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초 록 

자가복구 기능을 갖춘 생태모방형 결함허용 FPGA 구조 

 

하산 베이그 

지도교수: 이정아 교수, Ph.D. 

컴퓨터공학과 

조선대학교 대학원 
 
 
 
새로운 FPGA 구조를 제안할 때 반드시 고려해야 하는 부분이, 제안하는 새로운 구조로 

인하여 추가적인 오버헤드를 발생시킬 가능성이 있는, 연결망 문제들이다. 자이링크 또는 

알테라 와 같은 FPGA 제품 회사들이 결함허용과 같은 새로운 기능을 추가하기 위하여, 

그들의 기존 제품 FPGA 연결망 구조를 수정하는 문제는 매우 어렵다. 따라서, 기존 제품의 

연결망 구조와 잘 통합될 수 있도록, 결함허용 기능이 새롭게 추가되는 FPGA 구조를 

개발하는 것은 중요한 문제이다. 본 논문에서는 상동(homogeneous)구조로서 자가 복구 

기능을 갖춘 생태모방형 결함허용 FPGA 구조를 제안한다. 본 연구에서 제안하는 구조는, 

지금까지 제안된 결함허용 구조들과 달리, 기존 FPGA 장치에서 사용하는 아일랜드 형 

연결망과 잘 통합되는 구조로, 기존 FPGA 장치에서의 구현이 용이할 뿐 아니라, 더 나아가 

필요하다면, 아일랜드 형 연결망 방식에 따라 결함허용 내부 연결을 갖춘 새로운 FPGA 

장치로 제조될 수 있다. 본 논문에서 제안된 결함허용 FPGA 구조는 LUT 단위에서의 일시적 

오류 및 영구적인 오류 발생 모두를 인지할 수 있다는 특성이 있다. 결함허용기능을 갖춘 

범용 연산 셀은 내부적으로 자가 복구 회로와 결함이 없는 회로 출력을 외부로 보내기 위해 

사용하는 내부 연결망으로 구성되어 있다. FPGA 구조는 여러 개의 연산 타일로 구성되어 

있고, 각 연산 타일은 N 개의 연산 셀로 구성되어 있다. 제안된 구조는, 연산 타일 내부에서 

발생될 수 있는 일시적 오류 및 영구적인 결함을 동시에 자가 복구할 수 있는 구조이다. 여러 

연산 타일에서 결함이 발생되었을 경우, 온 칩 복구 제어부에서 중앙 집중적인 방식으로 

UART 인터페이스를 통하여 외부 PC 소프트웨어에 해당정보를 보내어 복구가 진행된다. 

외부 PC 소프트웨어는 결함이 발생한 연산 타일 내의 스템 셀 (프로그래밍 되지 않은 FPGA 

로직 공간)을 부분적으로 다시 프로그래밍 함으로써 결함을 복구한다. 결함이 복구되는 동안, 

결함이 발생되지 않은 FPGA에 구현된 시스템 작동은 계속 유지된다. 본 논문에서 제안된 

자가복구 기능을 갖춘 생태모방형 구조는 자일링크 Virtex-5 FPGA 장치에서 구현되었고, 

이의 안정적인 작동을 확인하였다. 또, TMR 및 최근에 제안된 결함허용 구조와 비교하여 볼 

vi - 



 

vii - 

 

때, 본 논문의 제안된 구조가 결함 허용을 위한 하드웨어의 추가적인 오버헤드가 훨씬 축소 

될 뿐 아니라 여러 측면에서 향상된 구조임을 보였다.  



  

I. Introduction  
 

 

A. Research Motivation 

 

A self-repairing fault-tolerant system in a human body inspired us to 

implement the same logic at chip-level. The tissue, in a human body, is a 

group of cells which together carry out a specific function. The cell is the basic 

structural and functional unit of all known living organisms. It is often called 

the basic building block of life. Each cell is made up of several organelles like 

mitochondria, ribosome, nucleus etc. The cell’s nucleus contains 

chromosomes made from long DNA molecules. DNA is further divided into a 

group of nucleotide sequences called genes, as shown in Fig. 1.1. 

 

 
 

Fig. 1.1: The hierarchy of tissue-to-gene in a human body. 
 

 

The genes that have a same DNA sequences are termed as Paralogous 

genes. These similar genes generally perform the same function.  For 

instance, out of two Paralogous genes, A and B, if A goes faulty then B takes 

over the functionality immediately. However, if both of them are faulty then the 

cell dies. The cellular differentiation process of stem (or empty) cells then 

comes into an action to take over the functionality of that dead faulty cell.  

Such a fault-tolerant mechanism exists in living organism in which the 

sufficient DNA sequences are backed-up as redundant genes, and stem cells 

to heal the faulty cells.  
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The same approach has been implemented to develop a fault-tolerant FPGA 

architecture, in which the computation tile corresponds to a tissue and the pair 

of original and spare functions, within the cell, plays a role of paralogous 

genes. We also have employed the concept of stem cells differentiation 

(reprogramming) on FPGA through dynamic partial reconfiguration to recover 

permanent faults.  

 

B. Research Objectives 

 

The most complex thing in any FPGA architecture is its routing network, and 

to propose a new FPGA architecture means to keep all the routing issues in 

mind while developing a new FPGA architecture. It should also be keep in 

mind that 80-90% of the FPGA area is occupied by routing resources and the 

rest 10-20% is used by logic. Thus it is also difficult for the commercial FPGA 

vendors, like XILINX, Altera etc, to refine their existing routing architecture 

according to the newly proposed schemes to incorporate the fault tolerant 

capabilities. This arises the need to develop such a design that can easily be 

integrated with the existing routing architecture.  

 

These facts led us to invent a generic fault-tolerant FPGA computation cell 

(CC) which can be arrayed over the whole die to buildup a symmetrical fault-

tolerant FPGA architecture. This architecture can be integrated easily with the 

existing island style FPGA routing architecture. 

 

C. Contributions 

 
In this research, a generic fault-tolerant FPGA computation cell has been 

developed that can not only be able to serve as a basic building block in 

making a new fault-tolerant FPGA device, but can also be able to implement 

in an existing FPGA devices without taking care of routing issues. A novel 

fault-tolerant FPGA architecture, along with its controlling fault-tolerant core 

and self-healing software, is also developed in which the invented fault-

tolerant computation cell can be efficiently utilized for the development of 
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fault-tolerant digital hardwares. The main contributions of this thesis are as 

follows  

 

1. A fault-tolerant computation cell 
 
2. A computation block and its components 

 
3. A computation tile and its components 

 
4. An intra-tile routing architecture for the generation of permanent error 

signal 
 

5. A fault-tolerant core along with its components 
 

6. An external PC software for  
a. Introducing errors in FPGA chip during run time (for testing 

purpose) 
b. Self-healing the stuck-at permanent faults occurring in FPGA device 

 
7. A method of healing number of permanent faults, in a computation tile, at 

a time 
 

8. A method of healing faulty tiles if an error occurs in more than one of 
them at a time 

 

D. Thesis Organization 

 

The rest of this thesis is organized as follows. The overview and previous 

work related to this topic has been presented in chapter II. The detailed 

description of proposed architecture, fault-tolerant computation cell, fault 

detection and self repairing mechanism, fault-tolerant core and the self-

reconfiguring external PC software has been presented in chapter III. Chapter 

IV draws the performance comparison of a proposed architecture with the 

previous work. Chapter V comprises of the experimental testing. Chapter VI 

concludes the research work with future enhancements.  
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II. Related Work  
 

 
Fault tolerance on semiconductor devices has been a meaningful matter since 

upsets were first experienced in space applications several years ago. Since 

then, the interest in studying fault-tolerant techniques in order to keep 

integrated circuits (ICs) operational in such hostile environment has increased, 

driven by all possible applications of radiation tolerant circuits, such as space 

missions, satellites, high-energy physics experiments and others (Nasa, 2003). 

