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초  록 
 

공개키 암호 구현을 위한 모듈로 k2 의 역원 연산 방법 
 
 

Anish Bahadur Amatya 
지도 교수: 김영식, 교수, Ph. D. 

정보통신공학과, 대학원 조선 대학교 
 
 

오늘날 공개키 암호 시스템은 정보 보호 프로토콜을 구현함에 있어서 부인방지 기능과 

같은 필수적인 기능을 제공한다. 그러나 공개키 암호 시스템은 비밀키 시스템에 비해서 

더 긴 비밀정보의 길이를 갖고 있을 뿐만 아니라, 암호화 및 복호화를 수행하는데 있어 

더 많은 연산량을 필요로 한다는 문제를 갖고 있다. 일반적으로 공개키 암호 시스템은 

모듈러 덧셈, 뺄셈, 곱셈, 및 역원 연산을 일정 순서에 따라 수행하게 된다. 이러한 

연산을 효율적으로 수행하기 위해서 Montgomery 모듈러 곱셈이나 Jebelean 의 

정확한 나눗셈 기법과 같은 것들이 사용된 바 있다. 그 중에서 모듈러 역원은 입력의 

크기가 클 때 많은 시간을 소모하고, 계산이 복잡한 과정으로 잘 알려져 있다. Arazi 와 

Qi 는 재귀적인 방식으로 역원을 구할 수 있도록 하나의 변수를 반으로 분할하여 2 의 

거듭 제곱 형태의 모듈러스를 갖는 역원 연산을 효율적으로 수행할 수 있는 알고리즘을 

제안한 바 있다. 

  

이 논문에서는 Arazi 와 Qi 의 방법을 변경하여 특별한 경우에 더욱 효율적인 연산이 

수행한 단순화된 알고리즘을 제안한다. 연산에 사용되는 숫자들이 특별한 구조를 갖는 

경우 연산 알고리즘은 보다 단순화될 수 있고, 그 결과 재귀적 과정이 제거되어 

고속으로 효율적인 연산을 수행할 수 있다는 사실을 밝혀 내었다. 시뮬레이션 결과에 

따르면 새롭게 제안한 알고리즘은 2 의 거듭 제곱 형태의 모듈러스를 갖는 역원 연산을 

기존의 Arazi 와 Qi 가 제안한 방식뿐만 아니라, Dusse 및 Kaliski 의 연산 법, 직접적인 

연산 법, 그리고 확장된 유클리드 알고리즘 보다 더 빠르게 연산할 수 있다는 사실을 

확인할 수가 있었다. 그러나 이러한 고속의 성능은 입력되는 숫자가 특별한 구조를 취한 

경우에만 달성될 수 있다는 제약을 갖는다. 하지만 암호학적 연산의 경우에는 이 

논문에서 가정한 특별한 구조를 갖는 숫자를 이용하는 경우가 많이 있기 때문에, 이 

논문에 따르면 그러한 연산의 경우 보다 효율적인 고속 연산이 가능한 것을 확인할 

수가 있다. 
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ABSTRACT 
 

On the Method of Inverse Modulo k2  for PKC Implementations 
  

 
Anish Bahadur Amatya 

Advisor: Prof. Young-Sik Kim, Ph.D. 

Department of Information and  

Communications Engineering, 

Graduate School of Chosun University 

 

 

Public key crypto-systems (PKCs) offer powerful and convenient methods for 

implementation of information security, since we do not need to disseminate a common 

secret key before starting communication. However, PKCs require more computational 

resources and also need to have a key of larger size for the system to be as secure as secret 

key crypto-systems. Most PKCs are based on modular operations such as modular addition, 

subtraction, multiplication and inversion. Among them, modular inversion is a relatively 

more time consuming and computationally complicated process, especially when the size of 

the input is large. A special case is inverse modulo power of 2 which is needed in the 

algorithms required for PKC implementations, such as Montgomery modular multiplication 

and Jebelean’s exact division method. Arazi and Qi have proposed an efficient algorithm for 

calculation of inversion modulo power of 2, which recursively divides a number into halves 

in order to find the required inverse.  

 

This thesis gives a detail description of the method as well as proposes a simplification. 

A special structure of numbers is introduced, which helps to eliminate the recursion process, 
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hence making the algorithm simpler, execute faster and computationally more efficient. It 

shows that the calculation of inverse modulo a power of 2 can be done faster than the 

method proposed by Arazi and Qi, as well as faster than popular methods such as Dusse and 

Kaliski’s method, straight forward method and extended Euclidean method. However, in 

their binary representation the input numbers should confirm to a special structure.



- 1 - 
 

I. Introduction 
 

Communication is a very important aspect of life. It is the process by which we can send 

information from one person or place to another. It can be done in many different ways. A 

simple practical example is direct communication, such as talking in front the recipient, or 

telling them the required information through a telephone. Another way is written 

communication, for example, writing a letter or sending an email. In any communication 

system, information is produced at the source and changed into a form suitable for 

transmission through the channel. At the receiver, the signal is recovered through appropriate 

processing [1]. In its most simplified form, a communication system consists of a source, a 

communication channel and a destination. 

 
Fig. 1.1 Communication system block diagram 

 
Fig. 1.1 shows the most basic blocks in a communication system. However, in most of 

the cases the notion of secure communication is also equally important. The communication 

channel not only provides a chance for loss or damage of information, but also a possible theft 

of information. A channel where there is a possibility of loss of information, damage to the 

data being transferred or even simply tapping of information, is referred to as an insecure 

channel while a channel with no such adversary is called a secure channel [2]. We must note 

that a secure channel is an ideal channel and its practical realization may not be feasible. In 

most of the cases the channel may have interferences which may be due to an inherent 
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property of the channel [1] as well as introduced artificially. Hence a way to protect our data 

from such interferences for reliable data transfer is mandatory. Information security, 

cryptography in particular, provides a way to protect the transmitted data from such 

introduced interferences, as well as attempts to hide the information being transferred from 

unauthorized entities that may be present in the channel. The basic service it provides is the 

ability to send information between participants in a way that prevents others from reading it 

[3]. 

 

A.  Thesis Motivation and Overview 
 

Cryptography involves the process of encryption, which is the process of converting 

information in readable form into data in incomprehensible form. Although the 

incomprehensible data may be read, it should be very difficult (and ideally impossible) for an 

unauthorized entity to be able to re-obtain the initial readable information from it. Moreover it 

should be relatively easy for the intended recipients of the message to be able to decipher the 

incomprehensible data into readable information. This is achieved by passing the information 

to be transferred through an encryption routine. It changes the input information consisting of 

alphabets from a finite set into a sequence of alphabets in another finite set (or usually, the 

same set). The algorithm used for this conversion is publicly known. However, the values that 

a given input converts to, is determined by another piece of information associated with the 

algorithm, known as a key. This can also be expressed mathematically. Let A denote a finite 

set called the alphabet of definition. An example would be }1,0{ , which is the binary 

alphabet. M denotes a set called message space which consists of strings of symbols from the 

alphabet of definition. An element of this set is called plaintext. C denotes a set called the 

ciphertext space. It consists of strings of symbols from the alphabet of definition, which may 

differ from the alphabet of definition for .M An element of this set is called a ciphertext. K
denotes a set called key space and an element of this is called a key.  

