[UCI]1804: 24011- 200000263318

August 2012

Master’s Degree Thesis

On the Method of Inverse Modulo

2% for PKC Implementations

Graduate School of Chosun University

Department of Information and Communications
Engineering

Anish Bahadur Amatya

On the Method of Inverse Modulo

2% for PKC Implementations

A7) 43 TAS 9% e 2Fe) g9 A 9y

August 24, 2012

Graduate School of Chosun University

Department of Information and Communications
Engineering

Anish Bahadur Amatya

On the Method of Inverse Modulo

2% for PKC Implementations

Advisor: Prof. Young-Sik Kim

This thesis is submitted to Chosun University in
partial fulfillment of the requirements for a
Master’s degree in engineering

April, 2012

Graduate School of Chosun University

Department of Information and Communications
Engineering

Anish Bahadur Amatya

Anish Bahadur Amatya's Master's
Degree Thesis Approval

Committee Chairperson Prof. Jong—An Park

Committee Member Prof. Young—Sik Kim '

|

Committee Member Prof. Jae—Young Pyun (Q» !

Py

(BT
N3

May 2012

Graduate School of Chosun Univesity

Table of Contents

List 0Of TabIes ...ooeiiiiiiiiiieeeee e, 111
List Of FIGUIES ..ooeiiiiiiiiiiieeeee e, v
Bttt vi
ABSTRACT ..., vii
L. INtroductionccccccveeiecesscsnnnecccssssnnseccssssnsssecssssssnssssssssnnes 1
A. Thesis Motivation and OVervIEW..........ccceeeeveeeriveenieeneenireeenneens 2
B. Research ObJeCtiVeS......uieriiiriieeiieeieeciee et 4
C. Thesis ContribUtION.........ccccuvieerciiieeriieeeiiee e e e e e e 4
1. Simplified Alorithm.........ccceiiiiiiiiiiiiieceecee e 5

2. Result of COmMPATiSONeeeviiiiieiiieiie ettt 5

D. Thesis Organizationcceeeeeuveeeeiieeeiieeesieeeeeeeesereeeeeveeens 6
IL. Backgroundccccoovvvvvnnnnnnnieccccsssssssnnnssssnsecccsssssnsnnnnes 7
A. Overview of Information Security........c.ccceeevverrieerieenieeniieeinenns 7

B. Algorithms Involved in PKCcccoooiiiiiiiiiiecee e, 15

II1. Proposed Simplified Method and its Evaluation23
A. Araziand Qi’s Method ..., 23
1. Exponent of 2 is a POwer of 2........coccvieiiiiiiiiiiiiiiecee e 23

2. Exponent of 2 is not a Power of 2cccoocieviieiiiiieeeeeeee, 27

B. Numbers with Special Structurecccccveveeeieeeecciieeiee e, 28
C. Simplified Method for Special Numbers............cccceceevveeennnnn. 30
D. Performance Evaluation............cccccoeevuveiiieinienciieniieeee e, 32

| I\YARE 1) 16 11T (1) 1 40
ReEferenCescvvuueeeeiiiiiccisnssnnsssnnnnnnseiecccssssssssssssssssssssecssssssns 42

- 11 -

List of Tables

Table 3.1 Execution speed comparison for set 1 numbers in windows environment............ 34
Table 3.2 Execution speed comparison for set 2 numbers in windows environment............ 34
Table 3.3 Execution speed comparison for set 1 numbers in linux environment.................. 35

Table 3.4 Execution speed comparison for set 2 numbers in linux environment.................. 35

- 1ii -

List of Figures

Fig. 1.1 Communication system block diagramcceceveirriiiiiieiiieniienieeiecee e 1
Fig. 2.1 Model for NetWOrk SECUTITEYco.eeveriiririeieienierteteneei ettt 8
Fig. 2.2 Interruption of COMMUNICATION.c.ervirrieierieeiieiieienie ettt ettt ee e see s 9
Fig. 2.3 Interception Of dataccceviiiiiieniininiiiienieeteeecetete ettt 9
Fig. 2.4 Modification Of data..........cccoeuiiieiieiiiieeiee ettt 10
Fig. 2.5 Fabrication Of data...........ccocceiirieiiiiieieee ettt s 10
Fig. 2.6 Dusse and Kaliski's method to calculate inverse modulo power of 2 19
Fig. 2.7 Straight forward method of calculating inverse modulo power of 2........................ 20
Fig. 2.8 Modified extended Euclidean method to calculate inverse modulo power of 2.......21
Fig. 3.1 Breakdown of the operand @cccoecceinenieiiininienienincceetneeeeeee e 25
Fig. 3.2 representation of the numbers in sets ST and S2......c..cccevivinirieninininnencneneenen 29
Fig. 3.3 Recursion unnecessary when value of qZ' 1S KNOWN ..ot 31
Fig. 3.4 Performance comparison for execution speed of algorithms using input in set S1 in

Fig

Fig

the WINdOWS ENVITONIMENLc..eeeuiriiniiieiriinteteteientetetett ettt seeeene s 36
. 3.5 Performance comparison for execution speed of algorithms using input in set S2 in

the WINAOWS ENVITONIMENTo..evueeiiiiiniiriieienienieeteteste ettt ettt sbeeaeenees 37
. 3.6 Performance comparison for execution speed of algorithms using input in set S1 in

the TINUX ENVITONIMENTeviiiiiiiiiicieeieeeee ettt e e e e e e eaaaeeeeeeeens 38

-iv-

Fig. 3.7 Performance comparison for execution speed of algorithms using input in set S2 in

the [INUX ENVIFONIMENTovvviiiieiiii ettt eeee e e eaae e e eenaeeesennaeeesennaeeesnes 39

X e W= ZAHA == Ph. D.

ol 7))

S TN FE AT AR Be TRESS A 3o

2o FgA e 75S Alwdy. 28y 7] ""i /\15%:‘% A 7] A 2 gof] H] 8 A
O v Re] do)E zha oS ¥t ofye}, 53t 9 H55tE st 9o
O B2 diss 4o dths SAE 2Ea gtk ditg o g F7] & A~
TEY G, WA A 9 A9 AxkS A Ao wEl =5k A ") o # 3
AMS EEA SR F88t7] 984 Montgomery FE# Aol Jebelean 9
Aeek e Al 71 2 AEo] AMEE B Qth I FollA BEE g9 e
A717F 2 W B2 AZHE ARE A, Agte] B o & 4 A 9t Arazi 9
Qi = AAAL WA UEE G} HMgE Hlo 7 RBatale] 2 ¢

=)
719 Arazi 9} Q1 7} Xﬂ 0}?1 vl 8l ol 2} Dusse 2 Kaliski & d4F 9, 2 7(475]?_]

&l bel % ur o wEs) ANE & dvke A
AT S AL, el olel e el 45 E QAL £ S FeE A
Aot gE & Qo Ak ZEvh AW GEsy Aie Al o
wRIM JPE 5 TEE 2 2AE o848k 497t Bol Q] Wi, o
i wEw e Aol 4% ok BEHQ) 1& Al e AL el
57t 9l

-vi-

ABSTRACT

On the Method of Inverse Modulo 2" for PKC Implementations

Anish Bahadur Amatya

Advisor: Prof. Young-Sik Kim, Ph.D.
Department of Information and
Communications Engineering,

Graduate School of Chosun University

Public key crypto-systems (PKCs) offer powerful and convenient methods for
implementation of information security, since we do not need to disseminate a common
secret key before starting communication. However, PKCs require more computational
resources and also need to have a key of larger size for the system to be as secure as secret
key crypto-systems. Most PKCs are based on modular operations such as modular addition,
subtraction, multiplication and inversion. Among them, modular inversion is a relatively
more time consuming and computationally complicated process, especially when the size of
the input is large. A special case is inverse modulo power of 2 which is needed in the
algorithms required for PKC implementations, such as Montgomery modular multiplication
and Jebelean’s exact division method. Arazi and Qi have proposed an efficient algorithm for
calculation of inversion modulo power of 2, which recursively divides a number into halves

in order to find the required inverse.

This thesis gives a detail description of the method as well as proposes a simplification.

A special structure of numbers is introduced, which helps to eliminate the recursion process,

- vii -

hence making the algorithm simpler, execute faster and computationally more efficient. It
shows that the calculation of inverse modulo a power of 2 can be done faster than the
method proposed by Arazi and Qi, as well as faster than popular methods such as Dusse and
Kaliski’s method, straight forward method and extended Euclidean method. However, in

their binary representation the input numbers should confirm to a special structure.