 

A Field Programmable Gate Array (FPGA), customizable by SRAM, device is 

a type of integrated circuit which consists of an array of programmable logic 

blocks interconnected by a programmable routing network and I/O blocks. 

SRAM based FPGA devices are getting popular in remote missions because 

of their high performance, reduced development cost and re-programmability.  

 

Fig. 2.1 shows the Reconfigurable island-style FPGA Tile. The blocks shown 

in purple are I/O Blocks or I/O pads through which FPGA chip takes input or 

produce output. The blocks shown in green are Switch or S blocks and are 

responsible to interconnect horizontal and vertical channels (shown with red 

vertical and horizontal lines). They only switch the direction of the signals from 

horizontal to vertical path or vice versa. The blue blocks are Configurable 

Logic Blocks (CLBs) or sometimes called Basic Logic Elements (BLEs) or 

simply called Logic Blocks. Grey blocks, in between each two Switch blocks, 

are Connection or C Blocks. C blocks connect the signals between two BLEs 

via switch blocks. The red interconnects are the routing channels which 

occupies 80-90% area of FPGA device. 

 

Radiations in the environment can seriously affect the functionality of a circuit. 

Single Event Effect (SEE) occurs when a charged particle, present in the 

environment, hits the silicon, transferring enough energy in order to provoke a 

fault in the system. SEE can have a permanent (destructive) or temporary 

(transient) effect depending on the amount of energy transferred by the 
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charged particles. The main consequences of transient effect are a bit flips in 

the memory elements whereas stuck-at faults can be an upshot of a 

permanent effect.  In order to keep these programmable devices operational 

in such hostile environment where the human intervention for maintenance 

and repair is impossible, a promising fault-tolerant and a self-healing 

reconfigurable architecture is considered necessary. 

 

 
 

Fig. 2.1: Island-style FPGA architecture. 
 

 

The typical approach of fault-tolerance is the use of redundancy where 

functions are replicated by n versions of protected hardware. Embryonics is 

taking this a stage further through the cellular organization and replication of 

hardware elements [13] [14]. The biological approach to fault tolerance is in 

the form of highly dependable distributed systems with a very high degree of 

redundancy. The human immune system protects the body from invaders, 
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preventing the onset of chemical and cellular imbalances that may affect the 

reliable operation of the body. Similarities between the human immune 

system and the requirements of fault tolerant system design were first 

highlighted by Avizienis [15] who noted the potential analogies between 

hardware fault tolerance and the immune system. Use of the immune system 

as an approach to fault tolerance within systems was first noted and 

demonstrated in [16] for the design and operation of reliable software systems. 

 

Several fault-tolerant techniques have been studied in the past years to 

protect ASICs against transient faults, and because FPGAs are composed of 

combinational and sequential logic, and more recently embedded processors, 

previous work dealing with standard integrated circuits can be adapted to the 

programmable logic architecture by finding the best tradeoff among area 

overhead, performance penalties, single and multiple upset correction, 

process technology and implementation cost.  

 

Tandem and Stratus used a fault-tolerant system called triple modular 

redundancy (TMR) in which three same hardware modules are implemented 

to carry out the same function and then a majority output is always used [1], 

[2]. In TMR, fault-detection is not necessary whereas only one fault is allowed. 

However, the high cost of its implementation limits its range of utilization. The 

concept of self-repairing embryonic systems was first introduced in the 1990s 

[3], [4]. Since then, self-repairing digital systems, as an advanced form of 

fault-tolerant systems, have received increasing attention, as modern digital 

systems are getting more complex and fast [5], [6]. In contrast to TMR, fault-

detection modules are required in self-repairing systems [17]. In addition, cells 

without any specified function are initially implemented as logic blocks or 

routing resources in a fine-grained scale and they are programmed later to 

replace faulty cells in the case of failure. This is the primary difference 

compared to the fault-tolerant systems where hardware redundancies should 

be made in advance in a coarse-grained scale at a chip or a board level.  

 

A number of researches have been carried out regarding self-repairing digital 

systems, including [7]–[9], in which a logical system realized by lookup tables 
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(LUTs) have been suggested. Some techniques have been suggested in the 

direction of precompiled configuration [7], [18]. In such techniques, alternative 

configuration was prepared in advance to replace permanent faulty parts and 

therefore reprogramming was not necessary. However, there was a severe 

overhead to prepare all configuration versions required to cover every 

possible faulty case. As a result, the storage overhead to keep various 

precompiled configuration versions gets increased enormously despite the 

current advancement of data compression techniques. A dynamic partial 

reconfiguration has also been studied for fast fault recovery [10], [11] in which 

the faulty partition of an FPGA is reconfigured without stopping the overall 

operation. The FPGA resources must be divided into fixed and dynamic parts 

where the fixed parts include essential elements for a constant operation and 

the dynamic parts include the dynamically reconfigurable elements. In 

addition, all the signal lines of the reconfigured elements should keep the 

same position. The hybrid scheme of wiring a redundant and a stem (empty) 

cell for fault-recovery is proposed by Kim, S. et al. in [12]. In this framework, if 

a fault occurs in a working cell, the corresponding redundancy replaces it 

instantly and the normal operation can be restored immediately. If there is no 

such corresponding redundancy for a working cell, a stem cell is immediately 

configured to the redundancy.  

 

The in-depth comparison of our proposed architecture with that of previous 

architectures has been presented in chapter IV - "Architectural Comparison 

with Previous Work".  

 
 



  

III. Developed Fault-Tolerant FPGA Architecture 
 

A. Brief Overview of a Complete Architecture 

 

The proposed architecture (depicted in Fig. 3.1) is an array of computation tiles 

(CT). Each computation tile is further divided into a number of computation 

blocks (CB) each of which contains M number of computation cells (see section 

II-C for general formula).  Each computation block has its own stem cell which 

contains N stem functions for its corresponding computation cells. Since the 

permanent error condition is handled by downloading a fresh partial bitstream so 

a fault checking mechanism is not required for stem functions. 

 

 
 

Fig. 3.1: A self-repairing bio-inspired fault-tolerant FPGA architecture. 
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There are two kinds of symmetry present in the neighboring tiles. Since the 

region of stem cells is partially reconfigurable, and due to the fact that the wiring 

nets can not pass through the partially reconfigurable region, this is why the 

different placements of stem cells is kept in neighboring tiles. If they would have 

arranged along a same row, the right and left half of each tile will not only be able 

to communicate with itself but also not with a neighboring tile. The die is divided 

into two halves. Also each tile is marked by its unique ID CT0, CT1 …, CT21, for 

both halves of the die to identify which tile has a permanent fault. 

 

The permanent errors occurring in the computation tiles are handled by a fault-

tolerant core. In order to use the existing architecture with the fault-tolerant 

capabilities, this core must be initialized and placed at the die-centre.  Its purpose 

is to define the healing priority when the error occurs in more than one of the tiles 

at the same time. The fault-tolerant core sends the information to external PC 

software via UART interface which identifies the faulty tile and downloads its 

corresponding partial bitstream to reconfigure that particular tile. This process 

takes no more than 1 to 2 seconds. The stem cell consists of N different 

functions corresponding to M different computation cells. The stem cell is partially 

reconfigured during run time whenever both of the original and spare function 

goes faulty at the same time. 

