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ABSTRACT

A study on the development of energy saving device
for the twin screw car ferry

Lim, Yeon Ji
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I. Introduction

Recently the whole world is working for environmental protection and energy
saving. The world has been implemented the Kyoto Protocol 2008 to 2012.
Although Korea excluded from the Kyoto Protocol since 1990 according to the
Economic growth increase in greenhouse gas emissions were more than twice. As
a result, Korea was implemented until 2020 Green Growth law and Korea's
greenhouse gas reduction target is 4% as contrast in 2005.

International Maritime Organization were discussed ship fuel regulations on 22
March 2010. According to the Fuel economy regulations (EEDI, Energy Design
Index) a new technology of vessels will lead to a new eco—friendly technology.
Ship operation causes many kinds of environmental pollution. International Maritime
Organization (IMO) has strengthened the regulation according to environmental
pollution from vessels. Eco-friendly technology, ship design, various new
technologies for the reduction of fuel should be investigated aggressively.

The more energy it consumes and energy saving technologies are essential for
developments of green ships. Solution to this problem is, in the early stage, to
design a hull form having not only the minimum resistance but also the optimum
propulsive efficiency. However, the hull forms of general ships bear long term
experience of operations which is not expected to be improved radically. Thus, it is
considered more appropriate to attach energy saving devices rather than to improve
the hull form directly. In this thesis. appendages attached a ship has been studied.
Through model tests in the towing tank, the conditions are sought in which the
appendages can reduce the ship resistance. The effects of the appendages upon the
wake distributions at a propeller plane are also investigated to clarify the
effectiveness of them on the equalizations of the distributions, which are closely
related to the ship propulsive efficiencies. It is found that appendage attached
vertically to the ship stern can accelerate flow in the region, resulting equalization

of the wake distribution. The results of CFD have been compared with the



experimental results, to validate the efficiency of appendage. To apply the results
developed to ship design, effects to the resistance characteristics and propulsive
performances of the ship should be carefully investigated. Furthermore, the
developed tools from each specific projects should be closely linked, verified and

enhanced, if to be applicable practically.

II. Design of Hull form and Appendages

The main Particulars of ship which has been used in this thesis is shown in Table
2-1

Table 2-1 Main dimension of ship

Ship
Length between perpendiculars 57m
Length at load water line 60.23m
Breadth 13m
Depth 29m
Design Draft 1.8m




Fig. 2-1 Lines of car ferry

Fig. 2-2 modeling of Hull



BF1 has been attached on the right side of the Y-shaped strut with a 650mm
length of the plate, 450 * 200mm size, with a 100° angle from the central axis of
the shaft of the stator is attached. 3D design are confirmed in Fig. 2-3~2-6

Fig. 2-3 3D model of Bracket Finl(BF1)

Fig. 2-4 3D model of Bracket Fin2(BF2)



Fig. 2-5 3D model of Bracket Finl+Long stator(BF1+LS)

Fig. 2-6 3D model of Long stator(LS)



. Development of Energy Saving Device

Despite of continuous efforts of scientists and engineers in finding the better hull form, the
performance improvement by hull form improvement itself has its limitations in many cases.

So, the extensive activities on the development of energy saving devices are still on their progress and
utilized in the actual ships (Lee et al., 1992).

One of the most applicable to energy saving in ships will be pre-swirl stator for which variations are
shown in following Fig. 3-1

Fig. 3-1 Pre-swirl stator
Conventional pre-swirl stator consists of several fins which have almost the same span length as the
propeller radius and are fixed radially on the stern frame in front of the propeller.

The setting angles of the conventional horizontal fins were fixed to control mainly the flow near

the fin tip. In this case, the fin did not control properly the flow field near the fin root by the
presence of longitudinal vortex due to the ship hull, rather deteriorated the propulsive efficiency. By
adopting the horizontal fins of almost half-length of propeller radius, it may contribute to can
control the flow field only near the stern frame and then get almost equal effect to the
conventional fin. Furthermore, the bent plate on the edge of strut generate the counter flow to the
propeller turning direction. That is, as shown in Fig.3-2, this new pre-swirl type energy-saving
device consists of two fins. This device is named “Strut Fin”, which also can enhance the safety

for a drift obstacle such as wood or timber, and reduce manufacturing cost.



