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ABSTRACT

Astudyonthedevelopmentofenergysavingdevice

forthetwinscrew carferry

Lim,YeonJi

Advisor:Prof.LeeKwi-joo,Ph.D.

DepartmentofNanalArchitecture

&OceanEngineering,

GraduateSchoolofChosunUniversity

본 논문에서는 스트럿으로 지지된 2축 로펠러를 가진 57m 차도선의 연료 감

부가물개발에 한 결과를 다루었다.본 차도선은 실제 운항 인 선박이며 이의 선

미부 스트럿에 새로운 Pre-swirl타입의 새로운 연료 감 부가물인 BF1,BF2,

BF1+LS,LS의 형상을 좌 과 우 에 칭으로 부착하여 로펠러 회 방향으로 인

해 비효율 으로 흐르는 유동을 통제하는 역할을 하게 하 다.이는 기존의

Pre-swirlStator와 비교했을 때 로펠러 반경의 반 길이의 수평 Fin과 부착하는

Fin의 수를 여 선미 부의 하 을 감소 시킬 것이며 제작비용이 감되고 유지보수

가 용이할 것으로 상된다.서로 다른 형태의 네 가지 다른 디자인은 쉽 로우를 이

용한 CFD이론계산에 의해 질 분석이 수행되었고 그 두 가지 경우에 하여

인수조에서의 모형시험이 수행되었다.선미부에 부착 된 Fin은 로펠러에 흐름을 유

도하고 wakepeak를 감소하여 로펠러면에서의 wake를 균일하게 유도하 다.한

방향으로만 회 하는 로펠러로 인해 좌 과 우 의 수행이 다르게 되고 비 칭 압

력분포는 선체에 악 향을 미치게 되나 후류 패턴을 바꾸어 로펠러와 선미사이의

손실 에 지를 감소시키는 역할을 하게 하 다.기존의 stator와 비교하여 짧은 길이

의 Fin으로 기존의 것과 같은 효과를 나타낼 수 있으며 인수조시험 결과는 계획속

도의 만재상태에서 2%의 동력을 얻을 수 있다는 결론을 얻었다.
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Ⅰ.Introduction

Recentlythewholeworldisworking forenvironmentalprotectionandenergy

saving.The world has been implemented the Kyoto Protocol2008 to 2012.

Although Koreaexcludedfrom theKyotoProtocolsince1990according tothe

Economicgrowthincreaseingreenhousegasemissionsweremorethantwice.As

a result,Korea was implemented until2020 Green Growth law and Korea's

greenhousegasreductiontargetis4% ascontrastin2005.

InternationalMaritimeOrganization werediscussedshipfuelregulationson 22

March 2010.According totheFueleconomy regulations(EEDI,Energy Design

Index)anew technologyofvesselswillleadtoanew eco-friendlytechnology.

Shipoperationcausesmanykindsofenvironmentalpollution.InternationalMaritime

Organization (IMO)has strengthened theregulation according to environmental

pollution from vessels. Eco-friendly technology, ship design, various new

technologiesforthereductionoffuelshouldbeinvestigatedaggressively.

Themoreenergyitconsumesandenergysavingtechnologiesareessentialfor

developmentsofgreenships.Solutiontothisproblem is,intheearlystage,to

designahullform havingnotonlytheminimum resistancebutalsotheoptimum

propulsiveefficiency.However,thehullformsofgeneralshipsbearlong term

experienceofoperationswhichisnotexpectedtobeimprovedradically.Thus,itis

consideredmoreappropriatetoattachenergysavingdevicesratherthantoimprove

thehullform directly.Inthisthesis.appendagesattachedashiphasbeenstudied.

Throughmodeltestsinthetowingtank,theconditionsaresoughtinwhichthe

appendagescanreducetheshipresistance.Theeffectsoftheappendagesuponthe

wake distributions at a propeller plane are also investigated to clarify the

effectivenessofthem ontheequalizationsofthedistributions,whichareclosely

related to theship propulsiveefficiencies.Itisfound thatappendageattached

verticallytotheshipsterncanaccelerateflow intheregion,resultingequalization

ofthe wake distribution.The results ofCFD have been compared with the
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experimentalresults,tovalidatetheefficiencyofappendage.Toapplytheresults

developedtoshipdesign,effectstotheresistancecharacteristicsandpropulsive

performances of the ship should be carefully investigated.Furthermore,the

developedtoolsfrom eachspecificprojectsshouldbecloselylinked,verifiedand

enhanced,iftobeapplicablepractically.