 

B. A Fault-tolerant FPGA Computation Cell 

 
Fig. 2.2 shows the top-level input-output diagram of a fault-tolerant FPGA 

computation cell. The inputs to a function are depicted by 1 i.e., a K-input 

function can be implemented. The inputs 2 are the inputs to free LUTs that can 

either be used as an intra-tile router or can also be used to store pre-generated 

error detection codes. This is further described with the description of Fig. 2.3. 

The inputs 3 are the inputs to a free-router available inside the cell.  The signal 

Fnstem connects the internal function-router with its corresponding stem function 

(see section II-C). The outputs 4 are the cell outputs. 
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Fig. 3.2: I/Os of fault-tolerant FPGA computation cell. 

 

The purpose and the signal naming convention of each output signal is 

mentioned below  

 

 Fnout (Function output) routes the cell function to another cell   

 PEout (Permanent Error output) generates an error indicating signal 

 Rout_1 (Route Out 1) and Rout_2 (Route Out 2) are used for intra-tile routing 

 Rout_3 (Route Out 3) is an output from a free router 

 

The invented fault-tolerant computation cell is capable of detecting all 

unidirectional errors in a function and able to replace it with its redundant spare 

function. 

 

The cell consists of an original-function LUT, a spare-function LUT (which is used 

to replace the original function when a transient error occurs) and a pre-

computed error detection codes (EDC), stored either along with the original/spare 

functions or in a separate two LUTs depending on the number of inputs of a 
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function. Beside these four reconfigurable LUTs in a developed computation cell, 

there is a self checking circuitry which not only identifies the error in an original-

function but also in a spare-function, both at the same time. It is very least 

probable that both of the original and spare function gets faulty at the same time, 

but if it happens (which indicates the permanent error condition) then the 

proposed architecture is smart enough to replace its functionality with the stem 

cell through partial reconfiguration. A computation cell also consists of an internal 

router to route un-faulty function (an original function or a spare function or stem 

function) out of the cell.  

 

The present invention assumes that the pre-computed Error Detection Codes 

(EDC), for each specific function, are loaded in the corresponding computation 

cells while configuring the FPGA with a configuration bitstream. These pre-stored 

EDCs are then verified with the on-cell generated EDCs for validating the output 

of original or spared function as correct or faulty.  

 

Fig. 2.3 depicts the internal components of a fault-tolerant computation cell. 

Components 5, 6, 7 and 8 are reconfigurable K-input LUTs whereas the 

components 9, 10, 11 and 13 can either be hardened at CMOS level or can be 

implemented in the existing FPGA in K-input LUTs. If a function to be ported in a 

computation cell is K-input function then 5 and 6 LUTs can be utilized as whole to 

store original and spare functions respectively. However, when a function to be 

ported in a computation cell is of K-1 (or less) inputs, both 5 and 6 can be 

fractured into two halves – one half of each component store original and spare 

functions and the other half store the corresponding EDC, as shown in Fig. 2.3. 

The components 7 and 8 are used to store EDC for a former case or as a free 

router in a later one. The components 9 and 10 are collectively known as Totally 

Self Checker, depicted as 12 in Fig. 2.3. 
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Fig. 3.3: Internal components of a fault-tolerant computation cell. 
 

The concept of a totally self checking (TSC) mechanism is defined as  

 

Definition 1: A cell is self-testing if, for every fault in a function, the generated 

EDC for a function doesn’t match with at least one pre-stored EDC. 

 

Definition 2: A cell is fault-secure if, for every fault in a function, the cell never 

produces an incorrect code output for any valid input.  

 

Definition 3: A cell is totally self-checking if it is both self-testing and fault secure. 

 

The component 11 is used to route non-faulty signal out of the cell. It also 

generates a flag of permanent error which indicates that both the original and 

spare functions are faulty at the same time (a permanent error condition). The 

component 13 is used as a free router to route different permanent error signals 

either from it or from the neighboring cells. It is simply an OR gate which can take 

up to K-inputs and route a single output. The component A1 is optional and must 

be used only when 9, 10, 11 and 13 needs to be hardened at CMOS level. It is 
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further described in section II-B.8. The internal components of a computation cell 

are described in the following sub-sections.  

 

1. A Generic K-input Fracturable LUT 

 

Fig. 2.4 shows the generic K-input LUT that can be fractured into two K-1 

shared input LUTs as shown. All the latest FPGAs nowadays have at least 6-

input fracturable LUTs. If the invented architecture needs to be ported in an 

existing FPGAs then the target device should have at least 6-input LUTs in a 

Configurable Logic Block (CLB) to implement components 9, 10, 11 and 13 of 

Fig. 2.3. There is no such restriction on reconfigurable components 5, 6, 7 and 

8 of Fig. 2.3. 

 

 

 

Fig. 3.4: The generic K-input LUT that can be fractured into two (K-1)-LUTs. 
 

2. An Original-function LUT 

 

Fig. 2.5 shows a 6-input (16) LUT (taken as an example) to hold an original 

function. This LUT can be fractured into two 5-input (shared) LUTs. If a function 

to be ported has 6 inputs then the LUT is utilized as a whole otherwise the 
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upper half, 19, stores the original function and the lower half, 20, stores its 

corresponding error detection codes.  

 

 
 

Fig. 3.5: The I/Os of an “original-function LUT”. 
 

The output 17 and 18 are the original function and EDC outputs respectively. 

The signal naming conventions are mentioned below 

 

 Fn_O_out (Original Function output) 

 PS_EDC_1 (Pre-Stored EDC-1 to check original function) 

 

3. A Spare-function LUT 

 

Fig. 2.6 shows a 6-input (21) LUT (taken as an example) to hold a spare 

function. If a function to be ported has 6 inputs then the LUT is utilized as a 

whole otherwise the upper half, 24, stores the spare function and the lower half, 

25, stores its corresponding error detection codes. The outputs 22 and 23 are 

the spare function and EDC outputs respectively. The signal naming 

conventions are mentioned below 

 

 Fn_Sp_out (Spare Function output) 

 PS_EDC_2 (Pre-Stored EDC-2 to check spare function) 
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Fig. 3.6: The I/Os of a “spare-function LUT”. 
 

4. Free LUT 

 

Fig. 8 shows a 6-input (26) LUT (taken as an example) to be used either as an 

intra-tile router or to hold 6-input EDCs. If a function ported in Fig. 6 is a 6-input 

function then 28 will be utilized to hold a corresponding 6-input EDC. If it is less 

than 6-inputs function, then 28 will be employed as an intra-tile router to route 

Permanent Error signal (discussed in section II-C and II-E).  

 

 
 

Fig. 3.7: The I/Os of a “free LUT”. 
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The signal naming convention of output 27 in both the cases are mentioned 

below 

 

 Rout_x (Route Out 1 or Route Out 2 of components 7 and 8 respectively 

of Fig. 4) 

 PS_EDC_X (Pre-Stored EDC-1 or Pre-Store EDC-2 for components 7 

and 8 respectively of Fig. 2.3) 

 

5. On-cell EDC Generator 

 

Fig. 2.8 portrays the internal structure and input/outputs of an “on-cell EDC 
generator“. The output 17 and 22 of Fig. 6 and Fig. 7, in order, connects here at 
the inputs 49 and 50 respectively. The signal naming convention of outputs 51 
and 52 are mentioned below  
 

 EDC_G_O (Generated EDC for Original function) 
 EDC_G_Sp (Generated EDC for Spare function) 
 

 
 

Fig. 3.8: The I/Os and internal structure of an “on-cell EDC generator”. 
 