Fig. 3-2 Strut Fin

Against the stern flow mechanism, the design of the stern fin generally plays a role

as flow guiding device making a wake field near the upper part of the propeller plane
uniform by both deflecting flow toward propeller and reducing the wake peak at
propeller top position.

When the propeller rotates in one specific direction, its performances on port and
starboard side are different and the pressure center shifts to the side where the
propeller blades move downwards.

This in turn leads to a asymmetric pressure distribution on the hull in front of the
propeller, which influences the boundary layers on port and starboard side differently.
The idea in the design of Strut Fin is to reflect the stern vortices which move
upwards in the region the propeller rotates downwards. This reflecting may reduce
the wake near propeller tip and contribute to the equalization of wake field, thus may
lead to a positive gain in propulsion efficiency. In case of a clockwise turning more
separation occurs on port side above the propeller shaft where the propeller blades
move upwards. The flow becomes turbulent and is even partly deflected in the
opposite direction. From this point of view developed appendage might contribute
towards the reflection of vortex flow which moves upwards in the region where
propeller blades move downwards, by which the increase of propulsive efficiency
might be attained.

The dimensions of full scale energy saving device are presented in Table. 3-1



Table 3-1 The config of energy saving device

BF1
<End plate> <Fin>
Length : 0.65m Length : 0.45m
Breadth : 0.2m Breadth : 0.3m
The Z-axis of rotation : 42° The Z-axis of rotation : 100°
Origin : (1.65, 1.68, 1.5) Origin : (2, 2.25, 0.545)
BF2

<End plate> <End plate 2> <Fin>

Length : 0.65m Length : 0.65m Length : 0.45m

Breadth : 0.2m Breadth : 0.2m Breadth : 0.3m

The Z-axis of rotation The Z-axis of rotation The Z-axis of rotation

427 D42 : 1007

Origin : (1.65, 1.68, 1.5) The X-axis of rotation Origin : (2, 2.25, 0.545)
0 80°

Origin : (168, 2.7, 1.5)




BF1+LS

<End plate>
Length : 0.65m
Breadth : 0.2m

The Z-axis of rotation : 42°
Origin :

<LS>

(1.65, 1.68, 1.5)

Length : 0.705m
Breadth : 0.2m

The Z-axis of rotation :

Origin :

(2, 2.25, 0.545)

BASE LINE

<Fin>

Length : 0.45m

Breadth : 0.3m

The Z-axis of rotation : 100°
Origin @ (2, 2.25, 0.545)

L=R(1770)-Boss(360)/2=705

100°

_10_
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5 A

L=R(1770)-Boss(360)/2=705

LS

<LS>

Length : 0.705m

Breadth : 0.2m

The Z-axis of rotation : 100°
Origin : (2, 2.25, 0.545)

IV. Theoretical Calculation

Computational Fluid Dynamics (CFD) is widely used in the ship design process. In
particular during the initial design stage CFD has become an important tool. It
enables the designer to evaluate a larger number of hull alternatives and thereby a
better optimized and reliable design before the final validation. It is true that not only
for new buildings but also for existing ships and retro fitting of ship energy saving
devices. The tough competition on the shipbuilding market creates high demands on
short lead times and competitive designs. This must be met by developments of
effective CFD tools and integration with CADMEPD, 2009).

SHIPFLOW has developed steadily since the first version was released by
FLOWTECH in 1992. . This program is optimized for ship hydrodynamics design.
Grids for the RANS solvers as well as meshes for XPAN are created automatically
from the hull shape. Various types of hull shapes can be handled, such as monohulls,
twin skeg hulls, multihulls, sailing yachts etc. In addition to this SHIPFLOW uses an

efficient overlapping grid technique for use with appendages. Resistance and

_11_



propulsion data are presented in the naval architects way and the solvers are adapted
for hull geometries.

CFD code makes cost down for the evaluation and prediction of performance of
ship. Comparative theoretical calculation has been performed by CFD code of

Shipflow for four different designs of Strut Fin as shown in Fig. 4-1

Design BF1 Design BF2 Design BF1+LS Design LS
Fig. 4-1 Four Different Configuration of Energy Saving Device

A.FLOWSOLVERS

Computations are performed with SHIPFLOW developed at FLOWTECH
International AB. There are three kinds of flow solvers in SHIPFLOW. XCHAP is
a RANS solver for steady incompressible flow, XPAN a potential flow solver and
XBOUND is an integral method for thin boundary layers. The solvers can be used
separately or in combination depending on the needs.