- viii -

I. Introduction

Communication is a very important aspect of life. It is the process by which we can send
information from one person or place to another. It can be done in many different ways. A
simple practical example is direct communication, such as talking in front the recipient, or
telling them the required information through a telephone. Another way is written
communication, for example, writing a letter or sending an email. In any communication
system, information is produced at the source and changed into a form suitable for
transmission through the channel. At the receiver, the signal is recovered through appropriate
processing [1]. In its most simplified form, a communication system consists of a source, a

communication channel and a destination.

:%) Channel j

Fig. 1.1 Communication system block diagram

Source

Destination

Fig. 1.1 shows the most basic blocks in a communication system. However, in most of
the cases the notion of secure communication is also equally important. The communication
channel not only provides a chance for loss or damage of information, but also a possible theft
of information. A channel where there is a possibility of loss of information, damage to the
data being transferred or even simply tapping of information, is referred to as an insecure
channel while a channel with no such adversary is called a secure channel [2]. We must note
that a secure channel is an ideal channel and its practical realization may not be feasible. In

most of the cases the channel may have interferences which may be due to an inherent

property of the channel [1] as well as introduced artificially. Hence a way to protect our data
from such interferences for reliable data transfer is mandatory. Information security,
cryptography in particular, provides a way to protect the transmitted data from such
introduced interferences, as well as attempts to hide the information being transferred from
unauthorized entities that may be present in the channel. The basic service it provides is the

ability to send information between participants in a way that prevents others from reading it

[3].

A. Thesis Motivation and Overview

Cryptography involves the process of encryption, which is the process of converting
information in readable form into data in incomprehensible form. Although the
incomprehensible data may be read, it should be very difficult (and ideally impossible) for an
unauthorized entity to be able to re-obtain the initial readable information from it. Moreover it
should be relatively easy for the intended recipients of the message to be able to decipher the
incomprehensible data into readable information. This is achieved by passing the information
to be transferred through an encryption routine. It changes the input information consisting of
alphabets from a finite set into a sequence of alphabets in another finite set (or usually, the
same set). The algorithm used for this conversion is publicly known. However, the values that
a given input converts to, is determined by another piece of information associated with the
algorithm, known as a key. This can also be expressed mathematically. Let A denote a finite

set called the alphabet of definition. An example would be A = {0,1}, which is the binary

alphabet. M denotes a set called message space which consists of strings of symbols from the

alphabet of definition. An element of this set is called plaintext. C denotes a set called the

ciphertext space. It consists of strings of symbols from the alphabet of definition, which may

differ from the alphabet of definition for M. An element of this set is called a ciphertext. K

denotes a set called key space and an element of this is called a key.

Each element e € K determines a one-to-one transformation from M to C, denoted by

E,, called an encryption function or an encryption transformation. For each d e K, D,

denotes a bijection from C to M. D, is called a decryption function or decryption
transformation. The process of applying the transformation E, to a message m € M is called
encryption and the application of the transformation D, to a ciphertext ¢ to obtain m is
called decryption [4]. An encryption scheme consists of {E, :e e K} of encryption

transformations and a corresponding set {D, : d € K} of decryption transformations with the

property that for each e e K there is a unique key d € K such that D, =E;l; that is,
D,(E,(m))=m forall me M. An encryption scheme is sometimes referred to as a cipher.

The keys e and d in the preceding definition are referred to as a key pair and sometimes

denoted by (e,d) [4]. If the key used in changing comprehensible data into incomprehensible

form (encryption) and vice versa (decryption) is the same, then the method is known as
Symmetric or Private Key Cryptosystem. If the keys used are different, then the method is
known as Asymmetric Key Cryptosystem. Normally the key used for decryption is kept secret
by the receiver while the key used for encryption is publicly known. Hence this system is also

known as Public Key Cryptosystem.

Public Key Cryptosystem or PKC obviously provides ease of use as the need to securely
transfer a secret key to the communicating parties is not necessary. However, to achieve a
level of security same as that or higher than Symmetric Key Cryptosystems, PKC requires
keys of much larger bit length. The larger the bit length of the key, the more secure the
algorithm is. But the higher bit length also contributes to significant increase in the algorithm
execution time. If a method of reducing this time of execution can be developed, it will make
the practical implementation and deployment of PKCs highly efficient. This thesis attempts to
provide some background information on PKC, the different algorithms popular in PKC
implementation and how the speedup of the implementation of one such algorithm may be

obtained, on the basis of certain mathematical conditions being met.

B. Research Objectives

Some disadvantages associated with PKCs are the complexity of the algorithms, large
size keys and hence the longer execution time. These are also the reasons why they are mainly
used for key transfer or digital signatures instead of actual data encryption. The most
commonly used PKC systems utilize the RSA encryption scheme based on the hardness of
factoring a large number with large prime factors. Other methods such as Diffie-Hellman Key
exchange, based on the discrete logarithm problem are also available. The common
characteristic between the various algorithms is that they require operations based on modular
mathematics. Modular addition and subtraction algorithms are easy to understand and
implement and are considered easier to implement. Algorithms for operations like division,
multiplication and inversion are much harder and significantly more time consuming,

especially when large size numbers are used.

Many algorithms have been developed that help to increase the speed of execution of
such modular operations, mainly modular multiplication, division and inversion. However, as
the bit length of the input numbers keep on increasing for higher level of security, methods to

further increase the speed of execution must also be devised.

This study mainly focuses on improving the implementation of PKCs by increasing the
speed of calculation of the inverse of a number modulo a power of 2. Calculating inverse is
considered one of the most time-consuming operations in modular arithmetic and increasing

the speed efficiency of its execution will greatly help in its better implementation.

C. Thesis Contribution

This thesis provides a simplification on a previous algorithm developed for the
calculation of inverse modulo power of 2. This simplification results in a higher speed of

execution. Many algorithms for the calculation of modular inverses have been developed in [5]

- [9]. As already mentioned calculating modular inverses is one of the most time-consuming
of all modular operations. Since computers work on binary numbers, if the modulus is a
power of 2, it is possible to modify the general methods used for finding modular inverse [4],
[5] to construct a more efficient one. Hence special algorithms designed to efficiently
calculate inverse modulo power of 2 have also been developed. Still, the time required for the
execution of these algorithms is also significantly great for larger sized numbers. Hence Arazi
and Qi in [10] suggested an alternative method for calculating inverse modulo a power of 2.
This study intends to take it a step further. It makes certain assumptions about the input

numbers and proposes a simplification on the original algorithm given in [10].

1. Simplified Algorithm:

A simplified version of the algorithm proposed in [10] is given, along with certain
assumptions about the numbers being operated on. These assumptions are based on another
paper dealing with improving the execution speed of Montgomery multiplication method
implementation. As long as the assumptions for the input numbers are valid, the simplified
algorithm has a faster execution time than the original unmodified algorithm for the same

input.

2. Result of Comparison:

Code was written in C implementing the original algorithm by Arazi and Qi, Dusse and
Kaliski’s method [11], straight forward method [10], modification of extended Euclidean
algorithm for inverse modulo power of 2 [10] as well as the simplified version Arazi and Qi’s
algorithm proposed here. This thesis provides the result of comparison between these various
methods for different values of input numbers as well as for inputs of different bit lengths. It
shows that the simplified algorithm does provide an improvement over the original algorithm
as well as the other popular methods, especially when the bit length of the input numbers

increases.

D. Thesis Organization

This thesis is organized into chapters as follows. Chapter II presents an overview of
information security, especially public key cryptography and the various modular arithmetic
algorithms used. It also describes in detail the algorithms used for inversion modulo power of
2 which was the focus of this study. Chapter III describes Arazi and Qi’s method as well as
introduces the special structure of numbers. The chapter then describes the simplification that
can be done on the modular inverse algorithm studied, as well as shows the results of
comparison between the simplified algorithm, the original algorithm as well as the other
popular algorithms for inversion modulo 2. Chapter IV summarizes and concludes the thesis,

with some suggestions for future modifications.

I1. Background

This chapter is devoted to the background necessary for discussing the work in this
thesis. Section A provides an overview of the basics of information security and cryptography
in general. Section B introduces some of the mathematical algorithms needed for PKC
implementations that are relevant to this thesis. It first describes the Montgomery reduction
algorithm needed to speed up modular multiplication. This is followed by Dusse and Kaliski’s
algorithms and the straight forward method. The chapter ends with a description of the

modified extended Euclidean method for finding inverse modulo the power of 2.