The existing architecture of a fracturable LUT of some vendors is able to 

implement more than 1 function in a same LUT, as long as the inputs are 

common to all of them (like XILINX devices). However, other vendors provide 

the flexibility of fracturable LUT that can even implement more than 1 function 
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having unshared inputs (like Altera devices).  So in order to make the present 

invention compatible with all the existing commercial devices we have designed 

all the sub-modules of a fault-tolerant cell which implements different functions 

with shared inputs. The output equations of 51 and 52 are mentioned below 

 

11 IO    (2.1)

02 IO    (2.2)

 

6. On-cell Fault-checker 

 

Fig. 2.9 depicts the internal structure and input/outputs of a “fault checker”. The 

outputs 51 and 18 of Fig. 9 and Fig. 6, and 52 and 23 of Fig. 9 and Fig. 7, in 

order, are routed here at the inputs 56, 57, 58 and 59 respectively. The signal 

naming convention of outputs 60 and 61 are mentioned below  

 

 Faulty_O (indicates that an Original function is Faulty) 

 Faulty_Sp (indicates that a Spare function is Faulty) 

 

 
 

Fig. 3.9: The I/Os and internal structure of an “on-cell fault-checker”. 
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Depending on the number of inputs to an original function (as discussed above) 

62 takes either the outputs 18 and 23 of Fig. 6 and Fig.7, in order, or it take the 

outputs from components 7 and 8 of Fig. 4 at its inputs 57 and 59 respectively. 

It indicates whether an original or a spare function is faulty via outputs 60 and 

61 respectively. In this module, the real-time generated EDCs are compared 

with the pre-stored EDCs to check whether the generated and pre-stored EDCs 

are same. The non-matching value indicates a fault either in original or in a 

spare function. The output equations of 60 and 61 are mentioned below 

 

231 IIO   (2.3)

012 IIO    (2.4)

 

7. Function-router and Permanent Error Indicator 

 

Fig. 2.10 shows the internal structure of a “Function-Router and PE Indicator”. It 

take the outputs 60 and 61 of Fig. 2.9, 17 of Fig 2.5, 22 of Fig. 2.6, and input 

Fnstem of Fig. 2.2, in order, at its inputs 67, 68, 69, 70 and 71 respectively. It 

routes the un-faulty function and generates permanent error signal via outputs 

72 and 73 respectively.  

 

 
 

Fig. 3.10: The I/Os & internal structure of a “Fn-router and PE indicator”. 
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The signal naming convention of outputs 72 and 73 are mentioned below  

 

 Fn_Out (route the un-faulty Function Out from the cell) 

 PE_Out (route a Permanent Error flag signal Out from the cell) 

 

The component B1 (Fig. 2.10) is a MUX whose select signals are routed with 

the fault indication signals generated from a “Fault Checker”. The output 

behavior of 72 and 73 is mentioned empirically in equation (2.5) and (2.6) 

respectively.  

 

0112211 IS1S0  ISS0IS1S0ISS0O   (2.5)

12 SS0O   (2.6)

 

When,  

1. none of the original or spare function is faulty (S0 = S1 = 0)  

 Original-function is routed out of the cell  

 

2. only a spare function is faulty (S0 = 0, S1 = 1) 

 Original-function is routed out of the cell  

 

3. original function is faulty and spare function is un-faulty (S0 = 1, S1 = 0) 

 Spare-function is routed out of the cell  

 

4. original and spare both functions are faulty (S0 = 1, S1 = 1) 

 Stem function is routed out of the cell 

 Permanent Error signal is generated  
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8. The Programmable CMOS Switch Box 

 

Fig. 2.11 shows the internal structure of a CMOS switch box that must be 

fabricated at CMOS level if and only if the components 9, 10, 11 and 13 of Fig. 

4 also needs to be fabricated at CMOS level.   

 

 
 

Fig. 3.11. The internal structure of a programmable CMOS switch box. 
 

If the proposed architecture is implemented entirely as a new device, using the 

existing routing architecture, then the above mentioned components must be 

hardened at CMOS level and there should be an internal switch to route the 

appropriate signals with component 10 of Fig. 2.3. 

 

As mentioned before, when a K-input function is configured in fault-tolerant cell, 

the pre-generated EDC-1 and EDC-2 will be stored in the LUTs 7 and 8 of Fig. 

2.3 respectively. In this case, the SRAM bits of 80 and 82 are configured 0, and 

that of 81 are configured 1. Similarly, when a function, of less than K inputs, is 

configured then pre-generated EDC-1 and EDC-2 will be stored in the LUTs 5 

and 6 of Fig. 2.3 respectively. In this case, the SRAM bits of 80 and 82 are 

configured 1, and that of 81 are configured 0. The CMOS switch box is software 
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programmable (just like a routing network) and configured during 

implementation process.  

 

C. A Computation Block 

 

Fig. 2.12 shows the computation block with two different placements and routings 

of stem cell, 83, with its corresponding computation cells. The stem cell contains 

8 different functions (in this example) of its corresponding 8 computation cells. 

Thus a single stem cell in a computation block is able to heal all of its 

corresponding computation cells. In Fig. 2.12(a), 84 A and 84 B shows two 

computation cells with their corresponding stem functions St-A and St-B 

respectively. Whenever a computation cell gets a permanent fault, these stem 

functions are partially reconfigured to take over the functionality of their 

corresponding computation cells.   

 
 

Fig. 3.12: The computation block – showing stem function connections with their corresponding 
computation cells when the stem cell is placed at (a) center (b) corner. 
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The signal 85 is actually the signal Fnstem (in Fig. 2.2) which comes from the stem 

cell, shown as 83 in Fig. 2.12. 

 

The width of a computation block depends on the number of LUTs a computation 

cell can have. In order to port this fault-tolerant architecture in an existing FPGA 

then the width of a computation block depends on the number of LUTs a 

Configurable Logic Block (CLB) can have. It should have at least 8 LUTs in order 

to port all the components of a computation cell in a single CLB. 

 

Here we have assumed that each computation cell contains 8 LUTs so 8 stem 

functions for each computation cell can easily be accommodated. Thus a 

computation block size here is 8 + 1 (1 for stem cell) = 9 cells. It can be noticed 

that for 8 computation cells, only 1 stem cell is needed. If the present architecture 

is fabricated at CMOS level then block size totally depends on the size of a stem 

cell, in terms of LUTs. To port a proposed architecture in existing FPGA, 1 

computation cell corresponds to 1 CLB. The general formula of computation 

block size (in terms of CLB) to port a present fault-tolerant architecture in an 

existing FPGA is 

 

B = N + W (CLBs) (2.7)
where, 

B is the computation block size; 

N is the number of LUTs in a CLB, where N ≥ 8; 

W is the configuration frame width. The width of a stem cell should exactly 

be equal to or greater than the width of a configuration frame in order to 

partially reconfigure it properly. 

 

 
 
The designer should take care of the width of a stem cell while choosing the type 

of partial reconfiguration. In modular-based partial reconfiguration, the software 

automatically inserts proxy logic. This proxy logic is a single LUT1 element for 

each partition pin as a fixed interface between static and reconfigurable region. In 
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such a case, the width of a stem cell should be large enough to accommodate all 

partition pins of a stem cell. However, this is not the case with the differential-

based partial reconfiguration where there is no such requirement of extra proxy 

logic insertion.  

 

1. Intra-block routing of permanent error signals 

 

Fig. 2.13(a) and (b) shows the routing of a permanent error signal within a 

computation block, when a stem cell is placed at its center and at the corner, 

respectively. The components 86 show the permanent error indicators, i.e., a 

component 11 of Fig. 2.3, of two different computation cells.  

 

 
 

Fig. 3.13: The intra-block routing of a permanent error signal when a stem cell is placed at (a) 
centre (b) corner. 
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The signals 88 are the routes taken out from the permanent error indicator from 

each computation cell and routed into the inputs of 87, which could either be a 

component 7/8 or a component 13 of Fig. 2.3. 

