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c-Jun N 말단 카이네이즈 (JNK)는 세린, 쓰레오닌 카이네이즈이며 

마이토젠에의하여 활성화되는 단백질 카이네이즈의 일종이다 (MAPK). JNK 

유사체의 X선 결정구조가 알려져있다. JNK의 대략적인 구성은 MAP 

카이네이즈와 유사하다. 특히 ATP가 결합하는 장소의 아미노산 서열은 상동성 

90% 이상, 호몰로지 98%이상이다. 따라서 호몰로지 모델링이 유력하다. 이러한 

상황에서는 선택성이 대단히 중요하기 때문에, 활성자리를 자세히 연구하는 

것이 필요하다. 본 연구에서는 다양한 방법으로 분자를 배열한 다음, CoMFA 

(Comparative Molecular Filed Analysis)와 CoMSIA (Comparative Molecular 

Similarity Indices Analysis) 연구를 하였다. 원자-원자의 중접을 이용한 

방법으로는 CoMFA의 경우 (q2=0.646 and r2=0.983)를 얻었으며, 파머코포아를 

이용한 경우에는 CoMFA의 경우 (q2 = 0.568, r2 = 0.938) 그리고 CoMSIA의 경우 

(q2=0.670, r2 = 0.982)의 결과를 얻었다. 또한 x선 결정구조를 이용한 수용체를 

template로 활용한 경우에는 리간드의 구조가 수용체속에서 최적화되었다. 

이결과, q2 = 0.605, r2 = 0.944 (CoMFA) 그리고, q2 = 0.587, r2 = 0.863 (CoMSIA)의 

결과를 얻었다. CoMFA와 CoMSIA의 contour 지도를 분석해 보면, 페닐 그룹의 

양전하를 띈 치환제가 유리하고 피리미딘 고리에는 소수성 그룹이 필요하다고 

생각된다. 더구나 NCI 데이다베이스를 활용한 가상검색으로 가능성이 있는 

화합물의 구조정보를 얻을 수 있었다. 이는 선택적이고 강력한 JNK1 억제제의 

유도체를 얻는데 대단히 중요하다.  
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c-Jun N-terminal Kinases (JNK) are serine threonine protein kinases and members of 

the mitogen activated protein kinase family (MAPK). The X-ray crystal structures of all 

three JNK isoforms have been reported. The overall architecture of JNKs is highly 

similar to that of other MAP kinases. The amino acid sequence identity of the JNK 

kinases is higher than 90%, with over 98% homology within the ATP binding site. The 

high homology of the ATP-binding site within JNK’s makes it challenging to design 

isoform specific ATP-site directed inhibitors. Therefore, designing selective ATP, 

competitive JNK (1, 2, and 3) inhibitors is still a challenging task.  As selectivity is the 

major issue, our in silico analysis might be the starting point for the synthesis of highly 

potent and selective JNK1 analogs, and this prompted us to initiate the analysis. The 

main aim of our study was to optimize the reported selective JNK1 inhibitors (4-

anilinopyrimidine derivatives), using three-dimensional quantitative structure activity 

relationship (3D-QSAR) methods, and also to identify new lead compounds using the 

receptor based pharmacophore. Selectivity is the key issue, pharmacophore generation 

using receptor-ligand information could be more realistic and selective.  In this work, 

the most popular 3D-QSAR methods such as, comparative molecular field analysis 

(CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were 

performed using different alignment methods. The ligand-based atom-by atom 

matching alignment has produced better values for CoMFA (q2=0.646 and r2=0.983), 

while in CoMSIA it has achieved only lower statistical values. The pharmacophore-

based model has produced (q2 = 0.568, r2 = 0.938) and (q2=0.670, r2 = 0.982) for 

CoMFA and CoMSIA models, respectively. As the model was based on the receptor-



 xii 

guided alignment, all the compounds were optimized within the receptor, resulting in q2 

= 0.605 and r2 = 0.944 for CoMFA, and q2 = 0.587 and r2 = 0.863 for CoMSIA. 

Molecular Dynamic simulation studies suggested that the generated models were 

consistent with the low energy protein ligand conformation. The CoMFA and CoMSIA 

contour maps indicated that the substitutions of the electropositive groups in the phenyl 

ring, and an addition of hydrophobic groups in the pyrimidine ring, are important to 

enhance the activity of this series. Moreover, the virtual screening analysis against NCI 

database yields potentials hits and the results obtained would be useful to synthesize 

selective and highly potent JNK1 analogs.  
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1. Introduction  

The c-Jun N-terminal kinases (c-JNKs) are a subfamily of the mitogen- 

activated protein kinase (MAPK) group of serine ⁄ threonine protein kinases. They are 

activated in response to proinflammatory cytokines tumor necrosis factor-R (TNF-R) 

and interleukin-1b (IL-1b), as well as by environmental stress including UV irradiation, 

hypoxia, and osmotic shock (1). Activated JNKs can phosphorylate various substrates, 

including transcription factors such as c-Jun, ATF-2, Elk1, NFAT, and p53, which in 

turn regulate gene expression in eukaryotic cells, as well as nuclear hormone receptors 

and nonnuclear substrates (2). Accordingly, JNKs are critical regulators of many 

physiological and pathological processes and involved in many diseases such as 

ischemic stroke, Parkinson's disease, Alzheimer's disease, inflammatory diseases, 

obesity and diabetes, cardiovascular disease, and so on (3). In mammalian cells, there 

are 10 different isoforms of JNKs encoded by three distinct genes – Jnk1, Jnk2, and 

Jnk3 (4). JNK1 and JNK2 are widely expressed in a variety of human tissues. On the 

contrary, JNK3 is restricted primarily to the brain, heart, and testis (4, 5). Each JNK 

isoform has been shown to bind to their substrates with different affinities (4), 

associating with different diseases mentioned above (3). This variably localized 

expression, together with the activation by different biochemical pathways, indicates 

that different JNK isoforms have distinct biological functions.  

In recent studies, JNK-1, often in concert with JNK-2, has been suggested to 

play a central role in the development of obesity-induced insulin resistance which 

implies therapeutic inhibition of JNK1 may provide a potential solution in type-2 
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diabetes mellitus (4). JNK2 has been described in the pathology of autoimmune 

disorders such as rheumatoid arthritis and asthma, and it also has been implicated to 

play a role in cancer, as well as in a broad range of diseases with an inflammatory 

component. JNK3 has been shown to play important roles in the brain to mediate 

neurodegeneration, such as beta amyloid processing, Tau phosphorylation and neuronal 

apoptosis in Alzheimer’s disease, as well as the mediation of neurotoxicity in a rodent 

model of Parkinson’s disease. Therefore, design of selective JNKs inhibitors has gained 

increasing interest.  

Type 2 diabetes is a metabolic disorder that accounts for 120 million patients 

worldwide and the number is likely to grow to greater than 366 million by the year 

2030 (6). Patients with type 2 diabetes are insulin resistant, a condition in which the 

body fails to respond to insulin properly. JNK1 has recently emerged as an attractive 

target for diabetes therapy, since JNK1 is believed to play a key role in linking obesity 

and insulin resistance (7-10). JNK1 disrupts the insulin signaling cascade via 

phosphorylation of the insulin receptor substrate (IRS-1) at Ser307, which leads to the 

degradation of IRS-1. JNK1 mice show marked reduction in both plasma glucose and 

insulin concentrations relative to their wildtype littermates, and thus are protected from 

diet-induced obesity (8). In addition, JNK1 activity is elevated in adipocytes of type 2 

diabetic patients (11). Inhibitors of JNK1 can potentially increase insulin sensitivity, 

and therefore could be useful as therapeutics for the treatment of type 2 diabetes. 

Therefore, identifying JNK1 selective inhibitor may contribute towards new methods of 
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treatment for type 2 diabetes, with reduced side effect risks, and will support further 

understanding of the roles of individual JNK kinases. 