A. Overview of Information Security

As mentioned in Chapter I, the ideal communication system depicted in Fig. 1.1 is not
always practically feasible. The channel through which data needs to be transferred consists
of various sources of noise and interference. Some of these are present due to the properties
and characteristics of the channel itself, such as signal attenuation and introduction of random
noise. The methods described in this thesis and cryptography in general, however, deals with
protecting the data from other types of intrusions that may be present on the channel, such as
some unauthorized entities trying to read the information being transferred or trying to alter it
in some way. In the terminology of cryptography, the communicating parties are usually
known as Alice and Bob while the intruder is knows as Eve. When Alice and Bob are trying
to communicate through a channel as shown in Fig. 1.1, Eve may be present on the channel
altering the information being transferred, without the knowledge of either Alice or Bob. If
this is the case, the message that the sender wants the receiver to obtain is not the one that he
gets. It may also be the case that Eve is continuously watching the channel, not altering it in
any way, but observing the information that is being transferred between Alice and Bob. In
most of the cases this is also an undesirable situation. For example, if the communication

between Alice and Bob was a bank transaction, it would certainly not be desirable for a third

party to know about the details. Hence the communication system model shown in Fig. 1.1 is

incomplete. It can be better described by the block diagram shown below [12]:

Trusted Third Party

> (e.g., arbiter, <
distributor of secret
information
A
Sender Recipient
Information

v Channel
oy 0o 05)
4 g4 g4 8
o) 0 (0] %) 9 0]
s s s =

Secret Opponent Secret
Information Information

Fig. 2.1 Model for network security

As can be seen from Fig. 2.1, this new communication system model acknowledges the
presence of an opponent in the information channel. However it also provides a way of
preventing this opponent from tampering with the transferred data. We can see that a trusted
third party is overseeing the sender and the receiver as well as the communication channel.
However the main focus of this thesis lies in the blocks between the sender and the channel as
well as the channel and the recipient. These are the blocks that, with the help of some extra
information, do the necessary transformations on the message. This is also the main point
behind cryptography. The process of converting legible information from sender, using a
piece of information called key, into illegible secure message or cipher text to be transmitted
through the information channel is known as encryption. The opposite process of converting
the cipher text obtained from the information channel into legible message for the receiver

using a key is known as decryption.

Before going into the details of security, the various ways in which the communication
between Alice and Bob may be compromised is given here. They represent the manners in
which an eavesdropper, Eve, may disrupt, alter, or simply find out, in an unauthorized manner,

the information being transferred between Alice and Bob.

Interruption

O— ©

Fig. 2.2 Interruption of communication

a) Interruption: Interruption is the threat on availability. Fig. 2.2 shows the concept of
interruption of transmitted message. The attacker may simply block the communication
channel, or in some other way make it infeasible for the receiver to obtain the data

transmitted by the sender.

Interception

Fig. 2.3 Interception of data

b) Interception: Fig. 2.3 represents interception of transmitted data, which is the threat on
confidentiality. In this kind of attack the attacker will allow the transfer of data from
Alice to Bob or vice versa, but will be monitoring the data that is being transferred,

usually without their knowledge.

Modification

Fig. 2.4 Modification of data

¢) Modification: Fig. 2.4 shows how the attacker is compromising the integrity of data. In
this case the attacker obtains data from the sender, modifies it and then transmits it to the
receiver, usually without the knowledge of either party. An implementation of this attack
would be the man-in-the-middle attack done against public key systems [2], [3], [12],
[13]. In an ideal attack the sender and receiver will be completely oblivious to the
presence of the attacker and will not be able to tell if their communication has been

compromised .

Fabrication

ole

Fig. 2.5 Fabrication of data

-10 -

d) Fabrication: Fabrication corresponds to a threat on authenticity of data being transferred.
Fig. 2.5 represents such an attack. As can be seen, an attacker is impersonating someone
else. An adversary replacing unauthenticated public keys with his own in a public key
infrastructure can be an example of such an attack [13]. The attacker sends data to the
receiver as if they were originating from the sender. In an ideal attack the receiver cannot

tell whether the received information is legitimate or illegitimate.

In a more general sense, any kind of attack may be categorized into one of two types:
passive attack and active attack [12]. In a passive attack the attacker attempts to learn or make
use of information from the system, but does not affect the system resource. Side channel
attacks may be categorized as a type of passive attack. The goal of the attacker is to obtain the
information that is being transmitted. A passive attack may be done to release the contents of
the message, which is clearly not desirable for confidential information. Alternatively, passive
attack may also be done to gather data for traffic analysis. It is possible to mask the actual
data being transferred through the channel, so that even if the data could be captured, it would
not be possible to extract meaningful information from the data. This can be achieved by
encryption which will be further discussed later. Even with such a protection in place, an
attacker might still be able to observe the pattern of the masked messages and through their
careful analysis determine the location and identity of communicating hosts as well as observe
the frequency and length of messages being exchanged. Such information may be useful in
guessing the nature of the communication taking place. Passive attacks are mainly attacks on
the encryption scheme, done to systematically recover plaintext from ciphertext or even

attempt to deduce the decryption key [4].

Active attacks on the other hand involve some kind of modification of data stream or a
creation of a false stream and can be subdivided into four categories [12].

a) Masquerade: In such an attack the attacker pretends to be either the sender or the
receiver. It is usually done to perform another form of active attack. For example,
authentication sequences can be captured and replayed after a valid authentication
sequence has taken place, thus enabling an entity with few privileges to impersonate

another one with higher privileges.

-11 -

b) Replay: This involves the passive capture of a data unit and its subsequent
retransmission, to produce an unauthorized effect.

¢) Modification of messages: It implies that some portion of a legitimate message is
altered, or that messages are delayed or reordered, to produce an unauthorized effect.
For example, a message meaning “Allow John Smith to read confidential file
accounts” is modified to mean “Allow Fred Brown to read confidential file accounts.”

d) Denial of service: The denial of service prevents or inhibits the normal use or
management of communications facilities. This attack may have a specific target; for
example, an entity may suppress all messages directed to a particular destination (e.g.,
the security audit service).Another form of service denial is the disruption of an
entire network, either by disabling the network or by overloading it with messages so

as to degrade performance for other legitimate users.

We can see that active attacks are opposite in nature to passive attacks. Although passive
attacks are difficult to detect, methods can be implemented to prevent them. On the other hand,
it is very difficult to completely prevent active attacks since there are wide variety of potential
physical, software, and network vulnerabilities. Instead, we try to detect active attacks and
recover from any disruption or delays caused by them [12]. If the detection has a deterrent
effect, it can also contribute to prevention of the attack in the first place. Mostly protection
from all these attacks is provided using masking of data being transferred and by following
certain security protocols. In any case, encryption of the data being transferred is a necessity

and plays a very vital role.

As already mentioned encryption basically implies converting the legible data to be
transmitted into illegible data. The data to be transferred is called the message text while the
converted illegible data is called the ciphertext. The algorithm that does this conversion is
known. However, the exact ciphertext that any given message converts to depends on another
piece of information called an encryption key. Similarly, the conversion of the illegible data
into legible message at the receiver’s end is done using the decryption algorithm and the

decryption key. If M represents the message to be encrypted, E the encryption algorithm, D

-12 -

the decryption algorithm, C'the ciphertext and K, and K, the encryption and decryption key

respectively, the process of encryption and decryption can be represented by the

transformations

respectively [12]. Depending on the value of the keys used, K,and K, , cryptosystems can be

divided into two broad categories; symmetric key cryptosystem and asymmetric key

cryptosystem.

a) Symmetric Key Cryptosystem: In this type of system, the two keys used for
encryption and decryption, K, and K, , are same. Hence this system is also known as

symmetric key encryption. As already mentioned, since the details of the encryption
and decryption algorithm are known, the keys used have to be kept secret. One secret
key, for both encryption and decryption, are known to both the sending and receiving
parties and have to be shared between them prior to encrypted communication
through a secure channel. Examples of symmetric key cryptosystems include
classical ciphers such as Ceaser cipher, Vignere cipher and more recent ones such as

AES, DES, etc.

b) Asymmetric Key Cryptosystem: In this system the encryption key and the
decryption key are related but different. Hence this type of system is also known as
asymmetric key cryptosystem. Such a concept was introduced by Diffie and Hellman
in [14]. One of the keys is used for encryption, however, only the other key can then
be used for decryption of the message. Usually the encryption key is known publicly
while the decryption key is kept secret, so that only the intended recipient has the key
required for decryption. However encryption may be carried out using the secret key,
when creating a signature. In any case, if one if the keys is used for encryption, the
other will be used for decryption. Also, knowledge of the public key does not make it

easier (and ideally is impossible) to determine the corresponding secret key. Most

-13 -

implementations of these methods base their security on the hardness of some
particular mathematical problems. Some of the more popular examples are RSA and

Diffie-Hellman Key exchange [15].