The zonal approach is an efficient technique for many applications. The methods
are in this case applied in a sequence. The free surface and the dynamic trim are
first computed by XPAN, thereafter the boundary layer on the fore body by
XBOUND and finally the flow around the stern and in the wake by XCHAP.
Alternatively, the more general global approach can be used where the complete
flow domain is computed by XCHAP.

B.Potentialflowsolver

The potential flow method XPAN is a non-linear Rankine source panel method [4].
It uses higher order panels and singularity distributions and a non-linear free
surface boundary conditions.

The method can handle lift and induced drag by adding dipoles to the lifting
surfaces and trailing wake. A Kutta condition is applied to find the strength of the

_12_



bound circulation.

Dynamic sinkage and trim are computed during the iterative procedure for the
non-linear free surface boundary condition. During each iteration the ship is
repositioned and the panellization of the hull and free surface is regenerated.

1. Boundary layer method

XBOUND is a first order integral method [5]. It computes the boundary layer along
potential flow streamlines. The flow can be laminar or turbulent. The method
includes a model for the transition from laminar to turbulent flow.

2. RANS solver

XCHAP solves the steady incompressible Reynolds Average Navier—-Stokes
equations. There are two available turbulence models the k-w SST [6] and the
Explicit Algebraic Stress Model EASM [7,8]. The EASM takes the non-isotropy
into account using algebraic expressions for the Reynolds stresses containing
non-linear terms in the mean strain and rotation rates. The model is a good
compromise between performance and the ability to predict the important vortex
flow in the stern wake and is therefore the standard model in the program. No
wall functions are used and the equations are integrated down to the wall.
C.MODELLINGOFTHEPROPELLER

To simulate the effect of the propeller, body forces are introduced in a cylindrical
component grid in the overlapping grid. When the flow passes through the
propeller its linear and angular momentum increases as if it had passed a propeller
of infinite number of blades. The forces vary in space but are independent of time
and therefore approximating a propeller induced steady flow.

D.validation

A validation of the method is presented with comparisons of resistance, open water
test and self propulsion simulations at model scale.

The resistance was computed using the coarse approach in SHIPFLOW. The wave
resistance was computed by the potential flow module XPAN.

The open water characteristics are required in order to make the full scale
extrapolation using the modified-ITTC78 procedure. SHIPFLOW can automatically
compute an open waterThe speed of the propeller was automatically adjusted

during the self propulsion simulation such that the propeller thrust balanced the
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resistance of the hull corrected for the towing force. The towing force was
computed according to the modified-ITTC78 procedure and include the model-ship
correlation and roughness allowance. simulation for a sequence of advance ratios.

1. Resistance Calculation Result

k and ct compared to barehull were all large value except BF1+LS.

Resistance calculation results are compared in Table. 2 and in Fig. 4-1

Table 4-1 Comparison of resistance components

Bare hull BF1 BF2 BF1+LS LS
k 0.201 0.202 0.222 0.200 0.204
Cw 1.046%10° | 1.046%10° | 1.046%10° | 1.046%10° | 1.046%10°
Ct 5.266%10° | 5270%10° | 5.341%10° | 5.263%10° | 5.279%10°
7
g s :
- ‘____———-—A —4— Bare Hull
5 ¢ e ————
m TCof
Bare Hull
1 #-BF1
B T(ofBF1
3 —— 0

—
A ~B-8F2
CWH—’—f » B TCofBF2

§
B ? z o 0

0.187 0.207 0.228 0.238 0248 ShipSpesd (Fn|

Fig. 4-2 Resistance components vs Fn

_14_



2. Self Propulsion Calculation Result

1-w compared to barehull were all large value. In case of 1-t, compared to
barehull were all small value except BF2. BF1 BF1 + LS, and LS compared to
barehull 7, was highly calculated. BF1 case of 5, and 75, the results were both
high compared to barehull. n, had the greatest results in the value of the BF2 and
np had the greatest results in the value of the BF1.