In recent years, a number of JNK inhibitors have appeared in the patent and 

primary literatures (12-25). Compound classes that have shown good JNK selectivity 

include: aminopyrazoles, aminopyridines, pyridine carboxamides, benzothien-2-yl-

amides and benzothiazol-2-yl acetonitriles, quinoline derivatives, and 

aminopyrimidines. For a recent review of all these classes see LoGrasso and 

Kamenecka (26). Most of these classes of compounds did not demonstrate good brain 

penetration, although Kamenecka et al. recently reported aminopyrimidines showing 

excellent brain penetration properties (27). Keeping these factors in the mind we 

choose novel dataset to perform our in silico studies. Recently, Liu et al. (28) reported a 

novel series of 4-anilinopyrimidine derivatives as JNK1 inhibitors, based on a potent 

compound identified from high-throughput screening and showed high selectivity over 

five other closely related MAP kinase, p38, ERK2, AKT1, CHK1, and PAK4. 

The X-ray crystal structures of all three JNK isoforms have been reported. The 

overall architecture of JNKs is highly similar to that of other MAP kinases, such as 

ERK2 and p38, consisting of an N-terminal domain with mostly β strands, a 

predominantly R helical C-terminal domain, and a deep cleft between the N and C 

domains, that comprises the ATP-binding site. The amino acid sequence identity of the 

JNK kinases is higher than 90%, with over 98% homology within the ATP binding site. 

The high homology of the ATP-binding site within JNK’s makes it challenging to 

design isoform specific ATP-site directed inhibitors. Therefore, designing selective 
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ATP, competitive JNK (1, 2, and 3) inhibitors is still a challenging task and the recent 

review by Siddiqui and Reddy stressed the importance of selectivity (29). As selectivity 

is the major issue, our in silico analysis might be the starting point for the synthesis of 

highly potent and selective JNK1 analogs, and this prompted us to initiate the analysis. 

The main aim of our study was to optimize the reported selective JNK1 inhibitors (4-

anilinopyrimidine derivatives), as presented by Liu and coworkers, using 3D-QSAR 

methods, and also to identify new lead compounds using the receptor based 

pharmacophore. Since selectivity is the key issue, pharmacophore generation using 

receptor-ligand information would be more realistic and selective.   

As an important technology and tool for drug design, computer-aided drug 

design methods have been applied to the discovery and design of JNK1 inhibitors. 

Computational approaches like structure- and ligand-based methodology have been 

found to be valuable in further optimization and the development of novel inhibitors. 

Ligand-based three dimensional quantitative structure-activity relationship (3D-QSAR) 

approaches, including comparative molecular field analysis (CoMFA) (30) and 

comparative molecular similarity indices analysis (CoMSIA) (31), were reported to be 

effective for understanding the structure-activity relationships (32). The combination of 

various QSAR techniques such as Quantum QSAR, hologram QSAR, CoMFA, and 

CoMSIA have proven the quite successful role in the modern drug discovery (33-37). 

The 3D-QSAR modeling is useful to predict the activity of new molecules to be 

synthesized. 3D-QSAR methods serve as an important complement to the structure-

based methods. CoMFA and CoMSIA are two 3D-QSAR methods that have been 
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successfully employed in drug design (38). These methods were useful in the lead 

optimization and also in understanding the drug-target interaction (39-41). In CoMFA, 

the biological activity of molecules is correlated with their steric and electrostatic 

interaction energies. The steric and electrostatic interaction energies are calculated 

using Lennard- Jones and Coulombic potentials, respectively. In CoMSIA, a distance-

dependent Gaussian-type functional form has been introduced, which can avoid 

singularities at the atomic positions and the dramatic changes of potential energy for 

those grids in the proximity of the surface. Meantime, no arbitrary definition of cutoff 

limits is required in CoMSIA. The unique differences between conventional CoMFA 

and CoMSIA are the field type and the potential function. In CoMSIA, similarity is 

expressed in terms of different physicochemical properties: steric occupancy, partial 

atomic charges, local hydrophobicity, and H-bond donor and acceptor properties. 

Moreover, in CoMSIA, a Gaussian-type distance-dependent function has been used to 

calculate different kinds of physicochemical properties. The unique differences 

between conventional CoMFA and CoMSIA are the field type and the potential 

function. Both 3D-QSAR methods give contour maps as output that can be used to get 

some general insights into the topological features of the binding site.   

In the present work, we report the 3D-QSAR study on JNK1 inhibitors, using 

CoMFA CoMSIA techniques, to find their common structural features. Our work deals 

with receptor-guided, as well as ligand-based techniques, which include atom-by atom 

matching and pharmacophore schemes, to generate reasonable CoMFA and CoMSIA 

models. First, we applied a ligand-based strategy, using the systematic conformation 
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method, and another ligand-based alignment was performed using the pharmacophore 

technique with the GALAHAD (Genetic Algorithm with Linear Assignment of 

Hypermolecular Alignment of Datasets) module in Sybyl8.1. The 3D-QSAR model 

was obtained from receptor-guided techniques, using available X-ray crystal structure. 

In addition, we also applied the molecular dynamics (MD) simulation method, to 

compare the binding mode with the 3D-QSAR model. Finally, CoMFA and CoMSIA 

contour plots were utilized to elucidate the structural requirement to improve the 

potency of reported selective JNK1 analogs. Furthermore, a receptor based 

pharmacophore query was generated by using the complex structure of JNK1 

inhibitors. The generated 3D pharmacophoric query was submitted to the NCI database 

to identify new hits. The hit compounds will be subsequently subjected to filtering by 

Lipinski’s rule of five (42) and docking studies to refine the retrieved hits. Finally, the 

docking experiments have also been performed with the aim of elucidating the possible 

binding mode of these identified hit compounds. We expect that our theoretical results 

would give some useful reference for the researchers in the design of novel and 

selective JNK1 inhibitors. 
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2. Materials and Methods  

2.1 Inhibitor data set 

Series design refers to the process of selecting a set of compounds to be 

included in a study, with the aim of gaining maximum amount of information 

possible with a minimum number of compounds. The selection of subset of 

compounds that represent the total set is important not only in series design, but 

also in the selection of compounds for training set in 3D-QSAR analysis. CoMFA 

and CoMSIA model from a well-designed set of compounds is expected to improve 

the interpretability and the predictiveness of a CoMFA and CoMSIA model. In 3D-

QSAR one should utilize accurate activity data in order to develop a good model. 

Though 3D-QSAR methods can be applied to heterogeneous data sets, some 

considerations for maintaining the accuracy of biological data are necessary: 

• Compounds should belong to a congeneric series (more important in case 

of classical QSAR). • Compounds should have the same mechanism of action and 

same/comparable binding mode. • The biological activities of compounds should 

correlate to their binding affinity and their enumerated biological responses should 

be measurable. 

• Biological data for molecules should be obtained using uniform protocols 

(radioligand, activator, cofactor, pH, buffer etc.) and preferably from a single 

source (organism/tissue/cell/protein) and single lab.  
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• Activity data for all the compounds should be in same units of 

measurement (binding/functional/IC50/Ki).  

• The ranges of biological activity covered should be as large as possible, 

keeping the mode of action identical. Preferably, activity range should be much 

larger than the standard deviations of the data; more than three logarithm units with 

an even spread of data is preferred. 

For our research work, the above important considerations were kept in 

mind while selecting the biological data set. The structures of the 4-

anilinopyrimidines derivatives and their biological activities of thirty five 

compounds were taken from the literature (28). All original IC50 values, of each 

inhibitor, were converted into pIC50 (-logIC50), in order to use the data as the 

dependent variable in both CoMFA and CoMSIA models. The test set molecule is 

the truly representative molecule for training set molecules. The test set molecule 

should cover all the biological activity which is similar to the training set molecule. 

The total set of compounds was divided into a training set, consisting of 29 

compounds, and a test set, consisting of 6 compounds. The selection of both 

training and test sets was done manually, so that low, moderate, and high JNK 

inhibitory activities were all represented. The training set was used to build 

predictive models, while the test set was used to validate the predictive ability of 

the models. The activities of molecules in the prediction set were predicted in the 
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present work. The structures and their biological activity values are displayed in 

Table 1.  