In its most intuitive form, any form of encryption consists of transforming some
information, consisting of symbols from a finite set of symbols (the message text) into data
consisting of symbols from another (but usually the same) set of symbols (the cipher text).
Hence this gives rise to the concept of modular arithmetic when creating mathematical
descriptions of cryptosystems. The most basic idea of modular arithmetic is that it works on a
finite set of numbers. Hence, unlike in classical arithmetic where we can allow the results of
our operation to range from negative infinity to positive infinity with each number being
distinct from any other, the numbers in modular arithmetic repeat after a certain count,
depending on the modulus used. A little more about modular arithmetic will be discussed here.
The mod operator is an important operation in modular arithmetic. The operation X mod Y
represents the remainder when X is divided by Y. The congruence relation 4 = Bmod N read
as 4 congruent to B modulo N, implies that the number 4 is the summation of some multiple

of Nand B, thatis, 4 = k- N + B . It also implies that (4mod N) = (B mod N). It should be

noted however that all the parameters to be considered here are integers. Modular operations
have certain properties that make them distinct from their corresponding regular arithmetic
counterparts. Some of the more important and basic properties of modular mathematics are as
follows [12]:

1. a=bmodn ifn|(a->b)

2. a=bmodn impliesb = amodn

3. a=bmodn andb =cmodn implies a = cmodn

These were the properties of the modulo (mod) operator. By definition the mod
operator maps all integers in to the set of integers {0,1,2,...,(n —1)}. It is also possible to
perform arithmetic operations such as addition and multiplication within the confines of this
set. This is known as modular arithmetic. Some important properties of modular arithmetic

arc:

_14 -

1. [(amodn)+ (bmodn)|modn = (a+b)modn
2. [(@amodn)— (bmodn)|modn = (a—b)modn
3. [(@amodn)*(bmodn)lmodn = (a*b)modn

for any integers a, b,and n .

Also, if we have the integers a , b, and ¢ working modulo the integer #, then if
(a+b)=(a+c)modn, it implies b=cmodn . However, if we are concerned with
multiplication, if the expression (a-b) = (a-c¢)modnis true then b = cmodn if and only if

a is relatively prime to n . The two numbers a and n are said to be relatively prime or
coprime to each other, when the greatest common divisor of the two numbers is 1, that is, if

the largest number that can divide both of them is 1.

By its definition cryptography can include any mechanism that can be used to encrypt,
decrypt, sign or authenticate data. This can include mechanical, electromechanical, electronic
or quantum—mechanical systems. However in practice today cryptography generally implies
electronic systems, specifically hardware and software systems that can be implemented in a
computer, as cryptographic algorithms have become more complex and more demanding.
This thesis will concentrate on a particular discipline of cryptography, more specifically on
public key cryptosystems and discusses on how a speedup on their implementation may be

achieved by focusing on a particular widely used operation, the inverse modulo power of 2.

B. Algorithms Involved in PKC

Asymmetric key cryptosystems are relatively more convenient to use than symmetric
key cryptosystems, as they do not need the sharing of a secret key through a secure channel.
Encryption and decryption are carried out by different keys, and only one of the keys needs to
be kept secret while the other one can be made public. It is not feasible for anybody to derive
the secret key from the publicly available one. The list of public keys must be kept safe so that

they cannot be tampered with. Since the public key, if used for encryption, cannot be used for

-15 -

decryption, only the intended recipient who holds the secret key can decrypt the message. An
actual implementation of a PKC consists of different types of modular arithmetic operations.
In a typical PKC implementation, for example, in the RSA cryptosystem, the hardness of
determining the private key from the public key arises from the hardness of factorizing large
integer numbers and for actual encryption and decryption the process requires multiple

modular multiplications to be carried out in the form of modular exponentiation.

Multiplication however, is one of the most time consuming of modular operations
especially when the size of the numbers under consideration is very large [16]. To reduce the
amount of time needed for its execution, various types of modifications to the schoolbook
multiplication algorithms [17] - [19] as well as completely different algorithms to be used in
conjunction with multiplication algorithms, such as the Montgomery modular reduction
algorithm have been developed [16], [18]. However, such methods have further given rise to
the need to develop algorithms for other time consuming operations such as modular division
and modular inverse. Although this study focuses on cryptography, these algorithms find uses
in other fields too [10], for example, multiplication algorithms are needed in signal processing
and coding theory as well [17]. Hence methods that help to increase the speed of execution of

these operations will be helpful in many different ways.

Firstly the Montgomery multiplication method will be briefly discussed [4].
Montgomery reduction is a technique which allows efficient efficient implementation of
modular multiplication without explicitly carrying out the classical modular reduction step [4],

[20]. If m is a positive integer, R and T are integers such that R>m , gcd(m,R) =1 and
0 < T < mR, the value of TR~ mod m can be determined without actually using the product

or division operation to determine the remainder. 7R ' mod m is the Montgomery reduction
of 7 modulo m with respect to R . Using a suitable choice of R , Montgomery reduction can

be efficiently computed. Let x and y be integers such that0 < x,y <m. Let X = xRmodm

and ¥ = yRmod m. The Montgomery reduction of XV is f)NzR_l modm = xyRmodm . It

should be noted that this fact can be used to provide a more efficient method for modular

-16 -

exponentiation. If m is represented as a base b integer of length # , then a typical choice for
Rish". He condition R > mis obviously satisfied, however, gcd(R,m) =1will only hold if
gcd(B,m) =1. Thus this choice of R is not possible for all moduli. For those moduli of
practical interest (for example, RSA moduli), m will be odd; then b can be a power of 2 and
R = b"will suffice. Given integers m and R where gcd(R,m) =1, letm' = —m~' mod R and
let Tbe any integer such that0 <7 <mR. If U = Tm'mod R then(T + Um)/ Ris an integer
and (T + Um)/ R = TR (mod m) . This fact can be mathematically proven as follows. We
know that T+ Um=T(modm) and hence (T + Um)R™' =TR '(mod m). To see that

(T + Um)R™'is an integer, we should observe thatU = Tm' + kR andm'm = —1+ IR for some

integers kand / . Tt follows that

T +Um
R

T+ (Tm'+kR)m
R

T +T(=1+IR)+ kRm

Also we should note that(7 +Um)/Ris an estimate for 7R ' mod m . Since T < mR

and U < Rwe have

T +Um <mR+mR B
R R

Thus we can say that one of expressions among either (7 + Um)/R = TR ™' mod m or

(T +Um)/ R = (TR mod m) + m is true, that is, the estimate may exceed in value by at most

-17 -

m . This process of Montgomery reduction can be used with multiple precision multiplication

algorithm to compute Montgomery reduction of the product of two integers [4].

In simple terms, Montgomery reduction converts the numbers to be operated upon into
integers in the Montgomery domain, where the actual multiplication operation is carried out.
This is done by converting each digit of the number under operation into 0 from the LSB
towards MSB, by adding another single digit number. This addition in turn changes the value
of the next higher digit, so at every iteration the digit to be added so that the next higher digit
can be changed to 0 must be calculated. This process continues until enough lower digits have

been converted to 0, so that they can be removed by a division by R, or a multiplication by

R™'. Hence to make the implementation simpler R is usually chosen to be the base used for
representation of the numbers raised to the power number of digits in the modulus in that
given base. This is due to the requirement that R must be greater than the modulus.
Obviously the final result needs to be converted back from the Montgomery domain. Thus the
fact that we need to convert into and out of the Montgomery domain adds to the overhead
when using this method to speed up modular multiplication. Due to this reason, this process is
more efficient when multiple modular multiplications need to be performed over the same
modulus [19]. It may in fact be more inefficient than straightforward methods in case we need

to carry out single or few modular multiplications, depending on the size of the numbers.

Calculating the modular inverse of an integer is another operation that is more time
consuming among modular arithmetic functions, especially for larger sized numbers. For
modular inverse to exist, the number whose inverse is to be calculated needs to be relatively
prime to the modulus [12]. Modular inverse can be found using the extended Euclidean
algorithm. For implementation in binary computers, an adaptation of the extended Euclidean
algorithm using the binary GCD algorithm has also been developed [5]. However these
methods were still quite complicated to implement in hardware and software and took
relatively more time to execute as well. Hence the Montgomery modular inverse method was
developed [6], which has been further modified and built upon by various researchers [8], [13]

to provide further ease of implementation as well as more efficiency in execution speed.

-18 -

However, if we need to calculate the inverse modulo power of 2, other more dedicated
methods can be used to perform the operation [10], [11], which are more efficient. It should
be noted that it has been possible to design these algorithms more efficiently mostly because
computers are designed to work in binary arithmetic. None the less, these algorithms specially
tailored to finding inverse modulo power of 2 are better than other general methods that just
use a power of 2 number as the modulus, and are the focus of this thesis. The operation of
calculating multiplicative inverses modulo power of 2 finds uses in applications such as
Montgomery modular multiplication and exact division [7], [10]. Some of the more popular
algorithms that had previously been developed to perform this operation will be presented
here. They are either more efficient or more intuitive than using the more general algorithms

for finding modular inverse by setting the value of the modulus as a power of 2.