 

The components 7/8 must be in a free router mode. The same routing strategy 

is followed on the other half of a computation block, as depicted in Fig. 2.13(a) 

and (b). This shows that, at least two computation cells out of a single 

computation block must have less than K input function, in order to use 

component 7 and 8 of Fig. 2.3 as a free router. So, for 8 computation cells in a 

computation block, 8 – 2 = 6 K-input functions can be implemented in it. For 10 

computation cells in a computation block, 10 – 2 = 8 K-input functions can be 

implemented in it. Generally the number of implementable K-input functions in a 

block is, 

 

Number of K-input functions = M – 2 (2.8)

where, 

M is the number of computation cells in a computation block. 

 

D. A Computation Tile 

 

Fig. 2.14(a) and (b) shows two neighboring computation tiles with two different 

placements of stem cells corresponding to Fig. 2.12(a) and (b) (rotated left by 900 

with the extension of  computation blocks) respectively. 89 and 90 are the width 

and length of a computation tile respectively. 91 indicates the width of stem cells 

as discussed in equation (7) which is greater or equal to the width of 

configuration frame. CC indicates a computation cell in the second computation 

block, B2, of a computation tile. The reason of having two different placements of 

stem cells in a computation tile is already discussed in section II-A.  
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Fig. 3.14: Two neighbouring computation tiles with stem cells placed at  
(a) centre (b) corner.  

 

The length of a computation tile is proportional to the configuration frame length. 

The configuration frame defines the granularity of a partial reconfiguration, that is, 

how many CLBs at least, are reconfigured during partial reconfiguration. The 

general formulation of a tile size, to accommodate the proposed computation tile 

in existing FPGA, is 

 

Tile Size = L × (N + W) (CLBs)  (2.9)

where, 

N is the number of LUTs in a CLB, where N ≥ 8. 

 

Suppose, for a configuration frame size of 20×1 (20 CLB long by 1 CLB wide), 

and a CLB size of 8 LUTs, the size of a computation tile will be  

 

Tile Size = 20 × (8 + 1) = 180 (CLBs) 
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This means that out of 180 CLBs, 20 vertical CLBs will be used as stem cells, 

and the rest 160 will be served as computation cells. Here the configuration 

frame size is 20×1 CLBs which indicates that while reconfiguring a portion of a 

device, 20×1 CLBs are reconfigured at once.  Here we have 160 computation 

cells and thus permanent errors occurring in all of them at the same time can be 

cured instantly.  Similarly for a configuration frame size of 40×2 (40 CLB long by 

2 CLB wide), and a CLB size of 8 LUTs, the size of a computation tile will be  

 

Tile Size = 40 × (8 + 2) = 400 (CLBs) 

 

Out of 400 CLBs, 40×2 vertical CLBs will be used for stem cells, and the rest 320 

will be served as computation cells. Since from equation (2.7), N+W = B, 

therefore equation 2.9 can be reduced into equation 2.10 

 

Tile Size = L × B (CLBs)   (2.10)

where, 

L is the length of a configuration frame; 

B is the size of a computation block. 

 

Also the number of stem cells, SC, in a computation tile is given by 

 

SC = L × W (CLBs) (2.11)

where, 

L is the length of a configuration frame; 

W is the width of a configuration frame. 

 

If an error occurs in one cell of a computation tile, all of the stem cells in that tile 

are reconfigured due to the configuration granularity of a device. Of course, the 

reconfiguration of those stem cells whose corresponding computation cells are 

not faulty doesn’t affect their functionality because they keep on running while the 

reconfiguration is performed.   
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This strategy leads to the fact that whether a permanent error occurs in a single 

computation cell or multiple cells, single flag signal should be taken out of a 

computation tile indicating that a permanent error has occurred in it. No matters, 

how many permanent errors are there in that computation tile – all of them will be 

cured at once. Therefore, the total number of cells in a computation tile, C, which 

can be healed from permanent errors concurrently at the same time, is 

 

C = Tile Size – SC (2.12)

where, 

SC is the number of stem cells which have enough number of LUTs to recover all

the errors in a computation tile. 

 

E. Intra-tile Routing for the Generation of a Single Permanent 

Error Signal  

 

Fig. 2.15 shows the intra-tile routing architecture which generates a single 

permanent error flag out of a computation tile. Since the permanent error signals 

from each cell of a computation block are routed into the free router of a cell (see 

section II-C.1) therefore a single permanent error signal is generated from each 

half of the computation block, as depicted in Fig. 2.13 (a) and (b). This scenario 

of Fig 2.13(a) is pictured again in Fig. 2.15. If there are 20 computation blocks, 

there will be 2 such signals, one from each half of every computation block, and 

thus 40 signals altogether from a tile. These signals are further divided into a 

group of 5 signals. The focused box, Blk-A, shows these 5 signals are input to a 

second available free router 93, which is the component 8 in Fig. 2.3. The 

number of these signals coming out from the second router will be 4 (for this 

particular case) from each half of the computation tile.  

 

These signals are again routed into a component 95, as shown in a focused box, 

Blk-B. Now a single signal is generated, from each half of a computation tile, 
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each of which is input to 94 to generate a single permanent error flag, 96, out of 

a computation tile.  

 

Following this strategy of intra-tile permanent error routing, the permanent error 

signal generating from each cell will have a same routing delay. It should be 

noticed that there are still free routers available that can easily be used for 

different tile sizes.  

 

 
 

Fig. 3.15: The intra-tile routing of a permanent error signal. 
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F. The Fault-tolerant Core 

 

Fig. 2.16 shows the internal components of a fault-tolerant core. It consists of two 

Permanent Error handlers, for both right and left halves of the FPGA chip. These 

permanent error handlers are nothing but 32-to-5 priority encoders with some 

additional circuitry. The priority encoder on the left decides which tile, out of the 

left side of a die, should be healed first when a permanent error occurs in more 

than one of them at a time. Similarly, permanent error handler (on right) makes a 

same decision for the right half. Priority Controller takes a decision which half of 

a die should be given highest priority. 

 

 
 

Fig. 3.16: The components of a fault-tolerant core.  
 

The reason why we have divided the die into two halves can be explained by 

considering first the case when die is not divided for permanent error handling. In 

this case the architecture will be similar to Fig. 2.17 having tile indices from CT0 

– CT43. Any tile, either CT0 or CT43 can be given highest preference for healing 

the permanent error. Suppose the highest preference is given to CT0 and that 

the lowest is given to CT43. In this scenario, if the permanent error occurs in, 

CT[0:7] for example, at the same time then the error present in CT4 has to wait 

until the permanent errors present in CT[0:3] gets healed. 
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Fig. 3.17: The tile indices when die is not divided for error handling. 
 

In order to avoid such situation, we divided the die into two halves, as depicted in 

Fig. 2 where each tile is marked by its unique ID CT0, CT1 …, CT21, for both 

halves of the die to identify which tile has a permanent fault. If the left half is 

given highest priority then according to the erroneous scenario discussed above, 

CT0 of left would be healed first and then CT0 of right half (corresponding to CT4 

of Fig. 18). Then it will heal the CT1 of left and that of right half sequentially, and 

so on. Similarly, die can be divided into 4 halves in order to further improve the 

permanent error handling.  

 

Frame generator, generates a frame containing sufficient information used by 

online external PC software to heal permanent errors through dynamic partial 

reconfiguration. The fault-tolerant on-chip core then sends this frame to external 

PC software through a serial UART interface.  
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1. Flow of Permanent Error Handler 

 

Fig. 2.18 shows a sample logic flow of a “permanent error handler” for handling 

8 computation tiles (having indices CT [7:0]) on either half. Since we have 

taken an example of 8 tiles here, therefore Data_In input register is 8-bits wide. 