Table 1.  Structures and biological activities (pIC50) of JNK1 inhibitors. 

Table 1.  Structures and biological activities (pIC50) of JNK1 inhibitors. 
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        Compound 27-28                Compound 29-32                      Compound 33-35 
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Compound 
No R1 R2 X pIC50 

1 OBu OH - 5.721 

2 

 

NH2 - 8.046 

 3* OEt OH - 4.350 

4 OPr OH - 5.638 

5 OPentyl OH - 5.959 

6 O-i-Bu OH - 6.155 

7 O-CH2-c-Hex OH - 6.155 

8 OPh OH - 6.523 

9 Bu H - 5.585 

10 Bn H - 4.740 

11 c-Hex H - 6.398 

12 -(CH2)6- H - 4.812 

 13* H - - 7.319 

14 2-OH - - 7.119 

15 3-OH - - 7.602 

16 4-OH - - 7.456 

17 2-F - - 7.456 

18 3-F - - 7.553 

19 4-F - - 7.538 

 20* 3-Me - - 6.804 

21 3-F,4-Me - - 7.032 

22 2-Me,3-OH - - 6.556 

23 3-CF3 - - 6.408 

24 4-CF3 - - 6.730 

 25* 4-NO2 - - 7.481 
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26 4-Morpholine - - 7.432 

27 H - - 6.152 

28 OH - - 6.690 

 29* H - F 7.086 

30 OH - F 7.678 

31 H - Br 7.495 

32 OH - Br 7.699 

33 

 

- - 7.337 

34 

 

- - 7.260 

 35* 

 

 
 

- - 7.071 

*Test set compounds 
 

2.2 Preparation of the protein structure 

The complex structure of the JNK1 protein was retrieved from the protein data 

bank (PDB code 2NO3) and prepared for receptor by using the protein preparation tool 

in the Sybyl Biopolymer module. All water molecules were removed and hydrogen 

atoms were added to the molecule. Energy minimization of hydrogen atoms, followed 

by energy minimization of side chains, keeping the backbone fixed, was carried out 

using both simplex and Powell conjugate gradient algorithms, until a gradient of 0.05 

kcal/mol was reached. All minimization steps were performed using the Tripos force 

field within the Sybyl8.1 molecular modeling package  (43). 
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2.3. 3D-QSAR studies: CoMFA and CoMSIA 

CoMFA and CoMSIA have proven a very useful 3D-QSAR technique in the 

field of medicinal chemistry, as indicated by many publications over the past years (44-

138). 3D-QSAR methods are an important complement to structure-based affinity 

prediction methods. If one already has a series of molecules and their corresponding 

binding affinities, then a 3D-QSAR equation may provide a valuable method to 

forecast affinity of further analogs. Knowledge of the structure of the binding site 

would guide the molecular modeling and should prevent unwarranted extrapolation of 

equations. The 3D-QSAR methods focus on the following goals; (i) to quantitatively 

correlate and recapitulate the relationships between trends in chemical structure 

alterations and respective changes in biological endpoint for comprehending which 

chemical properties are most likely determinants for their biological activities, (ii) to 

optimize the existing leads so as to improve their biological activities, (iii) to predict 

the biological activities of untested and sometimes yet unavailable compounds.  

Several factors influence the modeling results of CoMFA and CoMSIA: 

among them, the most important are alignments and fields. Molecular alignment is a 

prelude to CoMFA and CoMSIA (139). It was assumed that each molecule binds into 

the active site in a similar mode, since these compounds share a common scaffold. So 

that the molecules were aligned in a common orientation relative to a template 

compound in order to compare the different features of analogues. A CoMFA field is 

then generated by creating a grid around molecules and calculating the steric and 

electrostatic potential at each point on the grid using a charged probe atom. In CoMFA 
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and CoMSIA studies, the position of a molecule is important because the descriptors 

are calculated based on the coordinates of atoms, hence, different methods of alignment 

will give different results. There are three main different procedures proposed for 

aligning molecules for QSAR: substructure overlap, pharmacophore overlap and 

receptor-based alignment. In the present work, we performed different alignment 

methods, in order to find the most effective alignment to this dataset.  

 

2.3.1 Ligand based alignment 

This method involves corresponding atom to atom pairing between the 

molecules. It is also called as the pharmacophore approach and is the most popular 

method, because it gives the best matching of the preselected atom positions. It is 

beneficial in identifying dissimilarity between similar molecules, but cannot be applied 

to molecules with different structural types where corresponding atoms are difficult to 

select. In the ligand based alignment, the most active molecule was used as template. 

All rotatable bonds were searched with incremental dihedral angle from 120°, using the 

systematic search conformation method. Conformational energies were computed with 

electrostatic term, and the lowest energy conformer was selected as template molecule. 

Then the template was modified for other ligands of the series. The common moiety 

was constraint for each molecule and only the varying parts were energy minimized by 

Tripos force field with Gasteiger-Huckel charge, using the conjugate gradient method, 

and the convergence criterion was 0.05 kcal/mol at 10,000 iteration. The minimized 

structures were aligned over the template using the atom fit option in Sybyl, and 
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subsequently, this alignment was used for CoMFA and CoMSIA analysis. The aligned 

molecules are represented in Figure1 (a). 

 

 

 

 

Figure 1 (a): Alignment of 35 studied molecules using atom-by-atom matching. 
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2.3.2 Pharmacophore based alignment 

This method uses a hypothetical pharmacophore as a useful common target 

template. Each molecule is conformationally directed to assume the shape obligatory 

for its sub-molecular features to match with either a known pharmacophore or the one 

which is generated during the conformational analysis. The pharmacophore model was 

generated with seven highly active inhibitors, using GALAHAD, which is implemented 

in Sybyl. The program uses the genetic algorithm to generate the pharmacophore 

hypothesis and the alignments from sets of ligand molecules that bind at a common 

target site. In the alignment phase, GALAHAD uses a new method, where each 

molecule is compared with each other, hence there is no template required for model 

generation. Based on the pharmacophore model, the rest of the compounds were 

aligned and consequently used for CoMFA and CoMSIA analysis. The pharmacophore 

model and the alignment of all molecules were presented in Figure 1 (b). 
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Figure 1 (b): Alignment of 35 studied molecules using pharmacophore features. 
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2.3.3 Receptor-guided alignment 

In this method, molecular alignment is obtained by superimposing the receptor 

active sites or the receptor residues that interact with the ligands. This approach is 

believed to be more conceivable, despite problems in conformational analysis due to 

enhanced degrees of freedom. For receptor-guided alignment, one of the potent 

inhibitors (i.e. compound 02) was docked into the receptor binding site. The selected 

conformation served as template to design other ligands. During the energy 

minimization, both receptor and common moiety of the ligand was restrained, and only 

the varying parts were minimized within the receptor structure. Gasteiger-Huckel 

partial atomic charges and Powell’s conjugate gradient method were used for 

minimization of molecules, with the 0.05 kcal/mol energy gradient convergence 

criterion. All minimized structures were aligned over the template molecule and 

directly used for CoMFA and CoMSIA. The superimposed inhibitors are shown in 

Figure 1 (c). 

 

 

 

 

 

 

 

 



Madhavan Thirumurthy Ph.D. Thesis  

Chosun University, Department of Bio-New drug development 

 

- 18 - 
 

 

 

 

 

 

 

 

Figure 1 (c): Alignment of 35 studied molecules using receptor –guided method.  
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2.4. CoMFA model calculation  

In 1987, Cramer developed the predecessor of 3D approaches called Dynamic 

Lattice-oriented molecular modeling system (DYLOMMS) that involves the use of 

PCA to extract vectors from the molecular interaction fields which are then correlated 

with biological activities. Soon after he modified it by combining the two existing 

techniques, GRID and PLS, to develop a powerful 3D-QSAR methodology, 

Comparative Molecular Field Analysis (CoMFA). Today CoMFA has become a 

prototype of 3D-QSAR methods. A standard CoMFA procedure, as implemented in the 

Sybyl Software from Tripos Inc.  