Algorithm 1: Dusse and Kaliski’s method to calculate » = ™' mod 2"
The algorithm for calculating inverse modulo power of 2 using Dusse and Kaliski’s

method is given below [11], [21].
N= 1
for i =2 to mdo
ifb-y,_ < 2 mod2’ then
Vi = Via
else
i-1
Vi=Yig 2
end

end

Fig. 2.6 Dusse and Kaliski's method to calculate inverse modulo power of 2

Fig. 2.6 shows us Dusse and Kaliski’s method for calculating the inverse of a number

modulo a power of 2. At the end of the iteration, the value of y, is the desired result

¥ =b"mod2". The method determines the value of the inverse number bit by bit starting

-19 -

from the LSB, keeping in mind the fact that the lower m bits of the product of the input

number and its inverse should be 1.

Algorithm 2: Straight forward method
Algorithm 2 is a more straight forward method for calculating inverse modulo power of
2 [10]. Tt utilizes the fact that bis an odd number and thus has 1 as the least significant bit,
and the fact that the product of b and b modulo2™is 1, so in binary representation of m
bits, is of the form 000...01. Thus by adding selected left shifts of bto an accumulated sum
that starts with b, we can always generate a value whose m LSBs are of any given form,
including 000...01. This algorithm is thus executed by sliding bleftwards one bit at a time
across an accumulated sum such that the LSB of b generates the bits of the given product. The
steps of the algorithm for calculating » = b~ mod 2" are as follows:
acc=b
x=1
y=>b
res =1
fori=1ton-1do
y<<l1
x<<1
if " bit of acc =1
acc <« acc+y

res <—res +x
end
end

Fig. 2.7 Straight forward method of calculating inverse modulo power of 2

Fig. 2.7 shows the straight forward method of finding the inverse modulo a power of 2

number. Since this method uses, in a way, the definition of modular inverse in the binary

-20 -

representation, this method is the easiest and most intuitive way to implement this operation.
However, it is also the slowest method. In terms of complexity, this method is same as
multiplying two m bit numbers. Upon careful observation this method is in fact very similar

to the schoolbook method of multiplication of two m bit numbers.

Algorithm 3: Modification of extended Euclidean algorithm

This algorithm is more closely related to the binary GCD version of the extended
Euclidean algorithm and it completes in two stages. To calculate b~ mod 2" the algorithm

first computes 2" mod b and in the next stage interchanges the roles of the two values 2" and
p g g

b. The procedure is as given below:

Algorithm 3a: calculating2™" mod b by m successive divisions of 2 mod b
d=1
for i=1t0om do
if d is odd then
d=d+b
end
d=d/2
end

The final value ofd is2™" modb.

Algorithm 3b: recovering » = b~ mod 2" out of s = 2" mod b.

t=s5-2"
u=(t-1)/>b
r=s"—u

Fig. 2.8 Modified extended Euclidean method to calculate inverse modulo power of 2

Fig. 2.8 is the modified extended Euclidean method for calculating inverse of a number

modulo power of 2. As can be seen from the above figure, the process completes in two parts.

221 -

The first part calculates the value 27" mod » . It should be noted that the relation
s =2""mod bimplies that =s-2" =u-b+1 and so the value u calculated in the second
step of Algorithm 3b, is therefore an integer. Thus, u -b = s - 2" — 1. Taking both sides of the
latter relation modulo 2" yields the congruenceu - b = —1 mod 2. From this we can say that

(-u)-b =1mod 2" and therefore, —u = r =5 mod2". However, — u = (2" — u)mod 2",

which completes the validity proof for Algorithm 3b.

-0

II1. Proposed Simplified Method and its Evaluation

A. Arazi and Qi’s Method

1. Exponent of 2 is a Power of 2

The main focus of this thesis will be on a procedure described by Arazi and Qi in [10]
which is quite different from the methods described earlier. It is a more efficient recursive
method, tailored specifically to find the inverse modulo power of 2. The method first
considers the exponent of 2 to be an even number and a power of 2 although the authors have
given a way to determine the inverse for other exponents as well. However, for the sake of

simplicity of explanation, the exponent of 2 is considered power of 2. Let us consider the case
where we need to find the value of x, wherex = y~' mod 2% . It can be seen that x and y are
both 2i bit numbers while the values of y and 2i are known. In case the binary
representation of y has more than 27 bits, only the lower 2i bits need to be considered. Let
x,; and x; denote the upper and lower i bits of x and y,, and y, denote the upper and lower
i bits of the number y respectively. x,, x; denotes the concatenation of the two i bit strings
and hence the number x . Similarly y,, v, denotes the number y. Letr=y;'mod2’. Arazi and

Qi’s method shows that if we know the value of », the value of x can be calculated by

individually calculating the upper and lower i bits of x as:

-23-

where (- y,), and (- y,); denote the upper and lower half of the depicted product

respectively. The final result can be obtained by concatenating the two halves asx,x, .

a. Validity

The validity of this method has been proven in [10], which for the sake the sake of

completeness is also given here. Since x = y ' mod 2*', we have, x - y = I mod 2°

" that is,

the lower 2i bits of the product x -y (which is a 4i bit number) is of the form 000...01.

Writing x and y in terms of their upper and lower halves, we have,
2i i

(xpx,) py)=xy -y 2" +(xy -y, +x,-yy)2 +x,-y;

The lower 2i bits of this product is given by

(xy -y, +x; ~yH)~2i +x, -y,

Since we have x -y = 1mod 2%,

[(xy -y, +x, ~yH)~2i +x; -y,]=1mod 22 e

b. Calculating x, :

Since x, is the lower i bits of (1) given above which should be of the form 000

have,

Thus x, = yil mod 2" = r, which, from our assumption, is already known.

c. Calculating x,, :
Since x,, is the upper i bits of (1) which should be 0, we have
(e -y +3, yy)p + (o p) g]mod 27 =0
G ox)) ==L,)y + (- 1) 1M0d 27 e

Since the lower i bits &, of any number kis also £ mod 2/ we have,

-4 -

Xy =1x, vy + Gy vy), 1 vy Tmod 2’

Thus,

Xy =—0-y)y +(l"yH)L]-r]mod2i

From this, the value of x can be calculated as x = x,,x, . Thus if the value of y;' mod 2’
is known, it can be seen that the value of x can be calculated. Since we had considered #

being a power of 2, to calculate the value of y,' mod 2, we can consider y, to have two

halves of i bits, and this same process can be repeated recursively in that manner until y,

becomes the LSB of y, which is always 1 since y has to be odd to have an inverse modulo

2"

qu

Fig. 3.1 Breakdown of the operand ¢

-25-

(LSB)

Fig. 3.1 shows how the operand ¢ is broken down into halves recursively. The value of
the inverse of ¢ at each level of recursion can be calculated from the value of inverse of ¢ at
the next level of recursion. Using this calculated value and the value of ¢ at the current level

of recursion, its inverse is obtained using the formulas given in equations (7) and (10).

Example 1:
This result can be illustrated with a numerical example using smaller size numbers. For
simplicity, the numbers have been represented in hexadecimal. However, the number system

used to represent these numbers is immaterial as long as we can keep track of the binary digit

representation of the numbers involved. The aim here is to find the value of p = ¢~ mod 2%,
given that g = 99F8AS5SEF and g, = b, where r = b~ = (A5EF)™" =290 F mod 2'® . Using

the method described above, we know that the lower half of the result, p; =7 =290F . In

order to calculate p,, , we need to calculate the following values:

(r-b), = (290F - ASEF), =149D

(r-q,), = (290F -99F8), = BD8S

py =-1((r-b), +(q, -r),) rJmod 2"
= —((149D + BD88)- 290 F) mod 2'°®

= 68D5

The final result p can now be obtained through concatenation. Thus

p=pyp; =68D5290F We can see that if we multiply this number p by the original
number ¢ , we get p-q=068D5290F -99F8AS5EF =3F0D37FD00000001 which is

1mod 2% .Hence, p = c[l mod 2% .