Self propulsion calculation results are summarized in Table. 4-2 and in Fig. 4-3

Table 4-2 Comparison of propulsion coefficient

1-w 1-t nu no nr o
Bare hull 0.819 0.894 1.093 0.721 1.020 0.804
BF1 0.814 0.905 1.111 0.721 1.026 0.821
BEF2 0.808 0.877 1.085 0.721 1.040 0.811
BF1+LS 0.817 0.904 1.107 0.721 1.026 0.818
LS 0.818 0.905 1.106 0.721 1.026 0.818
1
08
=& Bare Hull
08 : . - TCof
1-w = B i L Bare Hull
07 ~#-BF1
06 B TCoiBF1
T}D % —§-BF2
05 . = —
p TCofBF2
04
0 T T T T 1

0.201 0212 0112 0.233 0.243  ShipSpeed|(fn)

Fig. 4-3 Fn vs propulsion coefficients
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SHIPFLOW SHIPFLOW

Fig. 4-4(a) Comparison of potential flow streamlines (Bare Hull, side bow view)
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SHIPFLOW SHIPFLOW
Fig. 4-4(b) Comparison of potential flow streamlines (BF1, side bow view)
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SHIPFLOW SHIPFLOW

Fig. 4-4(c) Comparison of potential flow streamlines (BF2, side bow view)
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SHIPFLOW SHIPFLOW

Fig. 4-4(d) Comparison of potential flow streamlines (BF1+LS, side bow view)
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Fig. 4-4(e) Comparison of potential flow streamlines (LS, side bow view)
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SHIPFLOW SHIPFLOW
Fig. 4-5(a) Comparison of Stream line(Bare Hull, bottom stern view)
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SHIPFLOW SHIPFLOW
Fig. 4-5(b) Comparison of Stream line(BF1, bottom stern view)

065

SHIPFLOW SHIPFLOW
Fig. 4-5(c) Comparison of Stream line(BF2, bottom stern view)

050 070

SHIPFLOW SHIPFLOW
Fig. 4-5(d) Comparison of Stream line(BF1+LS, bottom stern view)
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SHIPFLOW SHIPFLOW
Fig. 4-5(e) Comparison of Stream line(LS, bottom stern view)
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Fig. 4-6(a) Comparison of Stream line(Bare Hull, persp. stern view)
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Fig. 4-6(b) Comparison of Stream line(BF1, persp. stern view)
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SHIPFLOW SHIPFLOW

Fig. 4-6(c) Comparison of Stream line(BF2, persp. stern view)

SHIPFLOW SHIPFLOW

Fig. 4-6(d) Comparison of Stream line(BF1+LS, persp. stern view)

SHIPFLOW SHIPFLOW

Fig. 4-6(e) Comparison of Stream line(LS, persp. stern view)
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SHIPFLOW SHIPFLOW

Fig. 4-7(a) Stern flow direction(Bare Hull, stern view)
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SHIPFLOW SHIPFLOW
Fig. 4-7(b) Stern flow direction(BF1, stern view)
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SHIPFLOW SHIPFLOW
Fig. 4-7(c) Stern flow direction(BF2, stern view)

_21_



SHIPFLOW SHIPFLOW
Fig. 4-7(d) Stern flow direction(BF1+LS, stern view)

| I | I
SHIPFLOW SHIPFLOW

Fig. 4-7(e) Stern flow direction(LS, stern view)
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Fig. 4-8(a) Comparison of the Vj /V, (Bare Hull)

_22_



Radi velocly rafo VRIVO ()

"Zngle of pSition (ced)

Fig. 4-8(b) Comparison of the V, /V,
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Fig. 4-8(c) Comparison of the Vj /V,
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(BF2)

"ngle of pEsition (ded)

Fig. 4-8(d) Comparison of the Vj /V,
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Fig. 4-8(e) Comparison of the V, /V, (LS)
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Fig. 4-9(a) Comparison of
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Fig. 4-9(b) Comparison
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of the V;/V, (BF1)
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Fig. 4-9(c) Comparison of the V;/V, (BF2)

Tongentalveloctyrato VO

Tongentalvelocly ratlo VI/VO )

W @ “ - Angle of position (ed)’

