objective of the experiments is to evaluate the performance of optimized 

multicore CPU implementation with a well designed GPU version and provide some 

insight into convincingly achievable speedups. All the experiments are 

conducted on multi core CPU, Intel Core i3 with installed memory of 3.00GB, 

endowed with an NVIDIA GeForce 310 with 512MB of global memory. This board has 

16 computing cores clocked at 1.4GHz and is used on a PCI-Express 1.0 bus. The 

system is running windows 7 32bit and the CUDA Toolkit in use is version 4.0. 

For CUDA and C++ case all implementations were compiled in Visual Studio 2010 

and for MATLAB case MATLAB 2010b release is utilized. All the collected 

results have been averaged over several trials for better results.

Implementing the GPU version carefully decrease the execution time. The 

comparative study proves the superiority of GPU due to its parallel 

architecture and show that GPU version of AES is approximately 8x faster than 

its counter C++ part, where as approximately 60x faster than its MATLAB 

counterpart. Regarding DRPE implementation on GPU, the GPU version is 

approximately 12x faster than C++ version whereas further 120x times faster 

than its MATLAB counterpart. The achieved results portray the dominance of 

parallel nature of GPU as compared to CPU.
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S. NO Process AES Algorithm Operations

Add   Round Key 

(Bits)

Mix   Columns (Bits) S-Box    (Bits)

 

1

 

Parallel

2097152

128*
128

32*256*256

= 2097152

128*
128

32*256*256

= 2097152

128*
128

32*256*256

=

 

2

 

Serial

Shift Rows Total Operations

157286496*
128

32*256*256
=

(Parallel + Serial) * 10

S. No Algorithm Time (s)

MATLAB C++ GPU

1 AES 1568.123 201.9 22.87

 

Table.1. Total Number of Operations in AES Algorithm

Table.2. Time Execution of AES Algorithm on Different platforms

Figure.20. Pictorial View of Experimental Results
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There has already been some work done for plaintext encryption using AES on 

GPU using CUDA [18] but their approach is different than us. They utilized the 

global memory and constant for storing round keys but in our approach we 

utilized only constant memory not only for storing round keys but also for 

S-boxes are stored in constant memory. In this way time of transferring data 

from host to device and vice versa will be saved and most importantly constant 

memory is fast as compared to global memory [34]. The second major advancement 

in our algorithm is that we used shared memory for storing the state matrix of 

the data, as state matrix is the only matrix which is being processed during 

the operations. In this way the data will be called directly from the shared 

memory. This approach gives us two advantages; (i) shared memory is fast [18], 

and (ii) global memory traffic will be slow. 

Some other factors which can show the superiority of GPU are speedup, 

efficiency and redundancy. The speedup is found to b

w h e r e    is execution time for serial processor and   is execution time 

for parallel process. The Efficiency is found to be

where p is number of core for the parallel process.
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The results on the standard implementation of AES show a steady throughput 

regardless of the number of blocks per kernel because of the very low 

occupancy of the GPU memory resources. The results presented above show the 

maximum throughputs achievable, through calling the kernel with the 16384 

number of CUDA-blocks (allowed 65535), in order to minimize the overhead 

induced by the kernel call to the system driver. The trend varying the number 

of thread per blocks shows that 128 threads are sufficient in order to 

completely utilize the GPU. Raising the number of threads per block does not 

yield significant performance advantages, even though the maximum throughput 

is reached at 512 threads per block because of algorithm specification of AES 

algorithm.  Thus in addition to performance, development time is increasingly 

recognized as a significant component of overall effort to solution form the 

software engineering perspective. 
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8. Conclusion

Since AES was designed specifically for highly-optimized hardware 

implementations, its structure contains many operations which require 

computationally expensive adaptations in order to be executed by a general 

purpose CPU. Accelerators that are designed independently by different 

vendor’s exhibit significant differences in hardware architecture, middleware 

support and programming models, which causes the processors designed for the 

same special task to favor differing subsets of applications. For example, 

programming methodologies range from direct hardware designs for FPGAs, 

through assembly and domain specific languages, to high level languages 

supported by GPUs [10]. These are widely different technologies and currently 

it is unclear which one is best suited to a given task.

 Future computer systems will certainly include some accelerators, with the 

GPU and video processor the most common. Today, accelerators are primarily 

available as add-in boards. In the future they will probably be located 

on-chip with the CPU, thus reducing communication overhead. Different 

applications place unique and distinct demands on computing resources, and 

applications that work well on one processor will not necessarily map to 

another; this is even true for different phases of a single application. 

From future perspectives a methodology for a quantitative comparison, 

especially one that distinguishes between fundamental organizational limits 

versus easily changed features, is an important area for further research. 

Also, GPUs are likely to migrate closer to the main CPU in future 

architectures. Issues related to this migration are also interesting areas for 

future work.
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