Ⅱ.DesignofHullform andAppendages

ThemainParticulars ofshipwhichhasbeenusedinthisthesisisshowninTable

2-1

Table2-1Maindimensionofship

Ship

Lengthbetweenperpendiculars 57m

Lengthatloadwaterline 60.23m

Breadth 13m

Depth 2.9m

DesignDraft 1.8m
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Fig.2-1 Linesofcarferry

Fig.2-2modelingof Hull
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BF1hasbeenattachedontherightsideoftheY-shapedstrutwitha650mm

lengthoftheplate,450*200mm size,witha100°anglefrom thecentralaxisof

theshaftofthestatorisattached.3DdesignareconfirmedinFig.2-3～2-6

Fig.2-33DmodelofBracketFin1(BF1)

Fig.2-43DmodelofBracket Fin2(BF2)
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Fig.2-53DmodelofBracketFin1+Longstator(BF1+LS)

Fig.2-63DmodelofLongstator(LS)
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Ⅲ.DevelopmentofEnergySavingDevice

Despiteofcontinuouseffortsofscientistsand engineersinfindingthebetterhullform,the

performanceimprovementbyhullformimprovementitselfhasitslimitationsinmanycases.

So,theextensiveactivitiesonthedevelopmentofenergysavingdevicesarestillontheirprogressand

utilizedintheactualships(Leeetal.,1992).

Oneofthemostapplicabletoenergysavinginshipswillbepre-swirlstatorforwhichvariationsare

showninfollowingFig.3-1

Fig.3-1Pre-swirlstator

Conventionalpre-swirlstatorconsistsofseveralfinswhichhavealmostthesamespanlengthasthe

propellerradiusandarefixedradiallyonthesternframeinfrontofthepropeller.

Thesettinganglesoftheconventionalhorizontalfinswerefixedtocontrolmainlytheflownear

thefintip.Inthiscase,thefindidnotcontrolproperlytheflowfieldnearthefinrootbythe

presenceoflongitudinalvortexduetotheshiphull,ratherdeterioratedthepropulsiveefficiency.By

adoptingthehorizontalfinsofalmosthalf-lengthofpropellerradius,itmaycontributetocan

controltheflow fieldonlynearthesternframeandthengetalmostequaleffecttothe

conventionalfin.Furthermore,thebentplateontheedgeofstrutgeneratethecounterflowtothe

propellerturningdirection.Thatis,asshowninFig.3-2,thisnewpre-swirltypeenergy-saving

deviceconsistsoftwofins.Thisdeviceisnamed“StrutFin”,whichalsocanenhancethesafety

foradriftobstaclesuchaswoodortimber,andreducemanufacturingcost.
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Fig.3-2StrutFin

Againstthesternflowmechanism,thedesignofthesternfingenerallyplaysarole

asflowguidingdevicemakingawakefieldneartheupperpartofthepropellerplane

uniform bybothdeflectingflow towardpropellerandreducingthewakepeakat

propellertopposition.

Whenthepropellerrotatesinonespecificdirection,itsperformancesonportand

starboardsidearedifferentandthepressurecentershiftstothesidewherethe

propellerbladesmovedownwards.

Thisinturnleadstoaasymmetricpressuredistributiononthehullinfrontofthe

propeller,whichinfluencestheboundarylayersonportandstarboardsidedifferently.

TheideainthedesignofStrutFinistoreflectthesternvorticeswhichmove

upwardsintheregionthepropellerrotatesdownwards.Thisreflectingmayreduce

thewakenearpropellertipandcontributetotheequalizationofwakefield,thusmay

leadtoapositivegaininpropulsionefficiency.Incaseofaclockwiseturningmore

separationoccursonportsideabovethepropellershaftwherethepropellerblades

moveupwards.Theflow becomesturbulentandisevenpartlydeflectedinthe

oppositedirection.From thispointofview developedappendagemightcontribute

towardsthereflectionofvortexflow whichmovesupwardsintheregionwhere

propellerbladesmovedownwards,bywhichtheincreaseofpropulsiveefficiency

mightbeattained.