- 26 -

Example 2:

Another example showing the recursive way in which this algorithm can be
implemented is given below. For simplicity a smaller modulus is used here. Let ¢ = C1D9 be
the number whose inverse is to be found with the value of the modulus as 2'®. Firstly the

number ¢ is divided into upper and lower halves with ¢,, = Cl and ¢, = D9 . Thus first we
need the value of ¢;' mod 2% . Let this value be p’ and let ¢ , be divided into upper and

lowers halves as ¢, =D and ¢} =9 respectively. To find p’ we need the value of

-

qy "mod 2*. Let this value be p" . Again, to calculate the value of p” we need to divide q;

into upper and lower halves as ¢, =10, and ¢; = 01,, which are now in binary. Again, to

n—1

calculate this, we need the value of ¢}~ mod 27 . Let this value be p” . For this, we have to

"

" =0and ¢ =1. Thus we have ¢/ mod 2 = 1

divide ¢ into upper and lower halves as ¢
which is the value of p}, the lower half of p". The upper half of p" can be calculated using
equation (2) as py =-[[(1-1), +(1-0),]-1]1mod 27 =0. Hence the value of

p" = py | p; =1.Using same method, we obtain p" =9, p' = 69, and finally the required

inverse p = AE69. As a verification, we can see that p * ¢ = 1 mod 2'°.

2. Exponent of 2 is not a Power of 2

The method described in the previous section has been made possible because of our
assumption that the exponent of the modulus is a power of 2. However, even in cases where

this value is not a power of 2, the inverse can be calculated using a few extra computations

[10]. Let us suppose we have a ' = b mod p with ¢ a divisor of p. This also means that
a = b mod p . From number theory, we also have the fact that [¢ mod ¢]™' = b mod ¢ which
also implies amod g =5b"modg. Let us suppose we need to find the value of

r=b"mod2" using Arazi and Qi’s method. For the method to be applicable m must be a

power of 2. In case m is not a power of 2, the binary representation of b is padded with

_27 -

ceil (log, m)

leading 0’s so that the number of bits in bbecomes n = 2 where ceil(x)1is the integer

which is just greater than or equal to x. We can clearly see that the value of # is 2 raised to

the power number of bits in the binary representation of m . Now the value of
w=5b"mod2" is calculated using Arazi and Qi’s method. Here it should be noted that

2" > 2™ is always true since n>m. Hence we can say 2" | 2". Since we now know the

value of ™' mod 2" and 2" divides 2", as per the discussion in this section we can say that

b~ mod 2” = w mod 2" which is our required value. In non mathematical terms, what this

means is that, if we need to find a value @ = b~ mod2” where m is not an exact power of 2,
we first find the value 5~ mod 2" where 7 is a power of 2 just greater than 7 . If we take this

result modulo 2™ we get our desired result.

B. Numbers with Special Structure

When calculating the Montgomery multiplication of two numbers represented using a
radix 7 and modulus M , it is necessary for a value M ' to be precomputed. It is required for
use in a step to calculate the Montgomery reduction of the intermediate values obtained

during the process. This value M’ is given by the operation M’ = —M modr . Since M is

represented in radix 7, if M, represents the least significant digit of M, we have
M'=-M,mod r . This precomputed value is then multiplied to the intermediate result as a

part of the operation to find the Montgomery reduction of the intermediate result. It has been
shown in [22] that if we can fix the value of M’ to 1 for all cases, the need for the
precomputation as well as multiplication in the intermediate steps can be eliminated, thus
resulting in less complexity in implementation as well as faster speed of execution. To
achieve this, certain conditions have been assumed to hold true. Firstly, let the modulus M
consist of n bits in its binary representation with the radix of representation being 2". This is

usually a valid assumption in case of practical implementations.

-28 -

Lemma 1: Let M = A2" +1be an n digit positive integer in radix 2 representation, that is,
2" <A< 2" andletM' = -M ' 'mod 2", then M’ = —1.

Proof: Since it is clear that M = 1mod 2", we have M ' mod 2" =1.Thus, M’ = —1.

Lemma 2: Let M = A2" —1 be ann digit positive integer in radix 2 representation, that is,
2"« A< 2" andlet M'=-M "mod2", thenM' =1.

Proof: Here, since M = —1 mod 2" we can see that— M ' = 1mod 2". Thus we have M’ = 1.

Our main concern here is the structure of the numbers involved. Let the set of numbers
with the structure represented in Lemma 1 be set S1 and the set of numbers with the structure
represented in Lemma 2 be set S2. In any of these cases, we can see that since A is an integer,
n > wis always true. Moreover, the lemma is true regardless of the value ofw, as long as
n > w holds true. From the mathematical description given, we can see that the numbers in

sets S1 and S2 are of the form shown below:

n-1 0
S1 1 Mn2 e M. ...all0's ... 1
n-1 0
S2 1 Mn2 e M. oallt's .. 1

Fig. 3.2 representation of the numbers in sets S1 and S2

Fig. 3.2 shows what the numbers look like in their binary form. The numbers are n-bits
wide. It can be seen that in the numbers in set S1, the most significant bit is 1, followed by a
pattern of bits which represent A followed by w—1bits of 0’s with the least significant bit
having a value of 1. Similarly, in the case of numbers in the set S2, the most significant bit is

1, followed by a pattern of bits representing A followed by w bits of 1.

-29.-

C. Simplified Method for Special Numbers

This chapter presents a simplified version of the algorithm given by Arazi and Qi. It also
provides an analysis of the performance of the new simplified algorithm, comparing its
execution speed with the original version and other popular algorithms like Dusse and
Kaliski’s algorithm, straight forward method and modified extended Euclidean method.
Firstly we make an assumption thatw = n/2 . As already mentioned in the previous chapter,

this assumption does not invalidate the Lemmas 1 and 2. If this assumption holds true,

calculation of the inverse of the n bit number M becomes easy and efficient. Let M, and
M, denote the upper and lowern/2 or w bits, respectively, of the number M. From Arazi

and Qi’s method described in the last chapter, we can see that M ~"'mod 2" can be obtained if
M ;" mod 2"'*is known. Let us consider the case of M being the member of the set S1. As

can be seen from Fig. 3.2, the lower w bits of a number of this structure are of the form

000...01. Thus we can see that the lower w bits of M is given by
M, =M mod2" =(A2" +1)mod 2" =1mod 2". As the inverse of 1 in any finite field is

also 1, we have, M ;1 mod 2" =1. As the value of M Zl is known, the value of M ' mod 2" can

be calculated.

Again, let us consider the case of M being a number having the structure A2" — 1, that is,

a member of the set S2. In this case the lower w bits of M are given by
M, =M mod 2" = —1mod 2" . We can see that the lower w bits of M are all 1’s, that is, the
number M, is of the form111...11. Thus M, is a Mersenne number. A Mersenne number is a
number that can be written in the form of 1 less than a power of 2. If an integer with « bits is
a Mersenne number, then it has the form2“ —1. If we take the square of this Mersenne
number modulo 2% we get,

(2“ —1)* mod 2“

= (2% = 2" + I)mod 2“

-30 -

=1mod 2¢

The square of a Mersenne number with ¢ bits is 1 modulo2“ . Thus we can say that a

Mersenne number with ¢ bits is the inverse of itself modulo2“ . Since M , is a Mersenne
number with w bits for M e S2, it is the inverse of itself modulo 2" .and asMLfl mod 2" is

known, the value of M ~' mod 2" can be calculated using the previously described process.

| 2i bits |

q aH av

I— gL inverse known 4|

P PH PL

I— Calculated ! Equal to g, inverse 4'

. . -1 -
Fig. 3.3 Recursion unnecessary when value of ¢, is known

Fig. 3.3 shows how easy it becomes to calculate the value of p when we consider the
numbers having the special structure as inputs. Compared to Fig. 3.1, we can see here that we

do not need to break down the lower half of ¢, ¢,, in successive recursive steps, since the
value of qzl mod 2’ is known immediately from the beginning. In fact the most

computationally intensive part of the entire operation becomes the calculation of p,, which

only needs to be done once.

231 -

Example 3:

A numerical example showing the use of this method for numbers having the special

structure is given here. Let g = 445C13DE00000001 be a 64 bit number shown here in
hexadecimal notation for clarity of presentation. From its structure we can see that this
number belongs to the set SI. We have ¢, = 00000001 and ¢, = 445C13DE where g,
and ¢, have their usual meanings. We need to find p = ¢ ' mod 2°* . From the simplified
method, we know that p, = qZ' =1 and from equation (2) we can calculate

py, = 5BA3EC22. Thus we have p = ¢~' mod 2** = 5B43EC2200000001 . Again, let us

consider a number in the set S2. Let g = A45C13DEFFFFFFFF, so that we have
q, = FFFFFFFF and ¢, = A45C13DE. Here as well, we can see that

p, =q, = FFFFFFFF and from equation (2) we can calculate p,, = 5BA3EC20 . Thus

the inverse is p = SBA3EC20FFFFFFFF.