The received data is first stored in the temporary register. In this flow, the 

highest indexed tile (i.e. CT7) is given the highest priority. After being 

acknowledged from the external PC software that the highest prior tile is healed, 

the “permanent error handler” checks whether the other tiles are also faulty or 

not, as depicted in the flow. In this manner all the permanent faults on either 

half of the die are healed sequentially due to the fact that only one bitstream 

can be downloaded at once. 

 

2. Internal Structure of a Priority Controller 

 

Fig. 2.19 shows the internal structure of a Priority Controller. Permanent error 

handlers generate computation tile IDs of those tiles which contain a permanent 

error in a single or multiple cells. When an error occurs in both halves of the die 

at a same time, the left half is given precedence (according to 103). There is no 

such reason of giving priority to left half of the die – any half can be given 

highest priority. The tile IDs, 108, permanent error indication bits, 106, and 

control signal bit, 107, are then passed to frame generator module. The signal 

106 indicates whether a fault is present in both halves or in either half of the die. 

The control module, 105, is simply an AND gate whose one input 104 is by 

default 1. The signal 107 indicates the tile IDs (108) belongs to which half of the 

die. Suppose an error is present on both the halves of a die (value of 106 will 

be 11) then the output of 105 will be 1 and online software will heal the errors 

present in left half first. After healing the first error on the left half, the external 

PC software de-asserts the signal 104 to select right half of the die.   

- 31 - 



  

Fig. 2.18:  The logic flow of a “permanent error handler”. 
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Fig. 3.19: The internal structure of a priority controller.  
 

When an error in computation tile of the right half is healed, software again 

asserts signal 104 to select left half, and this process continues until all the 

permanent faults get healed.  

 

3. The Frame Generator  

 

Fig. 2.20 shows the standard frame generation for the present architecture. 

Fault-tolerant core encapsulates the information in this frame and sends it to 

online software through serial interface. 
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Fig. 3.20: The frame generator.  
 

Other than EOF (End Of Frame) field, the frame 114, consists of 4 fields – 

 

 Tile IDs hold the tile IDs of faulty tiles that inputs from priority controller 

through interface 111 

 L/R Chip Select Bits stores the information of which half of the die has an 

error and feeds from a priority controller through interface 112 

o 10Left half has an error 

o 01Right half has an error 

o 11Both halves have an error 

 Control signal indicates that the data present in Tile IDs belongs to which 

half of the die and flows from a priority controller through interface 113 

o 0Right half of a die 

o 1Left half of a die 

 Status bits are the VALID (V) signals taken from 32-to-5 priority encoders 

(Permanent Error Handlers), from each half of die, through interface 109 

and 110. 

o 00No permanent error 

o 01Permanent error present on the right  half 

o 10Permanent error present on the left half 

o 11Permanent error present on both the halves  
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The status bits serve the purpose of a SOF (Start of Frame) field. The external 

PC software processes the frame only when a non-zero value is present in this 

field, otherwise the frame is discarded.  

 

G. The Self-repairing Software 

 

Fig. 2.21 shows the screen shot of a self-repairing external PC software that is 

designed on LabVIEW platform. This software receives the information frame 

(shown in Fig. 2.20) from on-chip fault-tolerant core via UART interface at 38400 

bits per second. This prototype software is designed to test the demo application 

(see section IV) on FPGA device. The designed software not only repairs the 

fault in FPGA tile but also introduces transient or permanent errors in order to 

verify the functionality of a proposed architecture. The error introducing technique 

is further described in chapter IV. 

 

 
 

Fig. 3.21: The self-repairing software.  
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The black screen (Fig. 2.21) is the output of a command prompt. The software 

runs command files, corresponding to each button available in GUI, containing 

the commands of downloading a bitstream onto the target FPGA device.  Full 

Bitstream button shown in Fig. 2.21 is used to download the application bitstream 

right away from the software. Retrieve Original button downloads the partial 

bitstream to retrieve the original functionality from the induced errors. There are 

four other options available for introducing errors in different computation cells of 

different computation tiles. Fault Status LEDs indicate the status of faults in two 

different tiles, T1 and T2. Reconfiguration Delay dial is an optional switch, given 

to introduce a time delay before auto-repairing the faulty tile of an FPGA. Since 

the software repairs the fault within the blink of an eye, so this option is quite 

helpful to let the viewers observe that the error has been introduced and it is 

auto-recovered by the software.  
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IV. Architectural Comparison with Previous Work 
 

We have compared our proposed architecture with previously developed fault-

tolerant architectures [12] and [8]. P. K. Lala et al [8] and Kim, S. et al [12] 

developed such an architecture which consists of separate original cell, spare 

cell and a cell router to route un-faulty cell (either original or a spare) with other 

cells. Both the original and spare cells have their own fault checking mechanisms 

due to which the area overhead is increased. Also, the spare function activates 

and goes through a self-checking mechanism only when an original function 

goes faulty. The point to be noted here is that the delay is increased to route the 

un-faulty function with another cell because the original function is checked first 

and if it is faulty then the spare function is activated and checked before routing 

its output to the input of another cell. Therefore, these schemes not only have the 

high area overhead but also experience the high inter-cell routing delay.  

 

We have overcome these issues in our architecture. The proposed architecture 

consists of computation cells rather than a pair of original and spare cells. This 

computation cell consists of original function along with its redundant spare 

function. The function router is also a part of this computation cell. Due to this 

fact, not only the original and spare both functions check at the same time but 

also a single LUT (for fault-checking circuitry) is required for both of them (see 

Fig. 10). This reduces the area and routing delay overheads both by 50% as 

compared to [8] and [12].    

 

In [8], function cell contains an original function and its corresponding 

complementary function. The fault is detected on the basis of the comparison of 

these two functions.   

 

Similarly in [12], double modular redundancy is used for fault detection. It also 

has an additional functionality of self-testing whether the error occurred is 

temporary or a permanent. According to the architecture proposed in [12], each 
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working module has 16 working cells and a single self-tester is available for each 

working module. Therefore, it is evident that for more than one faulty working 

cells in a working module, self-test can be carried out on only one of them at a 

time. The self-test module generates pseudo-random bit patterns and passes it 

to the circuit under test (CUT). Then it examines the fault of logic by comparing 

the resulting values from CUT. It categorizes a fault to be transient if two output 

trains from CUT are exactly same, and permanent if both are different from each 

other. This self-testing facility is not provided in [8].  

 

However, in our proposed architecture, error detection codes of original and 

spare functions are downloaded into a device during device configuration. These 

pre-generated codes are compared with the run-time generated error detection 

codes (see section III-B.5). Since, functional state of both the original and spare 

functions is verified at the same time, and it is very least probable that the same 

state of both functions gets faulty at a time, therefore we categorize a permanent 

error if both of them gets faulty together at the same time, else we call it a 

temporary error if only one of them is faulty. One of the positive points of our 

approach is that, unlike [8] and [12], in which an additional register is required to 

remember the erroneous state and faulty cell ID, the spare function instantly 

takes over the erroneous state of an original function without memorizing its 

current state in any extra register (see section III-B.7). The stem function 

reconfiguration heals the permanent error condition in [12] as well as in our 

proposed architecture. 

 

According to the strategy of reconfiguring a stem cell of [12], only one cell of a 

working module can be healed from a permanent error at a time. It is also 

claimed in this research that the partial reconfiguration techniques has been 

employed to speed-up the permanent fault recovery process, which is 

contradictory to their video demonstration. The permanent fault recovery 

demonstration video, referred in [12], shows that the complete design flow reruns 

again from the process of synthesis till bitstream generation and downloading, 
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which takes 2 minutes and 20 seconds approx. including bitstream downloading 

time. The device resets for 9-10 seconds approx. during reconfiguration which 

clearly shows that the full device is reconfigured rather than the partial area of 

that faulty cell.  