ThedimensionsoffullscaleenergysavingdevicearepresentedinTable.3-1
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BF1
 

<End plate>

Length : 0.65m

Breadth : 0.2m

The Z-axis of rotation : 42˚

Origin : (1.65, 1.68, 1.5)

<Fin>

Length : 0.45m

Breadth : 0.3m

The Z-axis of rotation : 100˚

Origin : (2, 2.25, 0.545)

BF2

<Endplate>

Length:0.65m

Breadth:0.2m

TheZ-axisofrotation

:42̊

Origin:(1.65,1.68,1.5)

<Endplate2>

Length:0.65m

Breadth:0.2m

TheZ-axisofrotation

:-42̊

TheX-axisofrotation

:80̊

Origin:(1.68,2.7,1.5)

<Fin>

Length:0.45m

Breadth:0.3m

TheZ-axisofrotation

:100̊

Origin:(2,2.25,0.545)

Table3-1Theconfigofenergysavingdevice
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BF1+LS

<Endplate>

Length:0.65m

Breadth:0.2m

TheZ-axisofrotation:42̊

Origin:(1.65,1.68,1.5)

<Fin>

Length:0.45m

Breadth:0.3m

TheZ-axisofrotation:100̊

Origin:(2,2.25,0.545)

<LS>

Length:0.705m

Breadth:0.2m

TheZ-axisofrotation:100̊

Origin:(2,2.25,0.545)
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LS

<LS>

Length:0.705m

Breadth:0.2m

TheZ-axisofrotation:100̊

Origin:(2,2.25,0.545)

Ⅳ.TheoreticalCalculation

ComputationalFluidDynamics(CFD)iswidelyusedintheshipdesignprocess.In

particularduringtheinitialdesignstageCFD hasbecomeanimportanttool.It

enablesthedesignertoevaluatealargernumberofhullalternativesandtherebya

betteroptimizedandreliabledesignbeforethefinalvalidation.Itistruethatnotonly

fornew buildingsbutalsoforexistingshipsandretrofittingofshipenergysaving

devices.Thetoughcompetitionontheshipbuildingmarketcreateshighdemandson

shortleadtimesandcompetitivedesigns.Thismustbemetbydevelopmentsof

effectiveCFDtoolsandintegrationwithCAD(MEPD,2009).

SHIPFLOW has developed steadily since the firstversion was released by

FLOWTECH in1992..Thisprogram isoptimizedforshiphydrodynamicsdesign.

GridsfortheRANSsolversaswellasmeshesforXPANarecreatedautomatically

from thehullshape.Varioustypesofhullshapescanbehandled,suchasmonohulls,

twinskeghulls,multihulls,sailingyachtsetc.InadditiontothisSHIPFLOW usesan

efficientoverlapping grid technique for use with appendages.Resistance and
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propulsiondataarepresentedinthenavalarchitectswayandthesolversareadapted

forhullgeometries.

CFD codemakescostdownfortheevaluationandpredictionofperformanceof

ship.Comparative theoreticalcalculation has been performed by CFD code of

Shipflow forfourdifferentdesignsofStrutFinasshowninFig.4-1

DesignBF1 DesignBF2 DesignBF1+LS DesignLS

Fig.4-1FourDifferentConfigurationofEnergySavingDevice

A.FLOWSOLVERS

Computations are performed with SHIPFLOW developed at FLOWTECH

InternationalAB.Therearethreekindsofflow solversinSHIPFLOW.XCHAPis

aRANSsolverforsteadyincompressibleflow,XPAN apotentialflow solverand

XBOUNDisanintegralmethodforthinboundarylayers.Thesolverscanbeused

separatelyorincombinationdependingontheneeds.

Thezonalapproachisanefficienttechniqueformanyapplications.Themethods

areinthiscaseappliedinasequence.Thefreesurfaceandthedynamictrim are

firstcomputed by XPAN,thereafterthe boundary layeron the fore body by

XBOUND andfinally theflow aroundthestern andin thewakeby XCHAP.