Fig. 4-9(d) Comparison of the V;/V, (BF1+LS)
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Fig. 4-9(e) Comparison of the V;/V, (LS)
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Fig. 4-10(a) Comparison of the V;,/V, (Bare Hull)
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Fig. 4-10(b) Comparison of the Viyz/V, (BF1)
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Fig. 4-10(c) Comparison of the V;p/V, (BF2)
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Fig. 4-10(d) Comparison of the Vi;/V, (BF1+LS)
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Fig. 4-10(e) Comparison of the Vgp/V, (LS)
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Fig. 4-11(a) Comparison of the wakefraction (Bare Hull)
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Fig. 4-11(b) Comparison of the wakefraction (BF1)
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Fig. 4-11(c) Comparison of the wakefraction (BF2)
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Fig. 4-11(d) Comparison of the wakefraction (BF1+LS)
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Fig. 4-13(b) Comparison of the wake (BF1)
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Fig. 4-13(c) Comparison of the wake (BF2)
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Fig. 4-13(d) Comparison of the wake (BF1+LS)
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Fig. 4-13(e) Comparison of the wake (LS)
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Fig. 4-14(a) Comparison of Wake in U,_, (Bare Hull)
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Fig. 4-14(b) Comparison of Wake in U,_,; (BFI)
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Fig. 4-14(d) Comparison of Wake in U,_, (BF1+LS)
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Fig. 4-14(e) Comparison of Wake in U, _, (LS)
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Fig. 4-15(a) Comparison of Wake in U,_, (Bare Hull)
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Fig. 4-15(b) Comparison of Wake in U,_, (BF1)
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Fig. 4-15(c) Comparison of Wake in U,_, (BF2)
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Fig. 4-15(d) Comparison of Wake in U,_, (BF1+LS)
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Fig. 4-15(e) Comparison of Wake in U, _, (LS)
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Fig. 4-16(a) Comparison of Wake in U,_, (Bare Hull)
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Fig. 4-16(b) Comparison of Wake in U,_, (BF1)
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Fig. 4-16(c) Comparison of Wake in U,_, (BF2)
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Fig. 4-16(d) Comparison of Wake in U,_, (BF1+LS)
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Fig. 4-16(e) Comparison of Wake in U,_, (LS)

_37_



V. Model Test

A. Test facility

- Model tests are carried out in the towing tank of Hiroshima Univ.

The towing tank has the following main particulars:

Basin

LXBXD

100x8(partly10)x3.5m

Carriage Speed

3m/s

Fig. 5-1 Photo of Towing Tank of Hiroshima Univ.
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B. Hull model

The dimensions of full scale ship and model are presented in Table. 5-1.

Table 5-1 Main dimension of ship and model

scale 17
ship model
Loa 69 4.059
Lpp 57 3.353
Bmax 15 0.882
Bmould 13 0.765
Depth 2.9 0.171
draft 1.8 0.106

Fig. 5-2 Hull model

C. Propeller model

- Manufactured propeller models are outward turning twin screw, four bladed
propeller with characteristics as shown in Table. 5-2.
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Table 5-2 Main characteristics model propeller

Characteristic Value

Diameter model scale 0.1 m

Diameter full scale 1.7 m
Pitch ratio P/D at r/R = 0.75 0.7
Blade area ratio AD/A0 0.7

B N —— P

Fig. 5-3 Propeller model
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D. Extrapolation by ITTC78 and modified ITTC78 method

In case of without the complex appendage mounted the predictions were made
according to the 1978 ITTC extrapolation method.

With the complex appendage mounted a somewhat modified wake scaling was
used. The method has been discussed at the meeting in 1999 ITTC and tentatively
accepted for the case of evaluation of pre-swirl stator concepts. The wake scaling
presumes that tests with the same propeller but without the stator have been
performed as well. The difference between model effective wake with stator and
the model wake without stator is considered as a potential wake created by the

stator.

The hull potential wake and the frictional wake are scaled as for the model with
—-out stator according to the ITTC - 78 method, to which the stator potential part
1s added. The amount 0.04 represents the potential wake created by the rudder at

the location of the propeller.

Thus is in the modified ITTC 1978 extrapolation the full scale wake.