D. Performance Evaluation

The unmodified version of this algorithm consists of three multiplication operations and
are considered the most time consuming parts of this operation; the determination of the
values of the expressions (v -y,), (r-yy),and [[(r-y,)y +(r-yy),]-rImod 2'. Each
value is i bits long. The first operation requires the multiplication of two i bit values. The
latter two however, each require half as much computation since they only need the lower i
bits of the 2i bit product. Hence the execution of the process requires two multiplications of
i bit values. If we consider the 7 bit number who’s inverse modulo 2" is to be found to be
composed of k bit words, then the total number of words is given bym =n/k. Since k is
taken to be the size of the processor word which is usually a power of 2 and we have already
considered # being a power of 2, the value m in this case is an integer. If we were to use the

method by halving the number of words in the lower half of y until we reach the least

significant bit, at any given point of the iteration we would need to do two multiplications of

-32-

2" bit words. Since multiplying two numbers each X words in length requires x” single word
multiplications, multiplying 2" bit words require 2 - 2* single word multiplications. Since the

value of i changes from 0 to log, m the total number of single word multiplications required

log m—1 2 _ 1)

is given by2- X *" which simplifies t02-(m—where m’ gives the number of single
3

0

word multiplications executed when multiplying two 7 bit operands (since the z bits consist
of m words). Hence the computation involved in this process is two-thirds of one
multiplication of n bit values. Besides this, as we recursively execute this algorithm, we will
reach a point where we need to find the inverse of the least significant word. After this we
need to go into bit level operations from word level operations, dividing the word into half
words and so forth until we reach the least significant bit. Considering each bit level operation
as a word level operation, which would be a logical choice as in the case of a software
implementation, this collection of bit level operations would take a total of2-logk single
word operation in addition to the amount of time required for the execution of the other word
level operations. However, the total number of these bit level operations and the time required

for their execution are insignificant in comparison to the other word level operations. Hence

2

the amount of time required for execution can be approximated to 2 - ———= single word
3

multiplications. However if we consider the special condition described in this paper, we can
see that no matter how many words the number y needs to be divided into, the value of
yzl mod 2 is always known at the first iteration itself, where yzl is y, itself and i = w. Hence
for values of y lying in one of the special sets of numbers described, the method described in

section 2 requires only two multiplications of w bit values. The most time consuming

operation in the process has thus been reduced to two w word multiplications. Furthermore,
the need to reiterate the process recursively log, » number of times is also eliminated. Further

reducing the cost, for example, of subroutine calls in case of a software implementation or the

total execution time required in case of hardware implementations.

-33-

The algorithms from Algorithm 1 through 3 were implemented in C, using libtommath
large number library to compare the efficiency of the various algorithms, Arazi and Qi’s
original algorithm and the modified algorithm. It was seen that the modified algorithm was
faster than the other algorithms for most of the cases. Another tool was also developed to
generate random numbers of a given bit length, to use for testing the algorithms. Although for
smaller sized numbers such as 32 bit and 64 bit numbers, Algorithm 3 was seen to be faster
than the modified algorithm in some cases, as the number of bits in the input was increased it
was seen that the modified algorithm was definitely superior in terms of execution speed. The
programs were written in C and compiled using gcc version 4.4.1 for both Linux and
Windows Operating System environments, on an Intel Core i5 — 2500K computer with 3.30
GHz processor frequency. Data showing how many times the modified algorithm is faster (or
in very few cases, slower) than the other algorithms considered, was recorded and tabulated

here. It is also shown in graphical form as follows.

Algorithm 32 bits | 64 Dbits | 128 bits | 256 bits | 512 bits 1024 bits
Arazi and Qi’s method 5.34 6.2 6.91 7.27 6.19 5.04
Dusse and Kaliski's method | 1.21 3.36 8.37 2291 64.26 129.33
Straightforward method 1.57 4.39 10.02 22.56 44.61 53.29
Modified extended 0.008 0.51 1.55 4.25 8.51 10.22
Euclidean method

Table 3.1 Execution speed comparison for set 1 numbers in windows environment

Algorithm 32 bits | 64 Dbits | 128 bits | 256 bits | 512 bits 1024 bits
Arazi and Qi’s method 3.66 4.18 4.58 4.27 2.92 1.99
Dusse and Kaliski's method | 0.38 1.48 4.14 11.15 26.89 54.84
Straightforward method 0.65 2.1 5.06 10.78 18.06 20.88
Modified extended -0.46 -0.36 -0.05 0.6 1.17 1.35
Euclidean method

Table 3.2 Execution speed comparison for set 2 numbers in windows environment

-34 -

Algorithm 32 bits | 64 bits | 128 bits | 256 bits | 512 bits 1024 bits
Arazi and Qi’s method 5.06 5.88 6.50 6.88 6.2 5.94
Dusse and Kaliski's method | 1.20 3.15 7.89 23.09 66.58 157.12
Straightforward method 1.64 4.27 9.50 20.07 37.85 47.33
Modified extended -0.03 0.34 1.23 3.13 7.02 8.54
Euclidean method

Table 3.3 Execution speed comparison for set 1 numbers in Linux environment
Algorithm 32 bits | 64 bits | 128 bits | 256 bits | 512 bits 1024 bits
Arazi and Qi’s method 3.45 3.99 4.5 4.5 3.41 2.7
Dusse and Kaliski's method | 0.26 1.32 3.88 11.315 31.57 71.06
Straightforward method 0.5 1.91 4.62 9.21 15.16 18.87
Modified extended -0.52 -0.45 -0.17 0.31 0.89 1.17

Euclidean method

Table 3.4 Execution speed comparison for set 2 numbers in Linux environment

-35-

Execution speed comparison for Set 1 numbers
132 bits 64 bits E128 bits N256 bits 4512 bits 1111024 bits

Arazi and Qi's method Dusse and Kaliski's Straightforward method Modified extended
method Euclidean method

Fig. 3.4 Performance comparison for execution speed of algorithms using input in set S1 in
the windows environment

Fig. 3.4 compares Arazi and Qi’s original method, Dusse and Kaliski’s algorithm, the
straight forward method and the modified extended Euclidean method with the proposed
simplified method. The input numbers are of the form that are from set S1. It can be seen that
as the size of the input number increased, the performance of the simplified method with
respect to the other methods also increased. It can be seen that the maximum performance
improvement was seen for 1024 bit large inputs over the Dusse and Kaliski’s method. The
simplified algorithm was around 129 times faster than Dusse and Kaliski’s method for the

same inputs.

-36 -

Execution speed comparison for Set 2 numbers
32 bits [64bits E128bits N256bits ©512 bits 111024 bits

18.062
20.875

B A A

-0.053

-0.457

-0.362
0.6
1.173

. 1.354

Arazi and Qi's method Dusse and Kaliski's Straightforward method Modified extended
method Euclidean method

Fig. 3.5 Performance comparison for execution speed of algorithms using input in set S2 in
the windows environment

Fig. 3.5 shows a comparison of performance for numbers that lie in set S2. Here also we
can see that maximum performance increase is seen over Dusse and Kaliski’s method. It can
be seen that, although for smaller sized numbers, modified extended Euclidean algorithm
executed faster than the simplified algorithm described here, as the size of the input number

became larger, the improvement supplied by the modified algorithm became more apparent.

-37-

Execution speed comparison for Set 1 numbers
132 bits 64 bits B 128 bits N256 bits 512 bits 111024 bits

Arazi and Qi's method Dusse and Kaliski's Straightforward method Modified extended
method Euclidean method

Fig. 3.6 Performance comparison for execution speed of algorithms using input in set S1 in
the Linux environment

Fig. 3.6 compares the speed of execution of the four algorithms with the simplified
method for numbers in the set S1, this time in a Linux environment. It can be seen that the
overall trend of the data is not much different in this case either, with the most improvement

being seen over Dusse and Kaliski’s method for 1024 bit numbers.

-38 -

Execution speed comparison for Set 2 numbers
1132 bits 64 bits F128 bits N256 bits 4512 bits 111024 bits

o]
S
—
™~
NS
~ <
B o
o e
ML ®
e s
! 25 — 0
Y gu "
- O 0 o n o .6 0 N kol
0 O O ~ < o m r < NN~
98I NS L I Gl gL/l dI9agn
PSS S P N M m <+ D < ke S A o0
N g e @9 Qg o
Illl‘ﬂmmm»»\ |x\tﬁ:ﬁk 25> ll\m\ [s¢ -
Arazi and Qi's method Dusse and Kaliski's Straightforward method Modified extended
method Euclidean method

Fig. 3.7 Performance comparison for execution speed of algorithms using input in set S2 in
the Linux environment

Fig. 3.7 shows the comparison of performance of the four algorithms with the simplified
method for numbers in the set S2 in a Linux environment. As expected the overall trend of
data was not much different, with the most improvement being seen over Dusse and Kaliski’s
method for 1024 bit numbers. Here as well, although for smaller size inputs the modified
extended Euclidean algorithm was seen to be faster, as the size of input increased an

improvement in performance of the simplified algorithm was also seen as expected.