Alternatively,the moregeneralglobalapproachcanbeusedwherethecomplete

flow domainiscomputedbyXCHAP.

B.Potentialflowsolver

Thepotentialflow methodXPAN isanon-linearRankinesourcepanelmethod[4].

Ituseshigherorderpanelsand singularity distributionsand anon-linearfree

surfaceboundaryconditions.

Themethod can handleliftandinduceddrag by adding dipolestothelifting

surfacesandtrailingwake.A Kuttaconditionisappliedtofindthestrengthofthe
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boundcirculation.

Dynamicsinkageand trim arecomputedduring theiterativeprocedureforthe

non-linearfree surface boundary condition.During each iteration the ship is

repositionedandthepanellizationofthehullandfreesurfaceisregenerated.

1.Boundarylayermethod

XBOUNDisafirstorderintegralmethod[5].Itcomputestheboundarylayeralong

potentialflow streamlines.Theflow can belaminarorturbulent.Themethod

includesamodelforthetransitionfrom laminartoturbulentflow.

2.RANSsolver

XCHAP solves the steady incompressible Reynolds Average Navier-Stokes

equations.Therearetwoavailableturbulencemodelsthek-w SST [6]andthe

ExplicitAlgebraicStressModelEASM [7,8].TheEASM takesthenon-isotropy

into accountusing algebraic expressions forthe Reynolds stresses containing

non-lineartermsin themean strain and rotation rates.Themodelisagood

compromisebetweenperformanceandtheabilitytopredicttheimportantvortex

flow inthesternwakeandisthereforethestandardmodelintheprogram.No

wallfunctionsareusedandtheequationsareintegrateddowntothewall.

C.MODELLINGOFTHEPROPELLER

Tosimulatetheeffectofthepropeller,bodyforcesareintroducedinacylindrical

componentgrid in the overlapping grid.When the flow passes through the

propelleritslinearandangularmomentum increasesasifithadpassedapropeller

ofinfinitenumberofblades.Theforcesvaryinspacebutareindependentoftime

andthereforeapproximatingapropellerinducedsteadyflow.

D.validation

A validationofthemethodispresentedwithcomparisonsofresistance,openwater

testandselfpropulsionsimulationsatmodelscale.

TheresistancewascomputedusingthecoarseapproachinSHIPFLOW.Thewave

resistancewascomputedbythepotentialflow moduleXPAN.

The open watercharacteristics are required in orderto make the fullscale

extrapolationusingthemodified-ITTC78procedure.SHIPFLOW canautomatically

compute an open waterThe speed ofthe propellerwas automatically adjusted

duringtheselfpropulsionsimulationsuchthatthepropellerthrustbalancedthe



- 14 -

resistance ofthe hullcorrected forthe towing force.The towing force was

computedaccordingtothemodified-ITTC78procedureandincludethemodel-ship

correlationandroughnessallowance.simulationforasequenceofadvanceratios.

1.ResistanceCalculationResult

kandctcomparedtobarehullwerealllargevalueexceptBF1+LS.

ResistancecalculationresultsarecomparedinTable.2andinFig.4-1

Table4-1Comparisonofresistancecomponents

Barehull BF1 BF2 BF1+LS LS

k 0.201 0.202 0.222 0.200 0.204

Cw 1.046*10
-3

1.046*10
-3

1.046*10
-3

1.046*10
-3

1.046*10
-3

Ct 5.266*10
-3

5.270*10
-3

5.341*10
-3

5.263*10
-3

5.279*10
-3

Fig.4-2ResistancecomponentsvsFn
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2.SelfPropulsionCalculationResult

1-w compared to barehullwerealllargevalue.In caseof1-t,compared to

barehullwereallsmallvalueexceptBF2.BF1BF1+LS,andLS comparedto

barehull washighlycalculated.BF1caseof and ,theresultswereboth

highcomparedtobarehull. hadthegreatestresultsinthevalueoftheBF2and

 hadthegreatestresultsinthevalueoftheBF1.