 

Each element Ke determines a one-to-one transformation from M to C , denoted by

eE , called an encryption function or an encryption transformation. For each ,Kd  dD  
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denotes a bijection from C  to .M dD  is called a decryption function or decryption 

transformation. The process of applying the transformation eE  to a message Mm is called 

encryption and the application of the transformation dD  to a ciphertext c to obtain m is 

called decryption [4]. An encryption scheme consists of }:{ eEe  of encryption 

transformations and a corresponding set }:{ dDd of decryption transformations with the 

property that for each Ke  there is a unique key Kd  such that ;1 ed ED  that is, 

mmED ed ))((  for all .Mm  An encryption scheme is sometimes referred to as a cipher. 

The keys e and d  in the preceding definition are referred to as a key pair and sometimes 

denoted by ),( de [4]. If the key used in changing comprehensible data into incomprehensible 

form (encryption) and vice versa (decryption) is the same, then the method is known as 

Symmetric or Private Key Cryptosystem. If the keys used are different, then the method is 

known as Asymmetric Key Cryptosystem. Normally the key used for decryption is kept secret 

by the receiver while the key used for encryption is publicly known. Hence this system is also 

known as Public Key Cryptosystem. 

 
Public Key Cryptosystem or PKC obviously provides ease of use as the need to securely 

transfer a secret key to the communicating parties is not necessary. However, to achieve a 

level of security same as that or higher than Symmetric Key Cryptosystems, PKC requires 

keys of much larger bit length. The larger the bit length of the key, the more secure the 

algorithm is. But the higher bit length also contributes to significant increase in the algorithm 

execution time. If a method of reducing this time of execution can be developed, it will make 

the practical implementation and deployment of PKCs highly efficient. This thesis attempts to 

provide some background information on PKC, the different algorithms popular in PKC 

implementation and how the speedup of the implementation of one such algorithm may be 

obtained, on the basis of certain mathematical conditions being met. 
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B. Research Objectives 
 

Some disadvantages associated with PKCs are the complexity of the algorithms, large 

size keys and hence the longer execution time. These are also the reasons why they are mainly 

used for key transfer or digital signatures instead of actual data encryption. The most 

commonly used PKC systems utilize the RSA encryption scheme based on the hardness of 

factoring a large number with large prime factors. Other methods such as Diffie-Hellman Key 

exchange, based on the discrete logarithm problem are also available. The common 

characteristic between the various algorithms is that they require operations based on modular 

mathematics. Modular addition and subtraction algorithms are easy to understand and 

implement and are considered easier to implement. Algorithms for operations like division, 

multiplication and inversion are much harder and significantly more time consuming, 

especially when large size numbers are used. 

 

Many algorithms have been developed that help to increase the speed of execution of 

such modular operations, mainly modular multiplication, division and inversion. However, as 

the bit length of the input numbers keep on increasing for higher level of security, methods to 

further increase the speed of execution must also be devised. 

 

This study mainly focuses on improving the implementation of PKCs by increasing the 

speed of calculation of the inverse of a number modulo a power of 2. Calculating inverse is 

considered one of the most time-consuming operations in modular arithmetic and increasing 

the speed efficiency of its execution will greatly help in its better implementation. 

 

C. Thesis Contribution 
 

This thesis provides a simplification on a previous algorithm developed for the 

calculation of inverse modulo power of 2. This simplification results in a higher speed of 

execution. Many algorithms for the calculation of modular inverses have been developed in [5] 
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- [9]. As already mentioned calculating modular inverses is one of the most time-consuming 

of all modular operations. Since computers work on binary numbers, if the modulus is a 

power of 2, it is possible to modify the general methods used for finding modular inverse [4], 

[5] to construct a more efficient one. Hence special algorithms designed to efficiently 

calculate inverse modulo power of 2 have also been developed. Still, the time required for the 

execution of these algorithms is also significantly great for larger sized numbers. Hence Arazi 

and Qi in [10] suggested an alternative method for calculating inverse modulo a power of 2. 

This study intends to take it a step further. It makes certain assumptions about the input 

numbers and proposes a simplification on the original algorithm given in [10].  

 

1. Simplified Algorithm:   
 

A simplified version of the algorithm proposed in [10] is given, along with certain 

assumptions about the numbers being operated on. These assumptions are based on another 

paper dealing with improving the execution speed of Montgomery multiplication method 

implementation. As long as the assumptions for the input numbers are valid, the simplified 

algorithm has a faster execution time than the original unmodified algorithm for the same 

input. 

 

2. Result of Comparison:  
 

Code was written in C implementing the original algorithm by Arazi and Qi, Dusse and 

Kaliski’s method [11], straight forward method [10], modification of extended Euclidean 

algorithm for inverse modulo power of 2 [10] as well as the simplified version Arazi and Qi’s 

algorithm proposed here. This thesis provides the result of comparison between these various 

methods for different values of input numbers as well as for inputs of different bit lengths. It 

shows that the simplified algorithm does provide an improvement over the original algorithm 

as well as the other popular methods, especially when the bit length of the input numbers 

increases. 
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D. Thesis Organization 
 

This thesis is organized into chapters as follows. Chapter II presents an overview of 

information security, especially public key cryptography and the various modular arithmetic 

algorithms used. It also describes in detail the algorithms used for inversion modulo power of 

2 which was the focus of this study. Chapter III describes Arazi and Qi’s method as well as 

introduces the special structure of numbers. The chapter then describes the simplification that 

can be done on the modular inverse algorithm studied, as well as shows the results of 

comparison between the simplified algorithm, the original algorithm as well as the other 

popular algorithms for inversion modulo 2. Chapter IV summarizes and concludes the thesis, 

with some suggestions for future modifications. 
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II. Background 
 

This chapter is devoted to the background necessary for discussing the work in this 

thesis. Section A provides an overview of the basics of information security and cryptography 

in general. Section B introduces some of the mathematical algorithms needed for PKC 

implementations that are relevant to this thesis. It first describes the Montgomery reduction 

algorithm needed to speed up modular multiplication. This is followed by Dusse and Kaliski’s 

algorithms and the straight forward method. The chapter ends with a description of the 

modified extended Euclidean method for finding inverse modulo the power of 2. 

 

A. Overview of Information Security 
 

As mentioned in Chapter I, the ideal communication system depicted in Fig. 1.1 is not 

always practically feasible. The channel through which data needs to be transferred consists 

of various sources of noise and interference. Some of these are present due to the properties 

and characteristics of the channel itself, such as signal attenuation and introduction of random 

noise. The methods described in this thesis and cryptography in general, however, deals with 

protecting the data from other types of intrusions that may be present on the channel, such as 

some unauthorized entities trying to read the information being transferred or trying to alter it 

in some way. In the terminology of cryptography, the communicating parties are usually 

known as Alice and Bob while the intruder is knows as Eve.  When Alice and Bob are trying 

to communicate through a channel as shown in Fig. 1.1, Eve may be present on the channel 

altering the information being transferred, without the knowledge of either Alice or Bob. If 

this is the case, the message that the sender wants the receiver to obtain is not the one that he 

gets. It may also be the case that Eve is continuously watching the channel, not altering it in 

any way, but observing the information that is being transferred between Alice and Bob. In 

most of the cases this is also an undesirable situation. For example, if the communication 

between Alice and Bob was a bank transaction, it would certainly not be desirable for a third 
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party to know about the details. Hence the communication system model shown in Fig. 1.1 is 

incomplete. It can be better described by the block diagram shown below [12]: 

 

 
Fig. 2.1 Model for network security 

 
As can be seen from Fig. 2.1, this new communication system model acknowledges the 

presence of an opponent in the information channel. However it also provides a way of 

preventing this opponent from tampering with the transferred data. We can see that a trusted 

third party is overseeing the sender and the receiver as well as the communication channel. 