 

However in comparison to [12], our architecture heals permanent error of all of 

the computation cells, in the same computation tile, at once (see section III-D). 

Also, unlike [12], our self-repairing software reconfigures a faulty tile with its 

corresponding pre-generated partial bitstream. It takes no more than a second to 

reconfigure the faulty tile without interfering the other on-chip running process. 

Table 3-1 summarizes the architectural comparison between [8], [12] and our 

proposed architecture.  
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Table 4-1: Architectural Comparison with Previous Work 
 

1. Worst Case  When all of the cells have an error. 

 P. K. Lala et al [8] Kim, S. et al [12] Our proposed architecture 

Area overhead 

Separate original and 
spare cells each of 
which having their 
own fault checking 
mechanism. 

Same as P. K. Lala approach 

Spare and original functions 
both are the part of same 
computation cell which shares 
same fault checking 
mechanism. 
(50% area overhead is reduced) 

Non-faulty function 
routing delay overhead 

Original function is 
checked first, if faulty, 
then spare function is 
checked followed by 
routing the output to 
another cell. 

Same as P. K. Lala approach 

Both the original and spare 
functions check at the same 
time and correct output is 
routed to another cell. 
(50% routing delay overhead is 
reduced) 

Routing Architecture Ambiguous 
Ambiguous for inter working-
modules routing 

Don’t care because it follows 
same existing routing 
strategies. 

Worst 
Case1 

50% 100 % 100 % Temporary 
fault 
coverage Best 

Case2 
100% a 100 % b 100 % b 

Worst 
Case1 

No permanent error 
healing 

25 % 100 % Permanent 
fault 
coverage Best 

Case2 
No permanent error 

healing 
100 % 100 % 

Error detection in 
original and spare 
functions at a time  

No No Yes 

The number of times a 
permanent error, 
occurring in a same cell, 
can be healed 

No permanent error 
healing 

Five times. As many time as it occurs 

The recoverable cells 
from a permanent 
faults, at a time, in a 
module/tile 

No permanent error 
healing 

One All 

Resources required by 
Self-testing circuitry 

No self-testing 
mechanism 

More than 16 FF approx. 
(because of the presence of 16-

bit ALFSR and counter) 
4 LUTs 

Requirement of extra 
register 

Yes, to hold the 
address of a cell 

Yes, to hold the address of a 
working cell, working modules 
and also to hold the erroneous 
state of a faulty cell. 

No extra register is required to 
hold the address or an 
erroneous state of a cell. 

Mechanism of handling 
permanent errors in 
more than one 
module/tile at a time 

No permanent error 
healing 

No mechanism is defined 
Proper mechanism is 
developed 

Mechanism to 
reconfigure the stem cell 
of a particular 
module/tile 

No permanent error 
healing via stem cells 

No mechanism is defined to 
reconfigure a particular “Stem 
cell” of a specific Working 
Module 

Proper mechanism is 
developed to reconfigure the 
stem cells of a particular 
Computation Tile 

External interface and 
master control logic 

Not defined 
It seems to be mixed with 
computation logic. 

It has a separate portion at the 
centre of a die. 

Mechanism of stem cell 
reconfiguration 

No permanent error 
healing via stem cells 

Though claimed via partial 
reconfiguration, but 
contradictory to their video 
demonstration 

Through partial reconfiguration 
with pre-generated partial bits 
of each computation tile. 

Time of stem cell 
healing 

– 
2 minutes and 20 seconds 

(approx.) 
0 to 1 second (approx.) 

2. Best Case  When more than one cell have an error. 
a. For errors in up to two cells. 
b. For errors in any number of cells. 



  

V. Experimental Testing 
 
We have tested our proposed architecture on XC5VLX110T Virtex-5 FPGA 

device mounted on XUPV5-LX110T general purpose development board. To 

make a testing simpler and observable, we divided the application into eight 

functions which works together to perform LED shifting operation. We placed four 

functions in one tile and the remaining four in another. This application uses 8 

general purpose on-board user LEDs to demonstrate the results of error 

induction and its healing. We placed one tile in the left half and another in the 

right half of the die in order to test permanent error handling operation of a 

priority controller (see section III-F.2). We also placed four functions of each tile 

in different computation blocks. So in total, each computation tile consists of 

 

 4 active computation cells  

 4 active computation blocks  

 4 stem functions (in 4 different stem cells)  

 2-input 4 original and 4 spare functions  

 

Fig. 2.22 shows the functional diagram of a test application. This figure also 

shows the output connections of cells with external LEDs. Each tile contains four 

cells namely C1, C2, C3, and C4. As mentioned earlier, tile 1 is placed on the left 

side of a die and that of tile 2 is on the right side. The function table of original 

function in each cell is also pictured in Fig. 2.22. The input generator 

continuously generates the output sequence of 0001101100, with the 

delay of 0.25 seconds, which inputs to all of the cells in both the tiles.  Thus for 

the viewers, it becomes LED shifting application which performs a continuous 

left-shift operation on tile 1 LEDs and that of right-shift operation on tile 2 LEDs.  

 

Fig. 2.23 shows the screen-shot view of a floor plan of testing application which 

is a cropped device-view taken from XILINX PlanAhead software tool. Fault-

tolerant core is placed at the device center.  
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Fig. 2.22:  Functional diagram of a test application. 
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Fig. 2.22:  Functional diagram of a test application. 
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Tile 1 and Tile 2, depicted in Fig. 2.23 (after rotating right by 900) corresponds to 

CT7 (of left half) and CT4 (of right half) of Fig. 2, respectively. Clearly, Tile 1 is on 

the left and Tile 2 is on the right half of the die. 

 

 
 

Fig. 5.2: Floor plan of a test application. 
 

It is also evident that the cells’ placement in each tile is different. Here we placed 

the cells diagonally in different computation blocks. There is no specific reason 

for this placement – any random placement can be followed. 

 

Fig. 25 (a) shows the enlarged screen-shot view of a Tile 1. Virtex-5 CLB is also 

shown highlighted in Fig. 25 (a). Since the number of LUTs, in a Virtex-5 

XC5VLX110T device, per CLB is 8 and the size of its configuration frame is 20x1 

CLB (shown as stem cells in Fig. 25(a)), therefore the size of a computation 

block and computation tile, for our test application, is calculated according to the 

equations (2.7) and (2.10) respectively.  
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(a) 

 

 
(b) 

 
Fig. 5.3: Real implementation of a Tile 1 (a) its dimensions (b) zoomed view of its functional 

components.  
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This block of stem cells is partially reconfigurable and the whole block is 

reconfigured when its corresponding partial bit is downloaded. This is how any 

number of faulty cells in a computation tile can be repaired all at once. 

 

Fig. 25 (b) shows the zoomed screen-shot view of the placement of computation 

cells and their corresponding stem cells connection in Tile 1. T1_C1 means cell 1 

of tile 1, T1_C2 corresponds to cell 2 of tile 1 and so on. It also shows the stem 

functions for each computation cell. Since, in this application each computation 

block has one cell only therefore its corresponding stem cell contains only one 

stem function for that computation cell. Rest of the LUTs are left unused.  

 

Fig. 26 shows the enlarged screen-shot version of a computation cell 4 of tile 1. 

The real placement of the internal components of implemented cell is clearly 

shown in this figure. The components 7 and 8 of Fig. 4 are left unused here (Fig. 