SelfpropulsioncalculationresultsaresummarizedinTable.4-2andinFig.4-3

Table4-2Comparisonofpropulsioncoefficient

1-w 1-t ηH ηO ηR ηD
Barehull 0.819 0.894 1.093 0.721 1.020 0.804

BF1 0.814 0.905 1.111 0.721 1.026 0.821

BF2 0.808 0.877 1.085 0.721 1.040 0.811

BF1+LS 0.817 0.904 1.107 0.721 1.026 0.818

LS 0.818 0.905 1.106 0.721 1.026 0.818

Fig.4-3Fnvspropulsioncoefficients
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Fig.4-4(a)Comparisonofpotentialflow streamlines(BareHull,sidebow view)

Fig.4-4(b)Comparisonofpotentialflow streamlines(BF1,sidebow view)

Fig.4-4(c)Comparisonofpotentialflow streamlines(BF2,sidebow view)
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Fig.4-4(d)Comparisonofpotentialflow streamlines(BF1+LS,sidebow view)

Fig.4-4(e)Comparisonofpotentialflow streamlines(LS,sidebow view)

Fig.4-5(a)ComparisonofStream line(BareHull,bottom sternview)
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Fig.4-5(b)ComparisonofStream line(BF1,bottom sternview)

Fig.4-5(c)ComparisonofStream line(BF2,bottom sternview)

Fig.4-5(d)ComparisonofStream line(BF1+LS,bottom sternview)
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Fig.4-5(e)ComparisonofStream line(LS,bottom sternview)

Fig.4-6(a)ComparisonofStream line(BareHull,persp.sternview)

Fig.4-6(b)ComparisonofStream line(BF1,persp.sternview)
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Fig.4-6(c)ComparisonofStream line(BF2,persp.sternview)

Fig.4-6(d)ComparisonofStream line(BF1+LS,persp.sternview)

Fig.4-6(e)ComparisonofStream line(LS,persp.sternview)
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Fig.4-7(a)Sternflow direction(BareHull,sternview)

Fig.4-7(b)Sternflow direction(BF1,sternview)

Fig.4-7(c)Sternflow direction(BF2,sternview)
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Fig.4-7(d)Sternflow direction(BF1+LS,sternview)

Fig.4-7(e)Sternflow direction(LS,sternview)

Fig.4-8(a)Comparisonofthe / (BareHull)
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Fig.4-8(b)Comparisonofthe / (BF1)

Fig.4-8(c)Comparisonofthe / (BF2)

Fig.4-8(d)Comparisonofthe / (BF1+LS)
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Fig.4-8(e)Comparisonofthe / (LS)

Fig.4-9(a)Comparisonofthe (BareHull)

Fig.4-9(b)Comparisonofthe (BF1)
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Fig.4-9(c)Comparisonofthe (BF2)

Fig.4-9(d)Comparisonofthe (BF1+LS)

Fig.4-9(e)Comparisonofthe (LS)
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Fig.4-10(a)Comparisonofthe (BareHull)

Fig.4-10(b)Comparisonofthe (BF1)

Fig.4-10(c)Comparisonofthe (BF2)
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Fig.4-10(d)Comparisonofthe (BF1+LS)

Fig.4-10(e)Comparisonofthe (LS)

Fig.4-11(a)Comparisonofthewakefraction(BareHull)
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Fig.4-11(b)Comparisonofthewakefraction(BF1)

Fig.4-11(c)Comparisonofthewakefraction(BF2)

Fig.4-11(d)Comparisonofthewakefraction(BF1+LS)
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Fig.4-11(e)Comparisonofthewakefraction(LS)

Fig.4-12(a)Comparisonofthevtr(BareHull)

Fig.4-12(b)Comparisonofthevtr(BF1)
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Fig.4-12(c)Comparisonofthevtr(BF2)

Fig.4-12(d)Comparisonofthevtr(BF1+LS)

Fig.4-12(e)Comparisonofthevtr(LS)
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Fig.4-13(a)Comparisonofthewake(BareHull)

Fig.4-13(b)Comparisonofthewake(BF1)

Fig.4-13(c)Comparisonofthewake(BF2)
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Fig.4-13(d)Comparisonofthewake(BF1+LS)

Fig.4-13(e)Comparisonofthewake(LS)

Fig.4-14(a)ComparisonofWakein   (BareHull)
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Fig.4-14(b)ComparisonofWakein   (BF1)