Wiy = (ty, +0.04) + (Wy,,, — (£, +0.04))

wo wo

* [(1 + k)CFs +A CFs/(l + k)CFm] + [Wme - Wmeo]
where,
"W"” stands for "with complex appendage”
"wo" stands for "without complex appendage”
"m” stands for "model”
"s" stands for "ship scale”
"T"” stands for "thrust identity”

The form factor is based on the case without complex appendage.
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E. Result of model test

Model test has been performed in the towing tank with a 3.35m length model which
scale is 1/17.
The full scale wake is calculated from the model wake Wy, , and the thrust

deduction t :

Cr,+Cy

E\I(’

(1)

Wog= (t+0.04) 4+ (W, —t—0.04)

In the formula, the factor 0.04 is used to take account for rudder effect. If full scale
wake

Wy is greater than model wake W, , following formula is used.

Wrr = Wrs 2)

Stator angle of attack and position had been decided based upon the CFD
calculation results inflow angle and direction of flow at stator position. Self
propulsion tests results are analysis by modified ITTC 78 prediction method. The
results of the propulsion test are summarized in Table. 5-3 for the speed of 9.5

Knots. And the photographs of model test are presented in Fig. 5-4.
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< 10 Knots >
Fig. 5-4 Photographs of mdel test

Table 5-3 Comparison of the results of self-propulsion tests

Bare hu“F‘ BF1 BF2
n
Trust deduction fraction(t) 0.141 0.141 0.179
Ship wake fraction(w) 0.176 0.185 0.228
Hull efficiency(nm) 1.024 1.036 1.064
Relative rotative
o 0.983 0.983 0.963
efficiency(ng)
np 0.550 0.560 0.513
25.00
2400
23.00
22.00 ' | | i
21.00 =
i I I I —
=l I I I /{
19.00 : : =
1200 ! _ !
17.00
16.00
15.00 /(

020 021 022 023 024 023 026 027 028 022 030

Fig. 5-5 Calibration of rps vs F,

T
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E0.18 = e
® 017 i d— A
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016
013 Fn
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Fig. 5-6 Model wake(w,,) vs for with and without BF1
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013
“\o\‘H
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Fig. 5-7 t,, vs F, for Without BF1 and With BF1 condition

0383

080 Fn
020 021 022 023 024 025 ueo 027 028 020 030

Fig. 5-8 n, vs F, for Without BF1 and With BF1 condition
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Fig. 5-9 1-t vs F, for Without BF1 and With BF1 condition
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Fig. 5-10 1-w vs F, for Without BF1 and With BF1 condition
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Fig. 5-11 5, vs F, for Without BF1 and With BF1 condition
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Fig. 5-12 n, vs F, for Without BF1 and With BF1 condition
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Fig. 5-13 5, vs F, for Without BF1 and With BF1 condition
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Fig. 5-14 5, vs F, for Without BF2 and With BF2 condition
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Fig. 5-15 1-t vs F, for Without BF2 and With BF2 condition
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Fig. 5-16 1-w vs F, for Without BF2 and With BF2 condition

The results show the reduction of trust deduction coefficient(t) and wake
fraction(w) for the case of appended hull by which hull efficiency(ny)increased
slightly. The relative rotative efficiency(n) decreased. It seems that this low n, is

the effect of relatively worse irregular wake field by the rotation of propeller.
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VI. Check the seakeeping performance

Purpose of this study is predicting the reponses of a ship in a particular sea
state. 'Responses’ being the motions of the ship: roll, pitch, yaw, surge, sway and
heave; as well as the consequences of these motions such as bow slamming or
Green water on deck, propeller emergence, crew and passengers suffering from
motion sickness, loss of cargo, etc. The prediction of these responses 1is
indispensible to determine how good a ship is with respect to sea—keeping. Poor
performance in sea-keeping means different things for different vessels. Reduced
fuel consumption and cargo capacity mean nothing of the ship cannot perform the
task it was intended to in the oceans it was built for.

Objectives of this study are calculate the response amplitude operators of a ship
for different loading conditions, configure the derived responses of a ship
(slamming, propeller emergence, etc.), obtain a wave scatter diagram representative
for the area/voyage share a ship operates and predict the responses of a ship in

several sea states and understand what they mean tor the ship’s operability.

The analysis sequence of used software, Octopus is shown in following
Figure. The obtained design values may serve as the criteria which should
not be exceeded during the transport or operation. The calculated models
and design values can be used in Octopus Onboard give onboard operational
support using the same methods and results as used in design value

calculation procedure.
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This (statistical) data is specifically aimed at describing the wave environment.
Either by means of a voyage, which can be matched in space and time with a
wave climate database, or by a scatter diagram, or simply a set of design sea

states.