26) because we have implemented 2-input functions in 6-input LUTs (number of 

inputs to LUT in a virtex-5 device is 6), so the components 5 and 6 of Fig. 4 are 

fractured here into two LUTs to store original and spare functions and their 

corresponding EDCs. 

 

 
 

Fig. 5.4: The implemented computation cell 4 of computation Tile 1(shown in Fig. 2.23). 
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The component 13 of Fig. 2.3, i.e. a Free Router, is used here to take the 

permanent error signal from all 4 computation cells and route at its input. This 

component is simply an OR gate whose output indicates a permanent error in 

Tile 1. There is no specific reason of using 13 of Fig. 2.3 – either of 7 or 8 could 

also be used. Since there are only 4 cells in each tile, therefore all the four 

permanent error signals can easily be routed using one router only.   

 
As discussed earlier in section II-G, the developed prototype software not only 

automatically repairs the permanent faults in FPGA, but also has a facility to 

induce temporary and permanent errors. Unlike [12] in which an extra circuitry is 

implemented for error induction, we employed differential-based partial 

reconfiguration technique to induce an error in any particular cell. With the help of 

differential-based partial reconfiguration, one can dynamically change the LUT 

contents without interrupting the on-going process. We used this technique to 

dynamically change the contents of original and spare functions to insert 

temporary and permanent errors. We generated separate bitstreams for each 

error case summarize in Table 4-2. 

 

Table 5-1: Manual Reconfiguration Options in Prototype Software 
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All the bitstreams should be generated before performing a test. These 

bitstreams are stored in the predefined folder accessible to prototype software. 

We first stored the bitstream downloading commands in separate command files 

for each bitstream. When the action (mentioned in Table II) is initiated the 

prototype software runs the command file associated with that option, to 

download that particular bitstream. Hence, we do not need to run XILINX 

iMPACT software for bitstream downloading.  

 

After running the software, full application bitstream is downloaded first with the 

help of “Full Bitstream” button shown in Fig. 2.21. Then different error conditions 

can be tested according to Table II. For temporary error, we change the contents 

to original function in cell 1 in tile 1 and the contents of spare function of cell 2 in 

tile 2. The function keeps on running without hindrance whenever a temporary 

error occurs because it follows the rule 2 and 3 described in section II-B.7. When 

a permanent error occurs, fault-tolerant core sends the information frame to 

external PC software through UART interface. Software then analyzes the frame 

to find out which computation tile is faulty and download its corresponding partial 

bitstream. This whole process, including receiving information frame, its analysis 

and bitstream downloading, takes few seconds (1-2 sec. approx.) to complete. 

Out of this time, the partial bit downloading time is no more than a second. This 

is how the software auto-repairs the faults in our proposed fault-tolerant FPGA 

architecture.  

 

The software also indicates which tile has an error via T1 and T2 LEDs shown in 

Fig. 2.21. We have also tested the scenario when the error occurs in more than 

one of the tile at a time. After exciting “Per_Err_T1T2_Both” option, the error 

induces in both the tiles at the same time. Software then heals tile 1 first, as it is 

on the left half of die, and then tile 2. The user can also use “Reconfiguration 

Delay” option (Fig. 2.21) to observe the fault induction and its sequential recovery 

by the self-repairing software. Fig. 2.26 shows the snap-shot view of 
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experimental setup. It was taken when a permanent error in tile 1 was introduced 

which can also be noticed on monitor screen by the glow of T1 LED indicator. 

 

Hence the self-repairing fault-tolerant operation of a proposed architecture is well 

demonstrated through this experiment. 

 

 
 

 
Fig. 5.5: The experimental setup.   
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VI. Conclusions and Future Enhancements 
 

A novel fault-tolerant FPGA architecture has been presented which not only 

heals the temporary faults instantly but is also capable to repair the permanent 

stuck-at faults. We have developed a generic fault-tolerant FPGA computation 

cell that can either be implemented in existing FPGA devices or can be 

fabricated as a basic building block of an entire new FPGA device with fault-

tolerant capabilities. The best thing is that the designers do not need to worry 

about the routing issues to implement the proposed architecture on existing 

FPGA device.   

 

This architecture consists of computation tiles each of which contains 

computation blocks and cells. We have presented a generic formula for 

calculating the computation tile and block sizes. We have also claimed and 

devised that our proposed architecture heals the number of permanent errors in 

a computation tile all at once.  

 

The permanent fault-tolerance is managed by a fault-tolerant core. We came up 

with a permanent error handling algorithm which manages the number of 

permanent errors occurring in different areas of a die at the same time. This fault-

tolerant core communicates with external PC software that identifies which part 

of a die is faulty and recovers it without human intervention. The software heals 

the permanent errors by downloading pre-generated partial bits (separate for 

each tile) via JTAG interface to achieve fast fault-recovery.  

 

Unlike previously proposed architectures, an unlimited number of temporary and 

permanent faults, in a computation tile, can be healed through our proposed 

architecture.  We have compared our proposed work with previously published 

work and proved that our scheme is far much better than others in many ways.  

However, the proposed architecture is dependent on external PC software to 

heal permanent errors. This shouldn’t be considered as a limitation rather a 
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prototype developing environment. Just like some of the existing FPGA vendors 

provide facility to monitor on-chip physical parameters including on-chip power 

supply voltages and die temperatures, or internal signals etc. For instance a 

SYSMON and CHIPSCOPE ILA (Integrated Logic Analyzer) cores, provided by 

XILINX, monitors the on-chip physical parameters and signals, respectively on 

external PC software through JTAG interface. Similarly, the developed fault-

tolerant core can also be initialized to monitor and manage the fault-tolerant 

operation of a device, together with the collaboration of off-chip self-healing PC 

software.  

 

This project can be made completely standalone as a further enhancement by 

making it independent of off-chip PC software. For this purpose, a soft-core 

microprocessor can be employed, as a part of fault-tolerant core, to heal 

permanent errors by downloading partial bits through ICAP (Internal 

Configuration Access Port) interface. Embedded software algorithm, equivalent 

to the present external PC software, needs to be developed for the identification 

of faulty computation tiles.  
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The most complex thing in any FPGA architecture is its routing network, and to 

propose a new FPGA architecture means to keep all the routing issues in mind. 

Also it is difficult for the commercial vendors of FPGA devices, like XILINX, Altera 

etc, to refine their existing routing architecture according to the newly proposed 

schemes to incorporate the fault tolerant capabilities. This arises the need to 

develop such a design that can easily be integrated with the existing routing 

architecture. In this research, we have developed a complete homogenous fault-

tolerant FPGA architecture with self-repairing capabilities. Unlike previously 

proposed architectures, the present one can not only be implemented on the 

existing island-style FPGA architecture but can also be able to fabricate entirely 

as a new device utilizing the existing routing network strategies. The developed 

architecture is unique in a way that it is able to identify transient and permanent 

errors (at LUT level) both at the same time. A generic fault-tolerant Computation 

Cell is developed which, along with its self-checking circuitry, also consists of an 

internal router to route un-faulty function out of the cell. The proposed fault-

tolerant FPGA architecture is comprised of Computation Tiles, each of which 

consists of N computation cells which are able to heal transient or permanent 

errors all at once. This architecture is centrally controlled by an on-chip fault-

tolerant core whose main responsibility is to communicate with the external PC 
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software, via UART interface, if an error occurs in any of the computation tile. 

The external PC software identifies and partially reconfigures the stem cells of 

faulty computation tile without intervening the functionality of rest of the device. 

The robust operation of a proposed architecture is implemented and verified on 

XILINX Virtex-5 FPGA device. The ratio of the hardware overhead to fault 

coverage in our approach is much lesser than that of TMR and recently 

developed fault-tolerant architectures. We have proved that our architecture is 

much better than others in many ways.  
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