However the main focus of this thesis lies in the blocks between the sender and the channel as 

well as the channel and the recipient. These are the blocks that, with the help of some extra 

information, do the necessary transformations on the message. This is also the main point 

behind cryptography. The process of converting legible information from sender, using a 

piece of information called key, into illegible secure message or cipher text to be transmitted 

through the information channel is known as encryption. The opposite process of converting 

the cipher text obtained from the information channel into legible message for the receiver 

using a key is known as decryption. 
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Before going into the details of security, the various ways in which the communication 

between Alice and Bob may be compromised is given here. They represent the manners in 

which an eavesdropper, Eve, may disrupt, alter, or simply find out, in an unauthorized manner, 

the information being transferred between Alice and Bob. 

 
Fig. 2.2 Interruption of communication 

  
a) Interruption: Interruption is the threat on availability. Fig. 2.2 shows the concept of 

interruption of transmitted message. The attacker may simply block the communication 

channel, or in some other way make it infeasible for the receiver to obtain the data 

transmitted by the sender. 

 
Fig. 2.3 Interception of data 

 
b) Interception: Fig. 2.3 represents interception of transmitted data, which is the threat on 

confidentiality. In this kind of attack the attacker will allow the transfer of data from 

Alice to Bob or vice versa, but will be monitoring the data that is being transferred, 

usually without their knowledge. 
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Fig. 2.4 Modification of data 

 
c) Modification:  Fig. 2.4 shows how the attacker is compromising the integrity of data. In 

this case the attacker obtains data from the sender, modifies it and then transmits it to the 

receiver, usually without the knowledge of either party. An implementation of this attack 

would be the man-in-the-middle attack done against public key systems [2], [3], [12], 

[13]. In an ideal attack the sender and receiver will be completely oblivious to the 

presence of the attacker and will not be able to tell if their communication has been 

compromised .  

 
Fig. 2.5 Fabrication of data 
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d) Fabrication: Fabrication corresponds to a threat on authenticity of data being transferred. 

Fig. 2.5 represents such an attack. As can be seen, an attacker is impersonating someone 

else. An adversary replacing unauthenticated public keys with his own in a public key 

infrastructure can be an example of such an attack [13]. The attacker sends data to the 

receiver as if they were originating from the sender. In an ideal attack the receiver cannot 

tell whether the received information is legitimate or illegitimate. 

 

In a more general sense, any kind of attack may be categorized into one of two types: 

passive attack and active attack [12]. In a passive attack the attacker attempts to learn or make 

use of information from the system, but does not affect the system resource. Side channel 

attacks may be categorized as a type of passive attack. The goal of the attacker is to obtain the 

information that is being transmitted. A passive attack may be done to release the contents of 

the message, which is clearly not desirable for confidential information. Alternatively, passive 

attack may also be done to gather data for traffic analysis. It is possible to mask the actual 

data being transferred through the channel, so that even if the data could be captured, it would 

not be possible to extract meaningful information from the data. This can be achieved by 

encryption which will be further discussed later. Even with such a protection in place, an 

attacker might still be able to observe the pattern of the masked messages and through their 

careful analysis determine the location and identity of communicating hosts as well as observe 

the frequency and length of messages being exchanged. Such information may be useful in 

guessing the nature of the communication taking place. Passive attacks are mainly attacks on 

the encryption scheme, done to systematically recover plaintext from ciphertext or even 

attempt to deduce the decryption key [4]. 

 
Active attacks on the other hand involve some kind of modification of data stream or a 

creation of a false stream and can be subdivided into four categories [12]. 

a) Masquerade: In such an attack the attacker pretends to be either the sender or the 

receiver. It is usually done to perform another form of active attack. For example, 

authentication sequences can be captured and replayed after a valid authentication 

sequence has taken place, thus enabling an entity with few privileges to impersonate 

another one with higher privileges. 
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b) Replay: This involves the passive capture of a data unit and its subsequent 

retransmission, to produce an unauthorized effect. 

c) Modification of messages: It implies that some portion of a legitimate message is 

altered, or that messages are delayed or reordered, to produce an unauthorized effect. 

For example, a message meaning “Allow John Smith to read confidential file 

accounts” is modified to mean “Allow Fred Brown to read confidential file accounts.” 

d) Denial of service: The denial of service prevents or inhibits the normal use or 

management of communications facilities. This attack may have a specific target; for 

example, an entity may suppress all messages directed to a particular destination (e.g., 

the security audit service).Another form of service denial is the disruption of an 

entire network, either by disabling the network or by overloading it with messages so 

as to degrade performance for other legitimate users. 

 

We can see that active attacks are opposite in nature to passive attacks. Although passive 

attacks are difficult to detect, methods can be implemented to prevent them. On the other hand, 

it is very difficult to completely prevent active attacks since there are wide variety of potential 

physical, software, and network vulnerabilities. Instead, we try to detect active attacks and 

recover from any disruption or delays caused by them [12]. If the detection has a deterrent 

effect, it can also contribute to prevention of the attack in the first place. Mostly protection 

from all these attacks is provided using masking of data being transferred and by following 

certain security protocols. In any case, encryption of the data being transferred is a necessity 

and plays a very vital role. 

 

As already mentioned encryption basically implies converting the legible data to be 

transmitted into illegible data. The data to be transferred is called the message text while the 

converted illegible data is called the ciphertext. The algorithm that does this conversion is 

known. However, the exact ciphertext that any given message converts to depends on another 

piece of information called an encryption key. Similarly, the conversion of the illegible data 

into legible message at the receiver’s end is done using the decryption algorithm and the 

decryption key. If M represents the message to be encrypted, E the encryption algorithm, D
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the decryption algorithm, C the ciphertext and 1K and 2K the encryption and decryption key 

respectively, the process of encryption and decryption can be represented by the 

transformations 

 )(
1

MEC k  ........................................................  (1) 

 )(
2

CDM K ........................................................  (2) 

respectively [12]. Depending on the value of the keys used, 1K and 2K , cryptosystems can be 

divided into two broad categories; symmetric key cryptosystem and asymmetric key 

cryptosystem. 

 
a) Symmetric Key Cryptosystem: In this type of system, the two keys used for 

encryption and decryption, 1K and 2K , are same. Hence this system is also known as 

symmetric key encryption. As already mentioned, since the details of the encryption 

and decryption algorithm are known, the keys used have to be kept secret. One secret 

key, for both encryption and decryption, are known to both the sending and receiving 

parties and have to be shared between them prior to encrypted communication 

through a secure channel. Examples of symmetric key cryptosystems include 

classical ciphers such as Ceaser cipher, Vignere cipher and more recent ones such as 

AES, DES, etc. 

 
b) Asymmetric Key Cryptosystem: In this system the encryption key and the 

decryption key are related but different. Hence this type of system is also known as 

asymmetric key cryptosystem. Such a concept was introduced by Diffie and Hellman 

in [14]. One of the keys is used for encryption, however, only the other key can then 

be used for decryption of the message. Usually the encryption key is known publicly 

while the decryption key is kept secret, so that only the intended recipient has the key 

required for decryption. However encryption may be carried out using the secret key, 

when creating a signature. In any case, if one if the keys is used for encryption, the 

other will be used for decryption. Also, knowledge of the public key does not make it 

easier (and ideally is impossible) to determine the corresponding secret key. Most 
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implementations of these methods base their security on the hardness of some 

particular mathematical problems. Some of the more popular examples are RSA and 

Diffie-Hellman Key exchange [15]. 