A wave scatter diagram by calculation shows the probability of a wave
combination of Hs and Tz.
Input of Loading Condition is as shown in Table and calculation result of

Loading Condition is as shown in following Fig. 6-1.
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Table 6-1 Dimension of ship

Name Value
Mass|[T] 1142.28
Draft Aft[m] 1.80
Draft Fwd[m] 1.80
LCG[m] 29.96
ZCG[m] 0.87
A, [m] 4.55
A, [m] 15.06
R, [m] 15.40
GM[m] 9.78
GG’ [m] 0.0
T
L Mass 1100 T
- R m |
.“Jnhl.-l;.ri 1050 S00 i 0% 000 0
¥ pos#tion [m]

Fig. 6-1 Calculation result of Loading Condition
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External condition can be defined in matrixes(6x6) for mass, added mass,
damping and restoring coeffients. Added mass, damping and restoring coeffients
matrixes can be defined for each combination of speed and encounter frequency. If
an external condition is not defined relative to the coordinated system with O point
at (APP,CL,BL) than is not nessecary to recalculate all matrixes. The translation to

(APP,CL,BL) can be given at the definition of the coordinate system.

Fig. 6-2 Matrixes of ship

A hydrodynamic analysis starts with the calculation of a hydrodynamic database
(HDB). The hydrodynamic database does not depend on parameters like ship mass,
viscous damping or spring restoring parameters. These become important when
RAQ’s are calculated.

RAO is an abreviation of 'Response Amplitude Operators’. The RAO delivers the
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response motion per unit wave height. Calculating a RAO requires a hydrodynamic
database. In the Hydrodynamic database draft, speed, heading, and frequency
dependent parameters were stored. The RAO requires that restoring parameters,
viscous damping, and a load distribution are known. Basic responses are always
required. The basic responses are motions of the motion reference point (surge,
sway, heave, roll, pitch, yaw)

Input of RAO-response is as shown in following Table 6-2.

Table 6-2 Input of RAO-response

Name Value
SectionallPlane XZ-Plane
Loads 2.337 0
. ( x , v , z )
Point response ) 50 0 25
coordinates[m]
Unit n/hr
C b i d
cmblne Response Factor Derive
response
1 None

Short term statistics is calculated for the reference period give earlier when setting
up the configurations and reponses. The values displayed in the plots will be
different if another reference time is selected. MSI refers to the Motion Sickness
Studies done by O'Hanlan and McCauly taken into ISO2631. Slamming criteria are
defined according to the theory by Ochi. Note that when using the slamming
operators, Slamming should also be inserted as a response in the response
configurations including the relative motion at 0.90L. Level is used as a maximum
value (criterion) for the diagram. By default level has the value of criterion as
configured in Statistics Configuration.

The calculated RAO is presented in a graphical way as shown in followng figures.
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SEAWAY 1is a strip theory based program to calculate the hydromechanical
parameters, wave forces, Respone Amplitude Operators, Statistics, and added
resistance due to waves. These had to be investigated earlier by doing tank tests.
Statistics enable a sea state to be properly modelled in a summation of a selection
of random waves (frequency, height, etc). Via known RAO one can calculate the
statistics of the reponse of the vessel, motion point, etc.. Before statistical
calculations can be performed, sea state should be modelled under Common in the
project tree. Sea states can be modelled in a spectrum, scatter diagram, or can be

imported form a 3rd party.

The results are visible in a numerical and graphical way, see tabs: General, Sea

Condition, Short Term and Long Term as shown in Fig. 6-4.
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Fig. 6-4 Sea condition
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VII. Conclusions

The function of stern fin appended at the stern of ship is generally considered to
equalize wake field at the propeller plane by both directing flow to propeller and
reducing the wake peak at top position. When the propeller rotates in one
direction, its performances of port and starboard sides are different and the center
of pressure shifts to the side where the propeller blades downwards. This in turn
leads to a non-symmetric pressure distribution on the hull in front of propeller,
which influences the boundary layers of port and starboard differently.

The strut fin, which 1s designed to guide the flow for the equalization of wake
field, showed 1.7% of DHP reduction at design speed.
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