Fig.4-14(c)ComparisonofWakein   (BF2)

Fig.4-14(d)ComparisonofWakein   (BF1+LS)
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Fig.4-14(e)ComparisonofWakein   (LS)

Fig.4-15(a)ComparisonofWakein   (BareHull)

Fig.4-15(b)ComparisonofWakein   (BF1)
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Fig.4-15(c)ComparisonofWakein   (BF2)

Fig.4-15(d)ComparisonofWakein   (BF1+LS)

Fig.4-15(e)ComparisonofWakein   (LS)
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Fig.4-16(a)ComparisonofWakein   (BareHull)

Fig.4-16(b)ComparisonofWakein   (BF1)

Fig.4-16(c)ComparisonofWakein   (BF2)
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Fig.4-16(d)ComparisonofWakein   (BF1+LS)

Fig.4-16(e)ComparisonofWakein   (LS)
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Ⅴ.ModelTest

A.Testfacility

-ModeltestsarecarriedoutinthetowingtankofHiroshimaUniv.

Thetowingtankhasthefollowingmainparticulars:

Basin LⅩBⅩD 100×8(partly10)×3.5m

Carriage Speed 3m/s

Fig.5-1PhotoofTowingTankof HiroshimaUniv.



- 39 -

B.Hullmodel

ThedimensionsoffullscaleshipandmodelarepresentedinTable.5-1.

Table5-1Maindimensionofshipandmodel

scale 17

ship model

Loa 69 4.059

Lpp 57 3.353

Bmax 15 0.882

Bmould 13 0.765

Depth 2.9 0.171

draft 1.8 0.106

Fig.5-2Hullmodel

C.Propellermodel

-Manufacturedpropellermodelsareoutwardturningtwinscrew,fourbladed
propellerwithcharacteristicsasshowninTable.5-2.
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Table5-2Maincharacteristicsmodelpropeller

Characteristic Value

Diametermodelscale 0.1m

Diameterfullscale 1.7m

PitchratioP/Datr/R=0.75 0.7

BladearearatioAD/A0 0.7

Fig.5-3Propellermodel
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D.ExtrapolationbyITTC78andmodifiedITTC78method

In caseofwithoutthecomplex appendagemountedthepredictionsweremade

accordingtothe1978ITTCextrapolationmethod.

Withthecomplexappendagemountedasomewhatmodifiedwakescalingwas

used.Themethodhasbeendiscussedatthemeetingin1999ITTCandtentatively

acceptedforthecaseofevaluationofpre-swirlstatorconcepts.Thewakescaling

presumesthattestswith thesamepropellerbutwithoutthestatorhavebeen

performedaswell.Thedifferencebetweenmodeleffectivewakewithstatorand

themodelwakewithoutstatorisconsideredasapotentialwakecreatedbythe

stator.

Thehullpotentialwakeandthefrictionalwakearescaledasforthemodelwith

-outstatoraccordingtotheITTC-78method,towhichthestatorpotentialpart

isadded.Theamount0.04representsthepotentialwakecreatedbytherudderat

thelocationofthepropeller.

ThusisinthemodifiedITTC1978extrapolationthefullscalewake.

       
  ∆     

where,

"W"standsfor"withcomplexappendage"

"wo"standsfor"withoutcomplexappendage"

"m"standsfor"model"

"s"standsfor"shipscale"

"T"standsfor"thrustidentity"

Theform factorisbasedonthecasewithoutcomplexappendage.



- 42 -

E.Resultofmodeltest

Modeltesthasbeenperformedinthetowingtankwitha3.35m lengthmodelwhich

scaleis1/17.

Thefullscalewakeiscalculatedfrom themodelwake  ,and thethrust

deductiont:

×


(1)

Intheformula,thefactor0.04isusedtotakeaccountforruddereffect.Iffullscale

wake

 isgreaterthanmodelwake ,followingformulaisused.