 

In its most intuitive form, any form of encryption consists of transforming some 

information, consisting of symbols from a finite set of symbols (the message text) into data 

consisting of symbols from another (but usually the same) set of symbols (the cipher text). 

Hence this gives rise to the concept of modular arithmetic when creating mathematical 

descriptions of cryptosystems. The most basic idea of modular arithmetic is that it works on a 

finite set of numbers. Hence, unlike in classical arithmetic where we can allow the results of 

our operation to range from negative infinity to positive infinity with each number being 

distinct from any other, the numbers in modular arithmetic repeat after a certain count, 

depending on the modulus used. A little more about modular arithmetic will be discussed here. 

The mod operator is an important operation in modular arithmetic. The operation YX mod

represents the remainder when X is divided byY . The congruence relation NBA mod read 

as A congruent to B modulo ,N implies that the number A is the summation of some multiple 

of N and B , that is, BNkA  . It also implies that )mod()mod( NBNA  . It should be 

noted however that all the parameters to be considered here are integers. Modular operations 

have certain properties that make them distinct from their corresponding regular arithmetic 

counterparts. Some of the more important and basic properties of modular mathematics are as 

follows [12]: 

1. nba mod  if )(| ban   

2. nba mod  implies nab mod  

3. nba mod  and ncb mod  implies nca mod  

 

These were the properties of the modulo ( mod ) operator. By definition the mod 

operator maps all integers in to the set of integers )}1(,...,2,1,0{ n . It is also possible to 

perform arithmetic operations such as addition and multiplication within the confines of this 

set. This is known as modular arithmetic. Some important properties of modular arithmetic 

are: 
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1. nbannbna mod)(mod)]mod()mod[(   

2. nbannbna mod)(mod)]mod()mod[(   

3. nbannbna mod)*(mod)]mod(*)mod[(   

for any integers a , b , and n . 

 

Also, if we have the integers a , b , and c working modulo the integer ,n then if

,mod)()( ncaba   it implies ncb mod . However, if we are concerned with 

multiplication, if the expression ncaba mod)()(  is true then ncb mod  if and only if 

a  is relatively prime to n . The two numbers a and n are said to be relatively prime or 

coprime to each other, when the greatest common divisor of the two numbers is 1, that is, if 

the largest number that can divide both of them is 1. 

 
By its definition cryptography can include any mechanism that can be used to encrypt, 

decrypt, sign or authenticate data. This can include mechanical, electromechanical, electronic 

or quantum–mechanical systems. However in practice today cryptography generally implies 

electronic systems, specifically hardware and software systems that can be implemented in a 

computer, as cryptographic algorithms have become more complex and more demanding. 

This thesis will concentrate on a particular discipline of cryptography, more specifically on 

public key cryptosystems and discusses on how a speedup on their implementation may be 

achieved by focusing on a particular widely used operation, the inverse modulo power of 2. 

      

B.  Algorithms Involved in PKC 
 

Asymmetric key cryptosystems are relatively more convenient to use than symmetric 

key cryptosystems, as they do not need the sharing of a secret key through a secure channel. 

Encryption and decryption are carried out by different keys, and only one of the keys needs to 

be kept secret while the other one can be made public. It is not feasible for anybody to derive 

the secret key from the publicly available one. The list of public keys must be kept safe so that 

they cannot be tampered with. Since the public key, if used for encryption, cannot be used for 
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decryption, only the intended recipient who holds the secret key can decrypt the message. An 

actual implementation of a PKC consists of different types of modular arithmetic operations. 

In a typical PKC implementation, for example, in the RSA cryptosystem, the hardness of 

determining the private key from the public key arises from the hardness of factorizing large 

integer numbers and for actual encryption and decryption the process requires multiple 

modular multiplications to be carried out in the form of modular exponentiation.  

 
Multiplication however, is one of the most time consuming of modular operations 

especially when the size of the numbers under consideration is very large [16]. To reduce the 

amount of time needed for its execution, various types of modifications to the schoolbook 

multiplication algorithms [17] - [19] as well as completely different algorithms to be used in 

conjunction with multiplication algorithms, such as the Montgomery modular reduction 

algorithm have been developed [16], [18]. However, such methods have further given rise to 

the need to develop algorithms for other time consuming operations such as modular division 

and modular inverse. Although this study focuses on cryptography, these algorithms find uses 

in other fields too [10], for example, multiplication algorithms are needed in signal processing 

and coding theory as well [17]. Hence methods that help to increase the speed of execution of 

these operations will be helpful in many different ways. 

 
Firstly the Montgomery multiplication method will be briefly discussed [4]. 

Montgomery reduction is a technique which allows efficient efficient  implementation of 

modular multiplication without explicitly carrying out the classical modular reduction step [4], 

[20]. If m is a positive integer, R and T  are integers such that mR  , 1),gcd( Rm and

,0 mRT   the value of mTR mod1 can be determined without actually using the product 

or division operation to determine the remainder. mTR mod1 is the Montgomery reduction 

of T modulo m with respect to R . Using a suitable choice of R , Montgomery reduction can 

be efficiently computed. Let x and y be integers such that myx  ,0 . Let mxRx mod~   

and .mod~ myRy  The Montgomery reduction of yx~~ is mxyRmRyx modmod1~~  . It 

should be noted that this fact can be used to provide a more efficient method for modular 
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exponentiation. If m is represented as a base b  integer of length n , then a typical choice for

R is nb . He condition mR  is obviously satisfied, however, 1),gcd( mR will only hold if

1),gcd( mB . Thus this choice of R is not possible for all moduli. For those moduli of 

practical interest (for example, RSA moduli), m will be odd; then b  can be a power of 2 and 
nbR  will suffice. Given integers m and R  where 1),gcd( mR , let Rmm mod1 and 

let T be any integer such that mRT 0 . If RTmU mod'  then RUmT /)(  is an integer 

and )(mod/)( 1 mTRRUmT  . This fact can be mathematically proven as follows. We 

know that )(mod mTUmT  and hence ).(mod)( 11 mTRRUmT    To see that

1)(  RUmT is an integer, we should observe that kRmTU   and lRmm  1 for some 

integers k and l . It follows that 

    
R
UmT   

R
mkRTmT )'( 

  

R
kRmlRTT 


)1(  

kmlT  ............................................................................................................................... (3) 

 

Also we should note that RUmT /)(  is an estimate for mTR mod1 . Since mRT 

and RU  we have 

 

m
R

mRmR
R
UmT

2



 .................................................................................................... (4) 

 

Thus we can say that one of expressions among either mTRRUmT mod/)( 1 or

mmTRRUmT   )mod(/)( 1 is true, that is, the estimate may exceed in value by at most
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.m This process of Montgomery reduction can be used with multiple precision multiplication 

algorithm to compute Montgomery reduction of the product of two integers [4].  
 

In simple terms, Montgomery reduction converts the numbers to be operated upon into 

integers in the Montgomery domain, where the actual multiplication operation is carried out. 