In this work, we used Sybyl8.1 molecular modeling package to generate 

CoMFA model. CoMFA calculations were carried out by applying the default settings. 

The aligned molecules were placed in the 3D cubic lattice, with the grid spacing of 1.0-

2.0Å. The standard CoMFA field performed the Lennard-Jones potential and the 

Coulombic potential, for the steric and electrostatic fields, respectively. The cut off 

value for both fields was set to 30 kcal/mol. Steric and electrostatic energies were 

calculated using the sp3 carbon atom, with van der Waal’s radius of 1.52Å and +1 

charge, at each lattice point.  

 

2.5. CoMSIA model calculation  

Comparative Molecular Similarity Indices Analysis (CoMSIA) was developed 

to overcome certain limitations of CoMFA. In CoMSIA, molecular similarity indices 

calculated from modified SEAL similarity fields are employed as descriptors to 
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simultaneously consider steric, electrostatic, hydrophobic and hydrogen bonding 

properties. These indices are estimated indirectly by comparing the similarity of each 

molecule in the dataset with a common probe atom (having a radius of 1 Å, charge of 

+1 and hydrophobicity of +1) positioned at the intersections of a surrounding 

grid/lattice.  For computing similarity at all grid points, the mutual distances between 

the probe atom and the atoms of the molecules in the aligned dataset are also taken into 

account. To describe this distance-dependence and calculate the molecular properties, 

Gaussian-type functions are employed. Since the underlying Gaussian-type functional 

forms are ‘smooth’ with no singularities, their slopes are not as steep as the Coulombic 

and Lennard-Jones potentials in CoMFA; therefore, no arbitrary cut-off limits are 

required to be defined. These functions tend to produce values within a reasonable 

range, even in the case of overlapping atoms.  CoMSIA similarity indices (AF) for 

molecule j with atoms i at a grid point q were calculated using the following Eq. 

 

Where k represents the following physicochemical properties: steric, electrostatic, 

hydrophobic, H-bond donor and H-bond acceptor. A Gaussian type distance 

dependence was used between grid point q and each atom i of the molecule. The default 

value of 0.3 was used as the attenuation factor (α). The steric indices were related to the 

third power of the atomic radii, electrostatic descriptors are derived from atomic partial 

charges, hydrophobic fields were derived using atom-based parameters (140) and H-

bond donor and acceptor indices were obtained by a rule-based method based on 
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experimental results (141). CoMSIA analyses were performed with all possible 

descriptors’ combinations which is similar to the one reported by Teixeira et al. (142).  

 

2.6. Statistical method used for building 3D-QSAR model: Partial least 

square (PLS): 

The relationship between the structural parameters and the biological activities 

has been quantified by the PLS algorithm (143, 144).  It is an iterative regression 

procedure that produces its solutions based on linear transformation of a large number 

of original descriptors to a small number of new orthogonal terms called latent 

variables (145). PLS gives a statistically robust solution even when the independent 

variables are highly interrelated among themselves, or when the independent variables 

exceed the number of observations. Thus, PLS is able to analyze complex structure-

activity data in a more realistic way, and effectively interpret the influence of molecular 

structure on biological activity. This is one of the standard statistical methods used for 

the development of predictive 3D-QSAR models.  

 

2.7. Validation of QSAR models: 

PLS methodology, which is an extension of multiple regression analysis, was 

used for the 3D-QSAR in which the independent variables were the CoMFA and 

CoMSIA descriptors, and pIC50 values were used as dependent variables. Before the 

PLS analysis, the CoMFA and CoMSIA columns were filtered by using column 

filtering. The best 3D-QSAR models generated from the PLS analysis, ranked 
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according to their coefficient of determination (or squared correlation coefficient) (r2) 

values, were submitted to a standard internal validation technique, named ‘leave-one-

out’ cross-validation (LOO-CV), that gives the LOO-CV r2 (q2) as a statistical index of 

predictive power. In the LOO-CV procedure, the coefficients of the independent 

variables of the original PLS model are recalculated, excluding one compound (i.e., 

activity values and calculated properties) from the original training set at once, and this 

‘new’ model is used to predict the activity of the excluded compound. This procedure is 

repeated through the whole data set, until all compounds have been excluded once, and 

then, q2 values and standard error of predictions (SEP) are calculated. The cross-

validated coefficient q2 (or r2 cv) was evaluated as: 
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where γpredicted, γactual, γmean are the predicted, observed, and mean values of the pIC50, 

respectively. After the predictive quality of the best correlation model is determined, 

the optimum number of components is employed to perform a non validation PLS 

analysis with the same column filtering set to get the final model. 

The CoMFA/CoMSIA results were graphically represented by field contour 

maps, where the coefficients were generated using the field type ‘StDev*Coeff’. In 

order to test the real predictive ability of the best models generated by the 3D-QSAR 

CoMFA/CoMSIA approaches using the training set, the pIC50 values of the external 

validation set were calculate using the same CoMFA/CoMSIA options which generated 
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the best models, as described before. The quality of the external prediction is 

documented using the standard deviation of error prediction (r2 pred), according to the 

below Equation. 

SD

PRESSSD
rpred

)(2 -
=

 

In the equation , PRESS is the sum of the squared deviations between predict and actual 

pIC50 values for the test set compounds and SD is the sum of the squared deviation 

between the actual pIC50 values of the compounds in the test set and the mean pIC50 

value of the training set compounds. 

 

2.8. Molecular dynamics 

Molecular dynamics study was carried out to compare the binding mode of the 

protein-ligand complex with the 3D-QSAR model. All molecular simulation was 

performed using the GROMACS 4.0.7 software (146). The PRODRG (147) server was 

used to build the Gromacs 87 topology for the ligand molecule. The protein complex 

was placed into the cubic box and then minimized, using the steepest descent 

algorithm. Periodic boundary conditions were applied in all directions, and the system 

was neutralized by adding appropriate counter ions (Na+ or Cl-). Prior to the simulation, 

an energy minimization was applied to the full system without constraints using the 

steepest descent integrator for 9896 steps, then the system was equilibrated via a 200 ps 

MD simulation at 300 K. Finally, a 2 ns simulation was performed with a time step of 2 

fs. During MD simulation, the standard parameters and main calculation methods were 
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set as follows: The model used NPT ensemble at 300 K with periodic boundary 

conditions, the temperature was kept constant by the Berendsen thermostat, the values 

of the isothermal compressibility were set to 4.5×10-5 bar-1 while the pressure was 

maintained at 1 bar using the Parrinello-Rahman scheme (148), electrostatic 

interactions were calculated using the particle mesh Ewald method (149,150), and 

cutoff distances for the calculation of Coulomb and van der Waals interactions were 1.0 

and 1.4 nm, respectively. All the MD simulations lasted 2 ns to ensure that the whole 

systems were stable.  Snap shots were collected at every 1 ps and subsequent analyses 

were performed using the GROMACS tools.     

 

2.9. 3D Pharmacophore search  

Pharmacophore is an important and unifying concept in rational drug design 

that embodies the notion that molecules are active at a particular enzyme or receptor 

because they possess both a number of chemical features that favor the target 

interaction and geometry complementary to it (151). A pharmacophore hypothesis 

collects common features distributed in three-dimensional space representing groups in 

a molecule that participate in important interactions between drug and active site. 

Pharmacophore model provides a rational hypothetical picture of the primary chemical 

features responsible for activity. Since the last few years pharmacophore modeling has 

been one of the important and successful approaches for new drug discovery (151-153).  