 = (2)

Statorangle ofattack and position had been decided based upon the CFD

calculation results inflow angle and direction offlow atstatorposition.Self

propulsiontestsresultsareanalysisbymodifiedITTC 78predictionmethod.The

resultsofthepropulsiontestaresummarizedinTable.5-3forthespeedof9.5

Knots.AndthephotographsofmodeltestarepresentedinFig.5-4.
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<9Knots>

<10Knots>

Fig.5-4Photographsofmdeltest

Table5-3 Comparisonoftheresultsofself-propulsiontests

Barehull BF1 BF2

Trustdeductionfraction(t) 0.141 0.141 0.179

Shipwakefraction(w) 0.176 0.185 0.228

Hullefficiency(ηH) 1.024 1.036 1.064

Relativerotative

efficiency(ηR)
0.983 0.983 0.963

 0.550 0.560 0.513

Fig.5-5Calibrationofrpsvs

Fn
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Fig.5-6Modelwake()vs forwithandwithoutBF1

Fig.5-7 vs forWithoutBF1andWithBF1condition

Fig.5-8 vs forWithoutBF1andWithBF1condition

Fn

Fn

Fn
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Fig.5-91-tvs forWithoutBF1andWithBF1condition

Fig.5-101-w vs forWithoutBF1andWithBF1condition

Fig.5-11 vs forWithoutBF1andWithBF1condition

Fn

Fn

Fn
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Fig.5-12 vs forWithoutBF1andWithBF1condition

Fig.5-13 vs forWithoutBF1andWithBF1condition

Fig.5-14 vs forWithoutBF2andWithBF2condition

Fn

Fn

Fn
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Fig.5-151-tvs forWithoutBF2andWithBF2condition

Fig.5-161-w vs forWithoutBF2andWithBF2condition

The results show the reduction oftrust deduction coefficient(t) and wake

fraction(w)forthecaseofappended hullby which hullefficiency()increased

slightly.Therelativerotativeefficiency()decreased.Itseemsthatthislow  is

theeffectofrelativelyworseirregularwakefieldbytherotationofpropeller.

Fn

Fn
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Ⅵ.Checktheseakeepingperformance

Purposeofthisstudyispredictingthereponsesofashipinaparticularsea

state.'Responses'beingthemotionsoftheship:roll,pitch,yaw,surge,swayand

heave;aswellastheconsequencesofthesemotionssuchasbow slammingor

Green waterondeck,propelleremergence,crew andpassengerssuffering from

motion sickness,loss of cargo,etc.The prediction of these responses is

indispensibletodeterminehow goodashipiswithrespecttosea-keeping.Poor

performanceinsea-keepingmeansdifferentthingsfordifferentvessels.Reduced

fuelconsumptionandcargocapacitymeannothingoftheshipcannotperform the

taskitwasintendedtointheoceansitwasbuiltfor.

Objectivesofthisstudyarecalculatetheresponseamplitudeoperatorsofaship

for different loading conditions,configure the derived responses of a ship

(slamming,propelleremergence,etc.),obtainawavescatterdiagram representative

forthearea/voyageshareashipoperatesandpredicttheresponsesofashipin

severalseastatesandunderstandwhattheymeantortheship'soperability.

Theanalysissequenceofused software,Octopusisshown in following

Figure.Theobtaineddesignvaluesmayserveasthecriteriawhichshould

notbeexceeded during thetransportoroperation.Thecalculated models

anddesignvaluescanbeusedinOctopusOnboardgiveonboardoperational

support using the same methods and results as used in design value

calculationprocedure.
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This(statistical)dataisspecificallyaimedatdescribingthewaveenvironment.

Eitherbymeansofavoyage,whichcanbematchedinspaceandtimewitha

waveclimatedatabase,orbyascatterdiagram,orsimplyasetofdesignsea

states.

A wave scatter diagram by calculation shows the probability of a wave

combinationofHsandTz.

InputofLoading Condition is as shown in Tableand calculation resultof

LoadingConditionisasshowninfollowingFig.6-1.
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Table6-1Dimensionofship

Name Value

Mass[T] 1142.28

Draft Aft[m] 1.80
Draft Fwd[m] 1.80

LCG[m] 29.96
ZCG[m] 0.87

[m] 4.55

[m] 15.06

[m] 15.40

GM[m] 9.78

GG’[m] 0.0

Fig.6-1CalculationresultofLoadingCondition
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Externalcondition can be defined in matrixes(6x6)for mass,added mass,

damping andrestoring coeffients.Addedmass,damping andrestoring coeffients

matrixescanbedefinedforeachcombinationofspeedandencounterfrequency.If

anexternalconditionisnotdefinedrelativetothecoordinatedsystem with0point

at(APP,CL,BL)thanisnotnessecarytorecalculateallmatrixes.Thetranslationto

(APP,CL,BL)canbegivenatthedefinitionofthecoordinatesystem.