This is done by converting each digit of the number under operation into 0 from the LSB 

towards MSB, by adding another single digit number. This addition in turn changes the value 

of the next higher digit, so at every iteration the digit to be added so that the next higher digit 

can be changed to 0 must be calculated. This process continues until enough lower digits have 

been converted to 0, so that they can be removed by a division by ,R  or a multiplication by 

1R . Hence to make the implementation simpler R  is usually chosen to be the base used for 

representation of the numbers raised to the power number of digits in the modulus in that 

given base. This is due to the requirement that R must be greater than the modulus. 

Obviously the final result needs to be converted back from the Montgomery domain. Thus the 

fact that we need to convert into and out of the Montgomery domain adds to the overhead 

when using this method to speed up modular multiplication. Due to this reason, this process is 

more efficient when multiple modular multiplications need to be performed over the same 

modulus [19]. It may in fact be more inefficient than straightforward methods in case we need 

to carry out single or few modular multiplications, depending on the size of the numbers. 

 

Calculating the modular inverse of an integer is another operation that is more time 

consuming among modular arithmetic functions, especially for larger sized numbers. For 

modular inverse to exist, the number whose inverse is to be calculated needs to be relatively 

prime to the modulus [12]. Modular inverse can be found using the extended Euclidean 

algorithm. For implementation in binary computers, an adaptation of the extended Euclidean 

algorithm using the binary GCD algorithm has also been developed [5]. However these 

methods were still quite complicated to implement in hardware and software and took 

relatively more time to execute as well. Hence the Montgomery modular inverse method was 

developed [6], which has been further modified and built upon by various researchers [8], [13] 

to provide further ease of implementation as well as more efficiency in execution speed. 
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However, if we need to calculate the inverse modulo power of 2, other more dedicated 

methods can be used to perform the operation [10], [11], which are more efficient. It should 

be noted that it has been possible to design these algorithms more efficiently mostly because 

computers are designed to work in binary arithmetic. None the less, these algorithms specially 

tailored to finding inverse modulo power of 2 are better than other general methods that just 

use a power of 2 number as the modulus, and are the focus of this thesis. The operation of 

calculating multiplicative inverses modulo power of 2 finds uses in applications such as 

Montgomery modular multiplication and exact division [7], [10]. Some of the more popular 

algorithms that had previously been developed to perform this operation will be presented 

here. They are either more efficient or more intuitive than using the more general algorithms 

for finding modular inverse by setting the value of the modulus as a power of 2. 

 

Algorithm 1: Dusse and Kaliski’s method to calculate mbr 2mod1  

The algorithm for calculating inverse modulo power of 2 using Dusse and Kaliski’s 

method is given below [11], [21]. 

11 y  

for mtoi 2 do 

 if ii
iyb 2mod2 1

1


   then 

 1 ii yy  

 else 

 1
1 2 
  i

ii yy  

 end 

end 

Fig. 2.6 Dusse and Kaliski's method to calculate inverse modulo power of 2 

 

Fig. 2.6 shows us Dusse and Kaliski’s method for calculating the inverse of a number 

modulo a power of 2. At the end of the iteration, the value of my  is the desired result

mbr 2mod1 . The method determines the value of the inverse number bit by bit starting 
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from the LSB, keeping in mind the fact that the lower m  bits of the product of the input 

number and its inverse should be 1.  

 

Algorithm 2: Straight forward method 

Algorithm 2 is a more straight forward method for calculating inverse modulo power of 

2 [10]. It utilizes the fact that b is an odd number and thus has 1 as the least significant bit, 

and the fact that the product of b  and 1b modulo m2 is 1, so in binary representation of m  

bits, is of the form 01000 . Thus by adding selected left shifts of b to an accumulated sum 

that starts with b , we can always generate a value whose m  LSBs are of any given form, 

including 01000 . This algorithm is thus executed by sliding b leftwards one bit at a time 

across an accumulated sum such that the LSB of bgenerates the bits of the given product. The 

steps of the algorithm for calculating mbr 2mod1 are as follows: 
bacc   

1x  

by   

1res  

for 11  ntoi do 

 1y  

 1x  

 if  thi bit of 1acc  

 yaccacc   

 xresres   

 end 

end 

Fig. 2.7 Straight forward method of calculating inverse modulo power of 2 

 
Fig. 2.7 shows the straight forward method of finding the inverse modulo a power of 2 

number. Since this method uses, in a way, the definition of modular inverse in the binary 
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representation, this method is the easiest and most intuitive way to implement this operation. 

However, it is also the slowest method. In terms of complexity, this method is same as 

multiplying two m bit numbers. Upon careful observation this method is in fact very similar 

to the schoolbook method of multiplication of two m bit numbers. 

 

Algorithm 3:  Modification of extended Euclidean algorithm 

This algorithm is more closely related to the binary GCD version of the extended 

Euclidean algorithm and it completes in two stages. To calculate mb 2mod1 the algorithm 

first computes bm mod2 and in the next stage interchanges the roles of the two values m2 and

b . The procedure is as given below: 

 

Algorithm 3a: calculating bm mod2 by m successive divisions of bmod2  

1d  

for mtoi 1  do 

 if d  is odd then 

 bdd   

 end 

 2/dd   

end 

The final value of d  is bm mod2 . 

Algorithm 3b: recovering mbr 2mod1 out of bs m mod2 . 

mst 2  

btu /)1(   

usr m   
Fig. 2.8 Modified extended Euclidean method to calculate inverse modulo power of 2 

 

Fig. 2.8 is the modified extended Euclidean method for calculating inverse of a number 

modulo power of 2. As can be seen from the above figure, the process completes in two parts. 



- 22 - 
 

The first part calculates the value bm mod2 . It should be noted that the relation 

bs m mod2 implies that 12  bust m
 and so the value u calculated in the second 

step of Algorithm 3b, is therefore an integer. Thus, .12  msbu Taking both sides of the 

latter relation modulo m2 yields the congruence .2mod1 mbu  From this we can say that 
mbu 2mod1)(  and therefore, .2mod1 mbru   However, ,2mod)2( mm uu   

which completes the validity proof for Algorithm 3b. 
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III. Proposed Simplified Method and its Evaluation 
 

A.  Arazi and Qi’s Method 
 
1. Exponent of 2 is a Power of 2 
 

The main focus of this thesis will be on a procedure described by Arazi and Qi in [10] 

which is quite different from the methods described earlier. It is a more efficient recursive 

method, tailored specifically to find the inverse modulo power of 2. The method first 

considers the exponent of 2 to be an even number and a power of 2 although the authors have 

given a way to determine the inverse for other exponents as well. However, for the sake of 

simplicity of explanation, the exponent of 2 is considered power of 2. Let us consider the case 

where we need to find the value of ,x  where iyx 21 2mod . It can be seen that x and y are 

both i2  bit numbers while the values of y  and i2  are known. In case the binary 

representation of y  has more than i2  bits, only the lower i2  bits need to be considered. Let

Hx and Lx denote the upper and lower i  bits of x and Hy  and Ly  denote the upper and lower 

i  bits of the number y  respectively. LH xx denotes the concatenation of the two i  bit strings 

and hence the number x . Similarly LH yy  denotes the number y . Let .2mod1 i
Lyr   Arazi and 

Qi’s method shows that if we know the value of r , the value of x  can be calculated by 

individually calculating the upper and lower i bits of x as: 

 rxL  ............................................................. (5) 

 
i

LHHLH ryryrx 2mod]])()[[(  , ................................. (6) 
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where HLyr )(  and LHyr )(   denote the upper and lower half of the depicted product 

respectively. The final result can be obtained by concatenating the two halves as LH xx . 