Particularly, the 3D pharmacophore searching is extremely useful to identify new lead 

compounds that have the desired activity but which are from a previously unexplored 
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chemical series. It depends on the atomic properties rather than element type. In our 

work, we performed spatial and partial match constraint method to generate the 3D-

pharmacophore query on the basis of the crystal structure bound conformation. By 

utilizing this complex structure, pharmacophore query was generated for donor and 

acceptor site of receptor. The 3D pharmacophore search was performed using the Unity 

flexible search protocol with all options set as default against the National Cancer 

Institute 3D database (NCI2000), and it contains approximately 2 × 105 compounds. In 

the unity query search, the conformations of the screened database were generated on 

the fly by means of the Directed tweak method (154). The generated query rapidly 

finds molecules that are guided by the given pharmacophore query, and selected 

reasonable conformations are stored in a database. Primary screening was carried out 

by various filtration criteria, such as the Lipinski’s Rule of five, the Vander Waals 

bumps and by restricting the number of rotatable bonds to a maximum of 7. Several hits 

were identified from the NCI database, which were further refined by using the Surflex 

docking studies.  

 

2.10. Molecular docking  

The Surflex-Dock was applied to carry out receptor-guided alignment based 

QSAR models Furthermore, it was used to perform the screening and validation of hits 

obtained from the database searching. Surflex-Dock was reported to be one of the best 

docking software. Performance of the docking accuracy and screening utility of Surflex 

is comparable with the best available methods reported in the literature (155, 156). It 
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implements the Hammerhead’s empirical scoring function (157) with the molecular 

similarity method to create putative poses of ligand fragments. The docking algorithm 

uses the idealized active site called the protomol (158). A protomol is a computational 

representation of the intended binding site to which putative ligands are aligned. Two 

parameters, such as threshold and bloat, determine the extent of a protomol. The 

threshold factor indicates how much the protomol is buried inside the protein, and the 

bloat parameter provides a way to increase the protomol volume. The threshold 0.50 

and bloat parameter 1 Å were used for protomol generation. The purpose of the 

protomol is to direct the initial placement of the ligand during the docking process. The 

protomol was generated based on the ligand inside the active site. Protomols were 

visualized with Sybyl 8.1 to ensure proper coverage of the desired target area. The 

docking score was expressed as –log10 (Kd), to represent the binding affinities, and the 

consensus scoring function was used to rank the affinity of the ligand bound to the 

active site. Other parameters were employed with the default setting.  
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3. Results and Discussion 

3.1. CoMFA and CoMSIA model analysis (Ligand-based alignment) 

The ligand-based CoMFA model was derived with the combination of steric 

and electrostatic field contribution and Gasteiger-Hückel charge method with different 

grid space. The Leave one out (LOO) analysis gave the cross-validated q2 of 0.646 with 

five components and non cross-validated PLS analysis resulted in a correlation 

coefficient r2 of 0.983, F= 273.262, and an estimated standard error of 0.125. We 

further performed bootstrapping analyses to evaluate the robustness and statistical 

confidence of the final models (r2
boot= 0.991, StdDev= 0.005). Statistical results 

obtained from the constructed model verified the predictive ability of the model (Table 

2) and further implied that the steric and electrostatic factors contribute to the binding 

affinities. The predictive ability of the developed CoMFA model was assessed by the 

test set (six molecules) predictions, which were excluded during CoMFA model 

generation. The predictive ability of the test set was 0.674. 

The CoMSIA models were generated with the different field combinations using 

Gasteiger-Hückel charge method with 1.0 Å grid space. The combinations of all 

descriptors such as steric (S), electrostatic (E), hydrophobic (H), hydrogen bond donor 

(D), and hydrogen bond acceptor (A) were listed in Table 3. The lingad-based model 

for CoMSIA yielded q2 = 0.464 and r2 = 0.651 with n=1. The SEE for CoMSIA model 

was found to be 0.530. The predictive ability of the developed CoMSIA model was 

assessed by the test set (six molecules) predictions, which were excluded during 

CoMSIA model generation. The predictive ability of the test set was 0.318. 
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Table 2: Statistics summary of CoMFA models using ligand-based alignment method. 

Leave-one-out cross-

validation 
Non-cross-validation Bootstrap Field contribution 

Model 

No 

Grid  

(Å) 

q2 n SDEP r2 SEE F-value r2
boot StdDev 

r2
pred 

S E 

1 1.0 0.646 5 0.578 0.983 0.125 273.262 0.991 0.005 0.674 0.544 0.456 

2 1.5 0.619 5 0.600 0.985 0.119 301.263 0.990 0.005 - 0.565 0.435 

3 2.0 0.605 4 0.598 0.967 0.174 174.287 0.982 0.009 - 0.578 0.422 

q2= cross-validated correlation coefficient; n= number of statistical components; 

SDEP= standard deviation estimated prediction; r2= non-cross validated correlation 

coefficient; SEE=standard estimated error; F=Fisher value; r2
boot=correlation coefficient 

after 100 runs of bootstrapping; r2
pred= predictive correlation coefficient for test set; S= 

steric; E= electrostatic. 
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Table 3: Statistics summary of CoMSIA models using ligand-based alignment method. 

 Field  
LOO cross-

validation 
 Non-cross-validation  

Model 

No. 

 S E H D A  q2 n  r2 SEE F  

r2
pred 

1  0.199 0.801 - - -  0.431 1  0.606 0.563 41.497  - 

2  0.265 - 0.735 - -  0.440 1  0.627 0.548 45.295  - 

3  0.128 0.516 0.356    0.457 1  0.640 0.538 47.958  - 

4  0.188 - 0.461 0.351 -  0.427 2  0.824 0.383 61.000  - 

5  0.209 - 0.578 - 0.213  0.464 1  0.651 0.530 50.389  0.318 

6  0.117 0.381 0.290 0.507 -  0.460 2  0.838 0.368 67.124  - 

7  0.113 0.456 0.315 - 0.116  0.456 1  0.638 0.540 47.553  - 

8  0.166 - 0.414 0.298 0.121  0.456 1  0.638 0.387 59.371  - 

9  0.109 0.348 0.275 0.194 0.073  0.452 2  0.833 0.374 64.725  - 

S =steric field, E = electrostatic field, H =hydrophobic field, D =hydrogen bond donor, 

A= hydrogen bond acceptor; n= number of statistical components; q2= cross-validated 

correlation coefficient; r2= non-cross validated correlation coefficient; SEE=standard 

estimated error; F=Fisher value; r2
pred= predictive correlation coefficient for test set. 
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3.2. CoMFA and CoMSIA model analysis (Pharmacophore-based 

alignment) 

The Pharmacophore-based CoMFA model was derived with the combination 

of steric and electrostatic field contribution and Gasteiger-Hückel charge method with 

different grid space. The Leave one out (LOO) analysis gave the cross-validated q2 of 

0.568 with three components and non cross-validated PLS analysis resulted in a 

correlation coefficient r2 of 0.938, F= 126.902, and an estimated standard error of 

0.231. We further performed bootstrapping analyses to evaluate the robustness and 

statistical confidence of the final models (r2
boot= 0.954, StdDev= 0.020). Statistical 

results obtained from the constructed model verified the predictive ability of the model 

(Table 4) and further implied that the steric and electrostatic factors contribute to the 

binding affinities. The predictive ability of the developed CoMFA model was assessed 

by the test set (six molecules) predictions, which were excluded during CoMFA model 

generation. The predictive ability of the test set was 0.670. 

The CoMSIA models were generated with the different field combinations using 

Gasteiger-Hückel charge method with 1.5 Å grid space. The combinations of all 

descriptors such as steric (S), electrostatic (E), hydrophobic (H), hydrogen bond donor 

(D), and hydrogen bond acceptor (A) were listed in Table 5. The pharmacophore-based 

model for CoMSIA yielded q2 = 0.670 and r2 = 0.938 with n=3. The SEE for CoMSIA 

model was found to be 0.231. The predictive ability of the developed CoMSIA model 

was assessed by the test set (six molecules) predictions, which were excluded during 

CoMSIA model generation. The predictive ability of the test set was 0.563. 
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Table 4: Statistics summary of CoMFA models using pharmacophore-based alignment 

method. 