-39-

IV. Conclusion

Most implementations of Public Key Cryptosystem (PKCS) utilize different types of
modular operations. Modular inverse is one such operation and is a time consuming
operations compared to addition and subtraction, especially when the size of input numbers is
large. A special case is inversion modulo a power of 2. Dusse and Kaliski’s method, the
straight forward method and the extended Euclidean method are some of the popular
established ways of finding such an inverse. Arazi and Qi had proposed a recursive algorithm

which is more efficient than these established methods.

This thesis proposes a simplified version of Arazi and Qi’s method, by removing the
recursion process. For the same inputs, the simplified method is able to execute faster than the
previously mentioned methods, especially when the size of the input is large. Arazi and Qi’s
method divides the input numbers into halves recursively up to the MSB. For the method
proposed in this thesis, if the input numbers have a certain structure in their binary
representation, then the recursion can be eliminated. This increases the speed of execution of

the simplified algorithm.

The special structures are of two types. Depending on them, an input number belongs to
either the set S1 or S2. The experimental results show that the inverse can be found faster than
other algorithms if the proposed simplified method is used if the input is from one of these
sets. This increase in execution speed is more significant when the size of the input is large.
We can see from the experimental data that for inputs of smaller size such as 32 or 64 bits, the
speed gain was not much significant. For example, in case of numbers belonging to set S2, the
negative value indicates that the extended Euclidean algorithm may be faster than the
proposed modified method. However, the speed gain becomes much significant as the size of
the input increases. For instance, for inputs of size 1024 bits belonging to set S1, it can be
seen that the simplified method is 5 times faster than Arazi and Qi’s method, 129.3 times
faster than Dusse and Kaliski’s algorithm, 53.3 times faster than the straight forward method

and 10.2 times faster than the modified extended Euclidean algorithm.

- 40 -

It should be noted however that this performance enhancement comes at a price. The
trade off in this case is that the simplified algorithm is only applicable when the input
numbers have a special structure in their binary representation and fall in either set S1 or S2.
If the input does not fall in either of these sets then the simplified method cannot be applied to

obtain the execution speed increase.

As a future enhancement, work may be done in designing a hardware circuit for this
method. The paper by Arazi and Qi mostly talks about software implementation and has
considered software based implementation as a basis of performance comparison. Hence one
possible way in which this work may be extended is by developing a hardware realization of

Arazi and Qi’s recursive method.

_41 -

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

References

A. V. Oppenheim, A. S. Willsky and S. H. Nawab, Signals and Systems, 2nd ed.,
Prentice Hall, 1997.

H. P. van Tillsborg, Encyclopedia of Cryptography. Springer Science+Business
Media Inc, 2005.

C. Kaufman, R. Perlman and M. Speciner, Network Security Private Communication
in a Public World. 2nd edition, Prentice Hall, 2002.

A. J. Menenzes, P.C. van Oorschot and S. A. Vanstone, Handbook of Applied
Cryptography. CRC Press, Inc., 1997.

D. E. Knuth, The Art of Computer Programming Seminumerical Algorithms. 2nd ed.,
vol. 2, Addison-Wesley Publishing Company, 1984

B. L. Kaliski, “The Montgomery inverse and It’s Applications,” [EEE Trans.
Comput., vol. 44, no. 8, pp 1064-1065, Aug. 1995.

E. Savas and C. K. Koc, “The Montgomery Modular Inverse—Revisited,” IEEE
Trans. Comput., vol. 49, no. 7, pp. 763-766, Jul. 2000.

A. A. A. Gutub, A. F. Tenka, E. Savas and C. K. Koc, “Scalable and Unified
Hardware to Compute Montgomery Inverse in GF(p) and GF(2"),” in Cryptographic
Hardware and Embedded Systems - CHES 2002, B.S. Kaliski Jr. et al.,, Ed. 2003,
Lecture Notes in Computer Science, No. 2523, pp. 484-499, Springer, Verlag Berlin
Heidelberg 2003.

D. Hankerson, A. Menenzes and S. Vanstone, Guide to Elliptic Curve Cryptography.
Springer-Verlag, 2004.

O. Arazi and H. Qi, “On calculating multiplicative inverses modulo 2", IEEFE Trans.
Comput., vol. 57, no. 10, pp. 1435-1438, Oct. 2008

S. R. Dusse and B. S. Kaliski, “A Cryptographic Library for the Motorola DSP5600,”
Advances in Cryptology, Proc. Ann. EuroCrypt Conf., pp. 230-244, 1990.

W. Stallings, Cryptography and Network Security Principles and Practices. 3rd ed.,

Pearson Education Inc, 2003.

_4) -

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

C. Parr and J. Pelzl, Understanding Cryptography A Textbook for Students and
Practitioners. Springer-Verlag, 2010.

W. Diffie and M. E. Hellman, “New Directions in Cryptography,” IEEE Trans.
Inform. Theory, vol. IT-22, pp. 644-656, 1967.

D. R. Stinson, Cryptography Theory and Practice. 2nd ed., Chapman and Hall/CRC,
2002.

K. Bentahar and N. P. Smart, “Efficient 15,360-bit RSA Using Woop-Optimised
Montgomery Arithmetic,” Cryptography and Coding 2007, LNCS 4887, pp 346-363,
2007

A. Weimerskirch and C. Paar, “Generalizations of the Karatsuba Algorithm for
Efficient Implementations,” Technical Report, University of Ruhr, Bochum,
Germany, 2003. Available: http://eprint.iacr.org/2006/224

M. E. Kaihara and N. Takagi, “Bipartite modular multiplication,” IEEE Trans.
Comput., vol. 57, no. 2, pp. 157-164, Feb. 2008.

C. K. Koc, “High-Speed RSA Implementation,” RSA Laboratories, Tech. rep. TR-
201, Nov. 1994.

P. L. Montgomery, “Modular Multiplication Without Trial Division,” Mathematics of
Computation, vol. 44, no. 170, pp. 519-521, 1985.

C. K. Koc, “Montgomery reduction with Even Modulus,” IEEE Proc. Comput. Digit.
Tech., vol. 141, no. 5, Sept. 1994.

M. Knezevic, F. Vercauteren, and I. Verbauwhede, “Faster interleaved modular
multiplication based on Barrett and Montgomery reduction methods,” IEEE Trans.

Comput., vol. 59, no. 12, pp. 1715-1721, Dec. 2010.

-43 -

Acknowledgement

I would like to express my deep and sincere gratitude to my academic supervisor, Prof. Kim,
Young Sik. His invaluable support, encouragement, supervision, personal guidance, and
useful suggestions throughout the course of my research have provided a good basis for the

completion of this thesis.

I owe my most sincere gratitude to Prof. Han, Seung Jo for his precious support,

encouragement and cooperation.

I wish to express my warm and sincere thanks to the thesis committee members, Prof. Park ,
Jong An and Prof. Pyun, Jaec Young for their detailed and constructive comments, and for

their important support throughout this work.

I also like to express thanks to all my lab mates of Computer Network and Information
Security Lab, Information Theory and Security Lab and all friends in Korea for their support

and cooperation.

I owe my loving thanks to my parents. Without their encouragement and understanding it
would have been impossible for me to finish this work. I owe my special gratitude to my

family and friends at home for their continued support.

_44 -

	I. Introduction
	A. Thesis Motivation and Overview
	B. Research Objectives
	C. Thesis Contribution
	D. Thesis Organization

	II. Background
	A. Overview of Information Security
	B. Algorithms Involved in PKC

	III. Proposed Simplified Method and its Evaluation
	A. Arazi and Qi’s Method
	B. Numbers with Special Structure
	C. Simplified Method for Special Numbers
	D. Performance Evaluation

	IV. Conclusion
	References

<startpage>13
I. Introduction 1
 A. Thesis Motivation and Overview 2
 B. Research Objectives 4
 C. Thesis Contribution 4
 D. Thesis Organization 6
II. Background 7
 A. Overview of Information Security 7
 B. Algorithms Involved in PKC 15
III. Proposed Simplified Method and its Evaluation 23
 A. Arazi and Qi¡¯s Method 23
 B. Numbers with Special Structure 28
 C. Simplified Method for Special Numbers 30
 D. Performance Evaluation 32
IV. Conclusion 40
References 42
</body>