 

a. Validity 
The validity of this method has been proven in [10], which for the sake the sake of 

completeness is also given here. Since iyx 21 2mod , we have, iyx 22mod1 , that is, 

the lower i2  bits of the product yx  (which is a i4  bit number) is of the form 01000 . 

Writing x and y  in terms of their upper and lower halves, we have, 

LL
i

HLLH
i

HHLHLH yxyxyxyxyyxx  2)(2)()( 2  

The lower i2  bits of this product is given by 

LL
i

HLLH yxyxyx  2)(  

Since we have iyx 22mod1 ,  

i
LL

i
HLLH yxyxyx 22mod1]2)[(  ..................................................................... (7) 

 

b. Calculating Lx : 

Since Lx is the lower i bits of (1) given above which should be of the form 01000 , we 

have, 
i

LL yx 2mod1 ................................................................................................................... (8) 

Thus ,2mod1 ryx i
LL    which, from our assumption, is already known. 

 

c. Calculating Hx : 

Since Hx  is the upper i  bits of (1) which should be 0, we have 

02mod])()[(  i
HLLLHLLH yxyxyx  

i
LHLHLLLLH yxyxxx 2mod])()[()(  ................................................................... (9) 

Since the lower i bits Lk of any number k is also ik 2mod we have, 
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i
LLHLHLLH yyxyxx 2mod]])()[[( 1  

Thus, 
i

LHHLH ryryrx 2mod]])()[[(   ........................................................................... (10) 

 

From this, the value of x can be calculated as LH xxx  . Thus if the value of i
Ly 2mod1

is known, it can be seen that the value of x can be calculated. Since we had considered n  

being a power of 2, to calculate the value of i
Ly 2mod1 , we can consider Ly  to have two 

halves of i  bits, and this same process can be repeated recursively in that manner until Ly

becomes the LSB of y , which is always 1 since y  has to be odd to have an inverse modulo

.2m  

 

 
Fig. 3.1 Breakdown of the operand q  
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Fig. 3.1 shows how the operand q  is broken down into halves recursively. The value of 

the inverse of q  at each level of recursion can be calculated from the value of inverse of q  at 

the next level of recursion. Using this calculated value and the value of q  at the current level 

of recursion, its inverse is obtained using the formulas given in equations (7) and (10). 

 

Example 1: 
This result can be illustrated with a numerical example using smaller size numbers. For 

simplicity, the numbers have been represented in hexadecimal. However, the number system 

used to represent these numbers is immaterial as long as we can keep track of the binary digit 

representation of the numbers involved. The aim here is to find the value of ,2mod 321 qp

given that EFAFq 5899 and ,bqL  where 1611 2mod290)5( FEFAbr   . Using 

the method described above, we know that the lower half of the result, FrLp 290 . In 

order to calculate Hp , we need to calculate the following values: 

 

DAEFAFbr HH 91)5290()(   

88)899290()( BDFFqr LLH   

162mod]))()[(( rrqbrp LHHH   

 
162mod)290)8891(( FBDDA   

 568D  

 

The final result p can now be obtained through concatenation. Thus

FDppp LH 529068 .We can see that if we multiply this number p by the original 

number q , we get 0000000137035899529068 FDDFEFAFFDqp  which is

322mod1 .Hence, 321 2mod qp . 
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Example 2: 
Another example showing the recursive way in which this algorithm can be 

implemented is given below. For simplicity a smaller modulus is used here. Let 91DCq   be 

the number whose inverse is to be found with the value of the modulus as 162 . Firstly the 

number q  is divided into upper and lower halves with 1CqH   and 9DqL  . Thus first we 

need the value of 81 2mod
Lq . Let this value be p  and let Lq be divided into upper and 

lowers halves as DqH   and 9Lq  respectively. To find p  we need the value of 

41 2modLq . Let this value be p  . Again, to calculate the value of p  we need to divide Lq

into upper and lower halves as 210Hq and 201Lq , which are now in binary. Again, to 

calculate this, we need the value of 21 2modLq . Let this value be p  . For this, we have to 

divide Lq  into upper and lower halves as 0Hq and 1Lq . Thus we have 12mod1  Lq

which is the value of Lp  , the lower half of p  . The upper half of p  can be calculated using 

equation (2) as .02mod]1])01()11[[( 2  LHHp  Hence the value of 

.1|  LH ppp Using same method, we obtain 1669,9  pp  and finally the required 

inverse .69AEp   As a verification, we can see that 162mod1* qp . 

 

2. Exponent of 2 is not a Power of 2 
 

The method described in the previous section has been made possible because of our 

assumption that the exponent of the modulus is a power of 2. However, even in cases where 

this value is not a power of 2, the inverse can be calculated using a few extra computations 

[10]. Let us suppose we have pba mod1  with q  a divisor of .p  This also means that 

pba mod1 . From number theory, we also have the fact that qbqa mod]mod[ 1  which 

also implies .modmod 1 qbqa   Let us suppose we need to find the value of 

mbr 2mod1  using Arazi and Qi’s method. For the method to be applicable m  must be a 

power of 2. In case m  is not a power of 2, the binary representation of b  is padded with 
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leading 0’s so that the number of bits in bbecomes )(log22 mceiln  where )(xceil is the integer 

which is just greater than or equal to x . We can clearly see that the value of n is 2 raised to 

the power number of bits in the binary representation of m . Now the value of 
nbw 2mod1  is calculated using Arazi and Qi’s method. Here it should be noted that 

mn 22  is always true since mn  . Hence we can say nm 2|2 . Since we now know the 

value of nb 2mod1 and m2 divides n2 , as per the discussion in this section we can say that 
mm wb 2mod2mod1  which is our required value. In non mathematical terms, what this 

means is that, if we need to find a value mba 2mod1  where m  is not an exact power of 2, 

we first find the value nb 2mod1  where n is a power of 2 just greater than m . If we take this 

result modulo m2  we get our desired result. 

 

B. Numbers with Special Structure 
 

When calculating the Montgomery multiplication of two numbers represented using a 

radix r and modulus M , it is necessary for a value M  to be precomputed. It is required for 

use in a step to calculate the Montgomery reduction of the intermediate values obtained 

during the process. This value M  is given by the operation rMM mod . Since M is 

represented in radix ,r if 0M represents the least significant digit of ,M  we have

rMM mod0 . This precomputed value is then multiplied to the intermediate result as a 

part of the operation to find the Montgomery reduction of the intermediate result. It has been 

shown in [22] that if we can fix the value of M  to 1 for all cases, the need for the 

precomputation as well as multiplication in the intermediate steps can be eliminated, thus 

resulting in less complexity in implementation as well as faster speed of execution. To 

achieve this, certain conditions have been assumed to hold true. Firstly, let the modulus M

consist of n bits in its binary representation with the radix of representation being .2w This is 

usually a valid assumption in case of practical implementations. 
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Lemma 1: Let 12  wM be an n digit positive integer in radix 2 representation, that is, 
wnwn   22 1 , and let wMM 2mod1 , then 1M . 

Proof: Since it is clear that wM 2mod1 , we have 12mod1  wM .Thus, 1M . 

 

Lemma 2: Let 12  wM  be an n digit positive integer in radix 2 representation, that is, 
wnwn   22 1 , and let wMM 2mod1 , then 1M . 

Proof: Here, since wM 2mod1 we can see that wM 2mod11   . Thus we have 1M . 