Leave-one-out cross-

validation 
Non-cross-validation Bootstrap 

Field 

contribution 
Model 

No 

Grid  

(Å) 

q2 n SDEP r2 SEE F-value r2
boot StdDev 

r2
pred 

S E 

4 1.0 0.548 3 0.627 0.944 0.220 140.824 0.958 0.021 - 0.469 0.531 

5 1.5 0.568 3 0.613 0.938 0.231 126.902 0.954 0.020 0.670 0.401 0.549 

6 2.0 0.556 3 0.621 0.951 0.207 160.109 0.958 0.019 - 0.498 0.502 

q2= cross-validated correlation coefficient; n= number of statistical components; 

SDEP= standard deviation estimated prediction; r2= non-cross validated correlation 

coefficient; SEE=standard estimated error; F=Fisher value; r2
boot=correlation coefficient 

after 100 runs of bootstrapping; r2
predictive= predictive correlation coefficient for test set; 

S= steric; E= electrostatic. 
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Table 5: Statistics summary of CoMSIA models using pharmacophore -based alignment method. 

 Field  
LOO cross-

validation 
 Non-cross-validation  

Model 

No. 

 S E H D A  q2 n  r2 SEE F  

r2
pred 

10  0.167 0.833 - - -  0.388 1  0.679 0.508 57.044  - 

11  0.274 - 0.726 - -  0.670 6  0.982 0.133 202.488  0.563 

12  0.146 0.523 0.331 - -  0.423 2  0.850 0.354 73.888  - 

13  0.179 - 0.451 0.370 -  0.539 6  0.986 0.118 257.271  - 

14  0.201 - 0.554 - 0.246  0.556 5  0.973 0.161 163.093  - 

15  0.107 0.397 0.255 0.247 -  0.482 2  0.852 0.351 75.031  - 

16  0.121 0.415 0.303 - 0.160  0.410 2  0.868 0.332 85.613   

17  0.141 - 0.387 0.305 0.163  0.473 4  0.937 0.240 88.531  - 

18  0.092 0.334 0.239 0.215 0.120  0.448 2  0.854 0.349 76.076  - 

S =steric field, E = electrostatic field, H =hydrophobic field, D =hydrogen bond donor, 

A= hydrogen bond acceptor; n= number of statistical components; q2= cross-validated 

correlation coefficient; r2= non-cross validated correlation coefficient; SEE=standard 

estimated error; F=Fisher value; r2
pred= predictive correlation coefficient for test set. 
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3.3.CoMFA and CoMSIA model analysis (receptor-guided alignment) 

For a reliable predictive model, the cross-validation coefficient q2 should be 

more than 0.5 (159). Both the ligand-based and the receptor-guided techniques have 

achieved expected statistical values for CoMFA. The ligand-based atom-by atom 

matching alignment yielded q2 = 0.646 and r2 = 0.983 values for CoMFA, whereas the 

pharmacophore alignment produced a slightly lower q2 value for CoMFA, when 

compared with other alignment methods (i.e. q2 = 0.568 and r2 = 0.938). The reliable 

CoMFA model 8 was obtained from the receptor-guided alignment using the 

combination of steric and electrostatic field descriptors, with the grid spacing 1.5 Å (q2 

= 0.605 and r2 = 0.944) (Table 6). A bootstrapped r2 of 0.971 with the standard 

deviation (StdDev) of 0.015 were obtained from bootstrapping analysis (100 runs), to 

further confirm the statistical validity and the robustness of the established CoMFA 

model. Even though ligand-based model looks superior in statistics, we chose the 

receptor-guided method to produce the 3D-QSAR model, because it generates more 

reliable models, with better understanding of the receptor interactions, than the ligand- 

based alignment.  

CoMSIA is an alternative approach to perform 3D-QSAR by comparative 

molecular field analysis. Molecular similarity is compared in terms of similarity 

indices. The CoMSIA model was derived, with various combinations of steric, 

electrostatic, hydrophobic, hydrogen-bond donor and hydrogen-bond acceptor fields. 

The statistical summary of CoMSIA results indicate that atom-by atom matching 
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alignment showed lower q2 values (i.e. q2 = 0.464 and r2 = 0.651), than the 

pharmacophore based alignment (q2 = 0.670 and r2 = 0.982). A better CoMSIA model 

was obtained with the receptor-guided method, combining steric, hydrophobic and 

hydrogen-bond acceptor fields. The combination of these fields yielded reliable 

statistical results (i.e. q2 = 0.587 and r2 = 0.863) (Table 7). From these field contribution 

results, we identified that the hydrophobic field played a major contribution in the 

present series of molecules.   
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Table 6: Statistics summary of CoMFA models using receptor-guided alignment 

method. 

Leave-one-out cross-

validation 
Non-cross-validation Bootstrap 

Field 

contribution 
Model 

No 

Grid  

(Å) 

q2 n SDEP r2 SEE F-value r2
boot StdDev 

r2
pred 

S E 

7 1.0 0.580 4 0.770 0.955 0.201 128.326 0.947 0.016 - 0.595 0.405 

8 1.5 0.605 4 0.792 0.944 0.224 101.781 0.971 0.015 0.615 0.592 0.408 

9 2.0 0.475 4 0.896 0.933 0.246 83.966 0.965 0.020 - 0.569 0.431 

q2= cross-validated correlation coefficient; n= number of statistical components; 

SDEP= standard deviation estimated prediction; r2= non-cross validated correlation 

coefficient; SEE=standard estimated error; F=Fisher value; r2
boot=correlation coefficient 

after 100 runs of bootstrapping; r2
pred= predictive correlation coefficient for test set; S= 

steric; E= electrostatic. 
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Table 7: Statistics summary of CoMSIA models using receptor-guided alignment method. 

 Field  
LOO cross-

validation 
 Non-cross-validation  

Predictive 

R2 Model 

No. 

 S E H D A  q2 n  r2 SEE F  r2
pred 

19  0.297 0.703 - - -  0.552 3  0.885 0.316 64.185  - 

20  0.281 - 0.719 - -  0.605 2  0.847 0.358 71.946  - 

21  0.174 0.449 0.377 - -  0.541 3  0.893 0.305 69.389  - 

22  0.223 - 0.525 0.242   0.547 3  0.865 0.343 53.367  - 

23  0.247 - 0.599 - 0.155  0.587 3  0.863 0.345 52.409  0.528 

24  0.159 0.381 0.333 0.127 -  0.537 3  0.896 0.301 71.427  - 

25  0.166 0.401 0.364 - 0.069  0.547 3  0.890 0.309 67.398  - 

26  0.223 - 0.511 0.176 0.090  0.556 3  0.866 0.341 54.047  - 

27  0.158 0.363 0.344 0.099 0.037  0.532 3  0.891 0.308 68.123  - 

S =steric field, E = electrostatic field, H =hydrophobic field, D =hydrogen bond donor, 

A= hydrogen bond acceptor; n= number of statistical components; q2= cross-validated 

correlation coefficient; r2= non-cross validated correlation coefficient; SEE=standard 

estimated error; F=Fisher value; r2
predictive= predictive correlation coefficient for test set. 
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Table 8: The actual pIC50, predicted pIC50 and residual values of all compounds 

derived from the CoMFA and CoMSIA models by receptor-guided alignment. 