Fig.6-2Matrixesofship

A hydrodynamicanalysisstartswiththecalculationofahydrodynamicdatabase

(HDB).Thehydrodynamicdatabasedoesnotdependonparameterslikeshipmass,

viscousdamping orspring restoring parameters.Thesebecomeimportantwhen

RAO'sarecalculated.

RAO isanabreviationof'ResponseAmplitudeOperators'.TheRAO deliversthe
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Name Value

S e c t i o n a l 

Loads

Plane XZ-Plane

2.337  0

Point response
( x , y , z ) 

coordinates[m]
50 0 25

C o m b i n e d 

response

Unit n/hr

Response Factor Derive

1 None

responsemotionperunitwaveheight.CalculatingaRAO requiresahydrodynamic

database.In the Hydrodynamic database draft,speed,heading,and frequency

dependentparameterswerestored.TheRAO requiresthatrestoring parameters,

viscousdamping,andaloaddistributionareknown.Basicresponsesarealways

required.Thebasicresponsesaremotionsofthemotionreferencepoint(surge,

sway,heave,roll,pitch,yaw)

InputofRAO-responseisasshowninfollowingTable6-2.

Table6-2InputofRAO-response

Shortterm statisticsiscalculatedforthereferenceperiodgiveearlierwhensetting

up theconfigurationsand reponses.Thevaluesdisplayed in theplotswillbe

differentifanotherreferencetimeisselected.MSIreferstotheMotionSickness

StudiesdonebyO'HanlanandMcCaulytakenintoISO2631.Slammingcriteriaare

defined according tothetheory by Ochi.Notethatwhen using theslamming

operators,Slamming should also be inserted as a response in the response

configurationsincludingtherelativemotionat0.90L.Levelisusedasamaximum

value(criterion)forthediagram.Bydefaultlevelhasthevalueofcriterionas

configuredinStatisticsConfiguration.

ThecalculatedRAOispresentedinagraphicalwayasshowninfollowngfigures.



- 53 -



- 54 -



- 55 -



- 56 -



- 57 -



- 58 -

Fig.6-3CalculatedRAO
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SEAWAY isa strip theory based program to calculatethehydromechanical

parameters,wave forces,Respone Amplitude Operators,Statistics,and added

resistanceduetowaves.Thesehadtobeinvestigatedearlierbydoingtanktests.

Statisticsenableaseastatetobeproperlymodelledinasummationofaselection

ofrandom waves(frequency,height,etc).ViaknownRAO onecancalculatethe

statistics ofthe reponse ofthe vessel,motion point,etc...Before statistical

calculationscanbeperformed,seastateshouldbemodelledunderCommoninthe

projecttree.Seastatescanbemodelledinaspectrum,scatterdiagram,orcanbe

importedform a3rdparty.

Theresultsarevisibleinanumericalandgraphicalway,seetabs:General,Sea

Condition,ShortTerm andLongTerm asshowninFig.6-4.
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Fig.6-4Seacondition
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Fig.6-5Motionofship
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Ⅶ.Conclusions

Thefunctionofsternfinappendedatthesternofshipisgenerallyconsideredto

equalizewakefieldatthepropellerplanebybothdirectingflow topropellerand

reducing the wake peak attop position. When the propellerrotates in one

direction,itsperformancesofportandstarboardsidesaredifferentandthecenter

ofpressureshiftstothesidewherethepropellerbladesdownwards.Thisinturn

leadstoanon-symmetricpressuredistributiononthehullinfrontofpropeller,

whichinfluencestheboundarylayersofportandstarboarddifferently.

Thestrutfin,whichisdesignedtoguidetheflow fortheequalizationofwake

field,showed1.7% ofDHPreductionatdesignspeed.
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