 

Our main concern here is the structure of the numbers involved. Let the set of numbers 

with the structure represented in Lemma 1 be set S1 and the set of numbers with the structure 

represented in Lemma 2 be set S2. In any of these cases, we can see that since   is an integer,

wn  is always true. Moreover, the lemma is true regardless of the value of w , as long as

wn  holds true. From the mathematical description given, we can see that the numbers in 

sets S1 and S2 are of the form shown below: 

 
Fig. 3.2 representation of the numbers in sets S1 and S2 

 
Fig. 3.2 shows what the numbers look like in their binary form. The numbers are n-bits 

wide. It can be seen that in the numbers in set S1, the most significant bit is 1,  followed by a 

pattern of bits which represent   followed by 1w bits of 0’s with the least significant bit 

having a value of 1. Similarly, in the case of numbers in the set S2, the most significant bit is 

1, followed by a pattern of bits representing   followed by w  bits of 1.  
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C. Simplified Method for Special Numbers 
 

This chapter presents a simplified version of the algorithm given by Arazi and Qi. It also 

provides an analysis of the performance of the new simplified algorithm, comparing its 

execution speed with the original version and other popular algorithms like Dusse and 

Kaliski’s algorithm, straight forward method and modified extended Euclidean method. 

Firstly we make an assumption that 2/nw  . As already mentioned in the previous chapter, 

this assumption does not invalidate the Lemmas 1 and 2. If this assumption holds true, 

calculation of the inverse of the n  bit number M becomes easy and efficient. Let HM  and 

LM denote the upper and lower 2/n or w bits, respectively, of the number .M  From Arazi 

and Qi’s method described in the last chapter, we can see that nM 2mod1 can be obtained if
2/1 2mod n

LM  is known. Let us consider the case of M being the member of the set S1. As 

can be seen from Fig. 3.2, the lower w bits of a number of this structure are of the form

.01000 Thus we can see that the lower w bits of M is given by 
wwww

L MM 2mod12mod)12(2mod  . As the inverse of 1 in any finite field is 

also 1, we have, 12mod1  w
LM . As the value of 1

LM is known, the value of nM 2mod1 can 

be calculated. 

 

Again, let us consider the case of M being a number having the structure 12  w , that is, 

a member of the set S2. In this case the lower w bits of M are given by 
ww

L MM 2mod12mod  . We can see that the lower w bits of M are all 1’s, that is, the 

number LM is of the form 11111 . Thus LM is a Mersenne number. A Mersenne number is a 

number that can be written in the form of 1 less than a power of 2. If an integer with  bits is 

a Mersenne number, then it has the form 12  . If we take the square of this Mersenne 

number modulo 2 we get,  
 2mod)12( 2   

 2mod)122( 12  
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2mod1  

 

The square of a Mersenne number with bits is 1 modulo 2 . Thus we can say that a 

Mersenne number with bits is the inverse of itself modulo 2 . Since LM is a Mersenne 

number with w bits for M S2, it is the inverse of itself modulo w2 .and as w
LM 2mod1 is 

known, the value of nM 2mod1 can be calculated using the previously described process. 

 

 

Fig. 3.3 Recursion unnecessary when value of 1
Lq  is known 

 

Fig. 3.3 shows how easy it becomes to calculate the value of p when we consider the 

numbers having the special structure as inputs.  Compared to Fig. 3.1, we can see here that we 

do not need to break down the lower half of ,q ,Lq  in successive recursive steps, since the 

value of i
Lq 2mod1  is known immediately from the beginning. In fact the most 

computationally intensive part of the entire operation becomes the calculation of Hp which 

only needs to be done once. 
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Example 3: 
A numerical example showing the use of this method for numbers having the special 

structure is given here. Let 000000011345 DECAq   be a 64 bit number shown here in 

hexadecimal notation for clarity of presentation. From its structure we can see that this 

number belongs to the set S1. We have 00000001Lq  and DECAqH 1345  where Lq  

and Hq  have their usual meanings. We need to find 641 2mod qp . From the simplified 

method, we know that 11  
LL qp and from equation (2) we can calculate 

.2235 ECBApH  Thus we have 2200000001352mod 641 ECBAqp   . Again, let us 

consider a number in the set S2. Let ,1345 DEFFFFFFFFCAq   so that we have 

FFFFFFFFqL   and .1345 DECAqH   Here as well, we can see that 

FFFFFFFFqp LL  1  and from equation (2) we can calculate 2035 ECBApH  . Thus 

the inverse is .2035 FFFFFFFFECBAp   

 

D. Performance Evaluation 
 

 
The unmodified version of this algorithm consists of three multiplication operations and 

are considered the most time consuming parts of this operation; the determination of the 

values of the expressions ,)( HLyr  LHyr )(  and i
LHHL ryryr 2mod]])()[[(  . Each 

value is i  bits long. The first operation requires the multiplication of two i  bit values. The 

latter two however, each require half as much computation since they only need the lower i  

bits of the i2  bit product. Hence the execution of the process requires two multiplications of 

i bit values. If we consider the n  bit number who’s inverse modulo n2  is to be found to be 

composed of k  bit words, then the total number of words is given by knm / . Since k  is 

taken to be the size of the processor word which is usually a power of 2 and we have already 

considered n being a power of 2, the value m in this case is an integer. If we were to use the 

method by halving the number of words in the lower half of y  until we reach the least 

significant bit, at any given point of the iteration we would need to do two multiplications of
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i2  bit words. Since multiplying two numbers each x words in length requires 2x single word 

multiplications, multiplying i2  bit words require i222  single word multiplications. Since the 

value of i changes from 0 to m2log  the total number of single word multiplications required 

is given by 
1log

0

222
m i  which simplifies to

3
)1(

2
2 


m

where 2m  gives the number of single 

word multiplications executed when multiplying two n bit operands (since the n bits consist 

of m words). Hence the computation involved in this process is two-thirds of one 

multiplication of n  bit values. Besides this, as we recursively execute this algorithm, we will 

reach a point where we need to find the inverse of the least significant word. After this we 

need to go into bit level operations from word level operations, dividing the word into half 

words and so forth until we reach the least significant bit. Considering each bit level operation 

as a word level operation, which would be a logical choice as in the case of a software 

implementation, this collection of bit level operations would take a total of klog2  single 

word operation in addition to the amount of time required for the execution of the other word 

level operations. However, the total number of these bit level operations and the time required 

for their execution are insignificant in comparison to the other word level operations. Hence 

the amount of time required for execution can be approximated to
3

)1(
2

2 


m
single word 

multiplications. However if we consider the special condition described in this paper, we can 

see that no matter how many words the number y  needs to be divided into, the value of

i
Ly 2mod1 is always known at the first iteration itself, where 1

Ly is Ly itself and wi  . Hence 

for values of y lying in one of the special sets of numbers described, the method described in 

section 2 requires only two multiplications of w bit values. The most time consuming 

operation in the process has thus been reduced to two w word multiplications. Furthermore, 

the need to reiterate the process recursively n2log number of times is also eliminated. Further 

reducing the cost, for example, of subroutine calls in case of a software implementation or the 

total execution time required in case of hardware implementations. 
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The algorithms from Algorithm 1 through 3 were implemented in C, using libtommath 

large number library to compare the efficiency of the various algorithms, Arazi and Qi’s 

original algorithm and the modified algorithm. It was seen that the modified algorithm was 

faster than the other algorithms for most of the cases. Another tool was also developed to 

generate random numbers of a given bit length, to use for testing the algorithms. Although for 

smaller sized numbers such as 32 bit and 64 bit numbers, Algorithm 3 was seen to be faster 

than the modified algorithm in some cases, as the number of bits in the input was increased it 

was seen that the modified algorithm was definitely superior in terms of execution speed. The 

programs were written in C and compiled using gcc version 4.4.1 for both Linux and 

Windows Operating System environments, on an Intel Core i5 – 2500K computer with 3.30 

GHz processor frequency. Data showing how many times the modified algorithm is faster (or 

in very few cases, slower) than the other algorithms considered, was recorded and tabulated 

here. It is also shown in graphical form as follows. 