 CoMFA  CoMSIA 
No. pIC50 

 prediction Residual   prediction Residual  

1   5.721  5.749 0.028  5.842 0.121 

2  8.046  7.821 0.225  8.171 0.125 

3*  4.350  5.746 1.396  6.075 1.725 

4  5.638  5.897 0.259  6.090 0.452 

5  5.959  5.900 0.059  5.862 0.097 

6  6.155  6.125 0.030  6.176 0.022 

7  6.155  5.998 0.158  5.951 0.204 

8  6.523  6.663 0.140  6.928 0.405 

9  5.585  5.888 0.303  5.801 0.216 

10  4.740  4.911 0.171  5.052 0.312 

11  6.398  6.041 0.357  5.990 0.409 

12  4.812  4.588 0.224  4.638 0.174 

13*  7.319  7.233 0.086  7.015 0.304 

14  7.119  7.241 0.122  7.226 0.107 

15  7.602  7.387 0.215  7.207 0.395 

16  7.456  7.439 0.017  7.256 0.200 

17  7.456  7.304 0.152  7.012 0.444 

18  7.553  7.343 0.210  7.004 0.549 

19  7.538  7.371 0.167  7.024 0.514 

20*  6.804  7.329 0.525  6.987 0.183 

21  7.032  7.235 0.203  6.972 0.060 

22  6.556  7.163 0.607  7.287 0.731 

23  6.408  6.592 0.184  7.009 0.601 

24   6.730  6.744 0.014  7.050 0.320 

25*  7.481  7.139 0.342  7.255 0.226 

26  7.432  7.385 0.047  7.527 0.095 

27  6.152  6.168 0.016  6.240 0.088 

28  6.690  6.355 0.335  6.430 0.260 

29  7.086  7.612 0.526  7.132 0.046 

30  7.678  7.761 0.083  7.322 0.356 

31  7.495  7.552 0.057  7.548 0.053 

32  7.699  7.691 0.008  7.737 0.038 

33  7.337  7.250 0.087  7.306 0.031 

34  7.260  7.365 0.105  7.267 0.007 

35*  7.071  7.061 0.010  7.325 0.254 

*Test set compounds 
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To validate both the predictability and accuracy of the models, the predictive 

correlation coefficient r2
pred was calculated for test data set. In the test set, compound 3 

had a residual value of 1.396 and 1.725, indicating large residual values of the model. 

This is because compound 3 has the lowest pIC50 value within its cluster and it was not 

included in the training set. Although this contradicted our predictions, the structural 

similarity with other compounds determined us to include this compound in the dataset. 

The r2
pred values for QSAR models were represented in Table 6 and 7. The receptor-

based models produce r2
pred values of 0.615 and 0.528, for CoMFA and CoMSIA, 

respectively. The actual and predicted activity (from the receptor-guided method) of 

both CoMFA and CoMSIA models are listed in Table 8. The results showed that the 

activities predicted by the produced models were in good agreement with the original 

data, suggesting that those models should have satisfactory predictive value. Figure 2 

(a) and (b) shows plots of the predicted vs. actual data by the CoMFA and CoMSIA 

models.  
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Figure 2: Plot of predicted vs actual values of (a) CoMFA, and (b) CoMSIA 

(receptor-guided alignment). 
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3.4. CoMFA contour map (receptor-guided alignment) 

The CoMFA contour map was generated based on the receptor-guided 

alignment method. The CoMFA result is usually represented as a 3D ‘coefficient 

contour’ map. It shows regions where variations of steric and electrostatic nature in the 

structural features of the different molecules contained in the training set lead to either 

increase or decrease in the activity. The CoMFA steric and electrostatic fields are 

represented in contour plots. The steric interaction is represented by the green and 

yellow contours, in which green colored regions indicate areas where increased steric 

bulk is associated with enhanced activity, and yellow regions suggest areas where 

increased steric bulk is unfavorable to activity. The electrostatic interaction is indicated 

by the red and blue contours, in which the blue colored regions show areas where more 

positively charged groups are favored, and red region highlight areas where groups 

with more negative partial charges are favored. These contour maps give us some 

general insight into the nature of the receptor-ligand binding region.   

One of the most potent inhibitors, i.e. 02, was superimposed in the active site 

of the receptor protein. A large favorable steric field (green) is observed around 

Asp112, Ala113 and Asn114, which are next to the ortho, meta and para positions of 

the phenyl ring (Figure 3). This indicates that a bulky group at this place is preferred 

for activity. This result is in agreement with the experimental data showing that 

compounds 20, 21, 22, 26, 33, 34 and 35 have a bulky substituent in the phenyl moiety 

and exhibit stronger activities.  
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Figure 3: The CoMFA steric contour map with compound 02 (Table 1). Green 

contours indicate regions where bulky groups increase activity, whereas yellow 

contours indicate regions where bulky groups decrease activity. 
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Figure 4: The CoMFA electrostatic contour map with compound 02 (Table 1). Red 

contours indicate negative charge favoring activity, whereas blue contours indicate 

positive charge favoring activity.   
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On the electrostatic contour map (Figure 4) the blue contour region was found 

close to the NH group of the aniline ring. This positively charged amino group is 

interacting with the carbonyl group of Met111. Inhibitors 1, 3, 4, 5, 6, 7, and 8 showed 

that the lower pIC50, which was substituted with the ether group, was unfavorable to the 

blue contour map. This may be the reason why these compounds show lower biological 

activity. Another blue contour map was also found close to the meta and para positions 

of the phenyl ring, indicating that positively charged groups can favorably interact with 

the surrounding negatively charged backbone residues of both Asp112 and Ala113. 

This may be the reason why the compounds 2, 14, 15, 16, and 28 show higher 

biological activity.  

 

3.5. CoMSIA contour map (receptor-guided alignment) 

The CoMSIA contour maps were also developed based on the receptor-guided 

alignment method. Figures 5, 6, and 7 show the steric, hydrophobic and H-bond 

acceptor contour maps superimposed on the active site of the JNK1. Compared with 

figure 3, it can be seen that the CoMSIA steric contour map is quite similar to that of 

the corresponding CoMFA contour map. 
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Figure 5: The CoMSIA steric contour map with compound 02 (Table 1). Green 

contours indicate regions where bulky groups increase activity, whereas yellow 

contours indicate regions where bulky groups decrease activity. 
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Figure 6: The CoMSIA hydrophobic contour map with compound 02 (Table 1). 

Yellow contours indicate the regions where hydrophobic groups increase activity, 

whereas white contours indicate the regions where hydrophobic groups decrease 

activity. 
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The yellow and white contour map indicates the regions where hydrophobic 

and hydrophilic groups are preferred, respectively. The white contour was observed 

near the meta position of the phenyl ring, which indicates that the hydrophilic groups 

can interact with the carbonyl group of Asp112. This is a possible reason why 

compounds 14, 15, and 16 with the hydrophilic substitution show higher potency. 

There were two yellow contours observed. One was near the para position of the phenyl 

ring. This explains why the substitution of the hydrophobic groups could interact with 

Ala113 to improve the potency of compounds. Another yellow contour was observed 

near the 5' position of the pyrimidine ring. This indicates that hydrophobic substitution 

was favorable at this position and it may access the hydrophobic residue of Met108 

(also known as gatekeeper). The contour map results indicate that substitution of the 

hydrophobic groups at the 5' position could potentially identify additional interaction 

between the pyrimidine ring and the important gatekeeper residue. This interaction 

might improve the activity of newly synthesized analogs.    

Figure 7 represents the H-bond acceptor contour map with the compound 02. 

The magenta region indicates where the hydrogen bond acceptor group increases the 

activity and the red contour map indicates where the hydrogen bond acceptor group 

decreases the activity. The unfavorable red contour map was found near the amino 

group of the benzamide ring, meaning that H-bond donating groups favorably interact 

with the negatively charged Asp169. The H-bond acceptor contour map showed 

reasonable modification in the benzamide ring. This could be the reason why 

compound 02 shows higher biological activity than other compounds. 
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Figure 7: The CoMSIA H-bond acceptor contour map with compound 02 (Table 1). 

Magenta colour indicates the regions where hydrogen bond acceptor substituents 

enhance activity; red colour indicates the regions where hydrogen bond acceptor 

substituents reduce activity. 
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In summary, both CoMFA and CoMSIA contour maps identified some crucial 

modifications for 4-anilinopyrimidines derivatives. The CoMFA map recognized that 

substitution of electropositive groups in the phenyl ring could possibly interact with 

Asp112, Ala113 and Asp114. CoMSIA provided additional information over CoMFA, 

in terms of both hydrogen bonding and hydrophobic interactions with the active site 

residues. The CoMSIA H-bond acceptor contour map found that further modification is 

required for the benzamide ring to interact with the negatively charged Asp169. 