 

Algorithm 32 bits 64 bits 128 bits 256 bits 512 bits  1024 bits 

Arazi and Qi’s method 5.34 6.2 6.91 7.27 6.19 5.04 

Dusse and Kaliski's method 1.21 3.36 8.37 22.91 64.26 129.33 

Straightforward method 1.57 4.39 10.02 22.56 44.61 53.29 

Modified extended 

Euclidean method 

0.008 0.51 1.55 4.25 8.51 10.22 

Table 3.1 Execution speed comparison for set 1 numbers in windows environment 

 
Algorithm 32 bits 64 bits 128 bits 256 bits 512 bits  1024 bits 

Arazi and Qi’s method 3.66 4.18 4.58 4.27 2.92 1.99 

Dusse and Kaliski's method 0.38 1.48 4.14 11.15 26.89 54.84 

Straightforward method 0.65 2.1 5.06 10.78 18.06 20.88 

Modified extended 

Euclidean method 

-0.46 -0.36 -0.05 0.6 1.17 1.35 

Table 3.2 Execution speed comparison for set 2 numbers in windows environment 
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Algorithm 32 bits 64 bits 128 bits 256 bits 512 bits  1024 bits 

Arazi and Qi’s method 5.06 5.88 6.50 6.88 6.2 5.94 

Dusse and Kaliski's method 1.20 3.15 7.89 23.09 66.58 157.12 

Straightforward method 1.64 4.27 9.50 20.07 37.85 47.33 

Modified extended 

Euclidean method 

-0.03 0.34 1.23 3.13 7.02 8.54 

Table 3.3 Execution speed comparison for set 1 numbers in Linux environment 

 

Algorithm 32 bits 64 bits 128 bits 256 bits 512 bits  1024 bits 

Arazi and Qi’s method 3.45 3.99 4.5 4.5 3.41 2.7 

Dusse and Kaliski's method 0.26 1.32 3.88 11.315 31.57 71.06 

Straightforward method 0.5 1.91 4.62 9.21 15.16 18.87 

Modified extended 

Euclidean method 

-0.52 -0.45 -0.17 0.31 0.89 1.17 

Table 3.4 Execution speed comparison for set 2 numbers in Linux environment 
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Fig. 3.4 Performance comparison for execution speed of algorithms using input in set S1 in 
the windows environment 

 

Fig. 3.4 compares Arazi and Qi’s original method, Dusse and Kaliski’s algorithm, the 

straight forward method and the modified extended Euclidean method with the proposed 

simplified method. The input numbers are of the form that are from set S1. It can be seen that 

as the size of the input number increased, the performance of the simplified method with 

respect to the other methods also increased. It can be seen that the maximum performance 

improvement was seen for 1024 bit large inputs over the Dusse and Kaliski’s method. The 

simplified algorithm was around 129 times faster than Dusse and Kaliski’s method for the 

same inputs.  
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Fig. 3.5 Performance comparison for execution speed of algorithms using input in set S2 in 
the windows environment 

 
Fig. 3.5 shows a comparison of performance for numbers that lie in set S2. Here also we 

can see that maximum performance increase is seen over Dusse and Kaliski’s method. It can 

be seen that, although for smaller sized numbers, modified extended Euclidean algorithm 

executed faster than the simplified algorithm described here, as the size of the input number 

became larger, the improvement supplied by the modified algorithm became more apparent. 
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Fig. 3.6 Performance comparison for execution speed of algorithms using input in set S1 in 
the Linux environment 

 

Fig. 3.6 compares the speed of execution of the four algorithms with the simplified 

method for numbers in the set S1, this time in a Linux environment. It can be seen that the 

overall trend of the data is not much different in this case either, with the most improvement 

being seen over Dusse and Kaliski’s method for 1024 bit numbers. 
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Fig. 3.7 Performance comparison for execution speed of algorithms using input in set S2 in 
the Linux environment 

 

Fig. 3.7 shows the comparison of performance of the four algorithms with the simplified 

method for  numbers in the set S2 in a Linux environment. As expected the overall trend of 

data was not much different, with the most improvement being seen over Dusse and Kaliski’s 

method for 1024 bit numbers. Here as well, although for smaller size inputs the modified 

extended Euclidean algorithm was seen to be faster, as the size of input increased an 

improvement in performance of the simplified algorithm was also seen as expected. 
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IV. Conclusion 
 

Most implementations of Public Key Cryptosystem (PKCS) utilize different types of 

modular operations. Modular inverse is one such operation and is a time consuming 

operations compared to addition and subtraction, especially when the size of input numbers is 

large. A special case is inversion modulo a power of 2. Dusse and Kaliski’s method, the 

straight forward method and the extended Euclidean method are some of the popular 

established ways of finding such an inverse. Arazi and Qi had proposed a recursive algorithm 

which is more efficient than these established methods.  

 

This thesis proposes a simplified version of Arazi and Qi’s method, by removing the 

recursion process. For the same inputs, the simplified method is able to execute faster than the 

previously mentioned methods, especially when the size of the input is large. Arazi and Qi’s 

method divides the input numbers into halves recursively up to the MSB. For the method 

proposed in this thesis, if the input numbers have a certain structure in their binary 

representation, then the recursion can be eliminated. This increases the speed of execution of 

the simplified algorithm. 

 

 The special structures are of two types. Depending on them, an input number belongs to 

either the set S1 or S2. The experimental results show that the inverse can be found faster than 

other algorithms if the proposed simplified method is used if the input is from one of these 

sets. This increase in execution speed is more significant when the size of the input is large. 

We can see from the experimental data that for inputs of smaller size such as 32 or 64 bits, the 

speed gain was not much significant. For example, in case of numbers belonging to set S2, the 

negative value indicates that the extended Euclidean algorithm may be faster than the 

proposed modified method. However, the speed gain becomes much significant as the size of 

the input increases. For instance, for inputs of size 1024 bits belonging to set S1,  it can be 

seen that the simplified method is 5 times faster than Arazi and Qi’s method, 129.3 times 

faster than  Dusse and Kaliski’s algorithm, 53.3 times faster than the straight forward method 

and 10.2 times faster than the modified extended Euclidean algorithm.  
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It should be noted however that this performance enhancement comes at a price. The 

trade off in this case is that the simplified algorithm is only applicable when the input 

numbers have a special structure in their binary representation and fall in either set S1 or S2. 

If the input does not fall in either of these sets then the simplified method cannot be applied to 

obtain the execution speed increase. 

 

As a future enhancement, work may be done in designing a hardware circuit for this 

method. The paper by Arazi and Qi mostly talks about software implementation and has 

considered software based implementation as a basis of performance comparison. Hence one 

possible way in which this work may be extended is by developing a hardware realization of 

Arazi and Qi’s recursive method.  
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