Furthermore, the CoMSIA contour map explained the importance of the hydrophobic 

substitution in the 5' position of the pyrimidine ring. Modification in this position 

seems remarkably important to produce more potent and selective JNK1 inhibitors. 

 

3.6. Analysis of the molecular dynamics 

We compared the 3D-QSAR model with the molecular dynamics simulation 

for the protein-ligand complex. Since the QSAR model was mainly focused on the 

structural enhancement of the inhibitors, it was better to evaluate the model with the 

molecular simulation binding mode of the receptor site. 2ns-MD simulation was carried 

out for the highly active compound in the series (i.e. compound 02), along with the 

JNK1 crystal structure. To examine the variation in the intramolecular conformations of 

JNK1, the root mean square deviation (RMSD) with respect to the initial structure was 

calculated. Simulation time versus the RMSD of the protein backbone atom and 

inhibitor were presented in Figures 8 and 9, respectively.  
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Figure 8: Simulation time versus RMSD for the JNK1 protein backbone.   
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Figure 9: Simulation time versus RMSD for compound 02.  
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Figure 10: Potential energy graph for the JNK1 complex (PDB code: 2NO3). 

 

 

 

 

 

 



Madhavan Thirumurthy Ph.D. Thesis  

Chosun University, Department of Bio-New drug development 

 

- 52 - 
 

 

 

 

Figure 11: Simulation time versus the number of hydrogen bonds for compound 02 

with Met111 residue. 

 

 

 

 



Madhavan Thirumurthy Ph.D. Thesis  

Chosun University, Department of Bio-New drug development 

 

- 53 - 
 

 

 

 

 

Figure 12: Alignment of the 3D-QSAR model (Orange) with the MD model (Yellow), 

inside the JNK1 active site.  
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The results showed that the system becomes equilibrated at 600 ps, and the 

lowest energy conformation was judged by their potential energy graph (Figure 10). 

Figure 8 shows the root-mean-square deviation (rmsd) of the trajectory for the protein 

backbone with respect to the initial structure (in black line), and the graph presents that 

the rmsd reaches about 0.15 Å, which suggests that a relatively stable conformation of 

the protein is achieved through the MD simulation. Figure 9 also gives the rmsd of the 

compound 2 (in red line) in the binding site of JNK1. It can be clearly noted that the 

rmsd for the ligand reaches about 0.08 Å from the beginning of MD simulation and 

retains this value throughout the simulation, suggesting that the changes of complex are 

mainly caused by the protein.  Figure 11 represents the hydrogen bond interaction with 

the active site residue of Met111. Throughout the MD simulation, there was a hydrogen 

bond interaction between compound 02 and the hinge residue Met 111. This suggests 

that it has two stable hydrogen bond interactions, which is consistent with the 

experimental observation. The superimposition of both models is presented in Figure 

12 and the MD model has shown similar hydrogen bonding interaction with the Met111 

(i.e. the hinge region). Both models were aligned and correlated well with each other, 

indicating that the low energy conformation of compound 02 has similar orientation 

with the binding mode used for generation of the 3D-QSAR model. Although the 

complex has undergone several movements during MD simulation, both the binding 

pocket and the conformation of the compound 2 are still stable, suggesting rationality 

and validity of the 3D-QSAR model. From these results, we concluded that the 

generated 3D-QSAR model was good enough to design new JNK1 analogs.  
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3.7. 3D Pharmacophore search and docking 

We used the 3D crystal structure of JNK1 in complex with the potent inhibitor 

2-({2-[(3-hydroxyphenyl)amino]pyrimidin-4-yl}amino) benzamide (PDB code: 2NO3) 

to generate the pharmacophore hypothesis. By using the spatial and partial match 

constraint, we defined the 3D-pharmacophore query on the basis of the crystal structure 

bound conformation. The receptor donor and acceptor sites of Met111 are crucial 

(hinge) for the hydrogen bond interaction with JNK1 inhibitors, and thecontour map 

helped to identify another important amino acid, which was also used as 

pharmacophore query.   
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Figure 13: Using partial match constraints, the 3D pharmacophore query was 

generated for the JNK1 complex structure. The green coloured ball indicates query for 

the receptor donor site and the magenta coloured ball indicates the query for the 

receptor acceptor site.  
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Figure 14: Results from the virtual screening of the NCI database. The number shows 

the total number of molecules obtained after applying the filtration criteria. 
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Figure 13 represents the 3D-pharmacophore query generated from the crystal 

structure. Virtual screening was performed using this 3D pharmacophore query against 

the NCI database. The screening was carried out by few filtration criteria, such as the 

Lipinski’s Rule of five, the Vander Waals bumps and by restricting the number of 

rotatable bonds to a maximum of 7. The flow chart for virtual screening of various 

filtration criteria is presented in Figure 14. To reduce the number of molecules for 

further analysis, first we applied the Lipinski’s rule of 5, the Vander Waals bumps and 

we restricted the number of rotatable bonds to > 7. This generated 4590 hits from the 

NCI database. Further refinement of these hits was carried out using the QFit, 

According to this rule, the best mapping (i.e., the map with the highest QFit) is returned 

as the hit. Using this option, we further eliminated molecules from this filtration 

criterion. The 754 hits obtained were then subjected to docking into the active site of 

JNK1, using the Surflex molecular docking method. To verify the reproducibility of the 

docking calculations, the bound conformation of compound 02 (i.e. the reference 

compound) (PDB code: 2NO3) was redocked with the JNK1 active site. The Surflex 

docking method reproduced the same binding mode with the docking score of 5.75 and 

the RMSD value of 0.993. After visual inspection of each compound, we identified 

eight compounds as new potential leads for JNK1. All the potential lead compounds 

showed hydrogen bonding interaction with Met 111 (i.e. the hinge region) and 

additional hydrogen bond interaction with other active site residues (i.e. Glu109, 

Asp112, Asn114, and Asp169).  
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Figure 15: Chemical structures of the identified hits. 
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Table 9: Docking scores, as well as predicted activities, from both CoMFA and 

CoMSIA models, for the eight identified hits.  

Predicted pIC50 

 
Hit 

Docking 
Score 

H-bond Interaction with 
Active site residue 

 
CoMFA 

 
 

CoMSIA 
 
 

NCI M45394 
 

8.27 Met111, Glu109 6.113 
 

6.926 
 

NCI M130810 
 

8.21 Met 111, Asp169 6.470 

 
6.821 

 
 

NCI M677282 
 

8.82 Met111, Glu109 6.150 
 

6.516 
 

NCI M279538 
 

7.09 Met111, Asn114 6.632 
 

6.307 
 

NCI M154595 
 

6.75 Met111, Glu109 7.167 
 

7.360 
 

NCI M225348 
 

6.74 Met111, Glu109, Asp112 7.101 
 

8.376 
 

NCI M49693 
 

6.67 Met111, Glu109, Asp169 6.406 
 

6.527 
 

NCI M210423 
 

6.41 Met111, Glu109 6.397 
 

6.700 
 

 

 
Moreover, the activities of the identified hits were further predicted by the generated 

CoMFA and CoMSIA models. Figure 15 showed the eight potential lead compounds 

with high Surflex docking scores. The docking scores, as well as the predicted 

bioactivities of pIC50 from both CoMFA and CoMSIA models (i.e. the receptor-guided 

method), are shown in Table 9. 
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3.8. Binding mode analysis of identified hits 

Elucidation of ligand binding mechanisms is an extremely important step to 

obtain more potent and selective lead molecules for JNK1 enzyme. Therefore, we 

investigated a detailed binding interaction of a few potent hit compounds using Surflex 

docking method. After docking, the individual binding poses of each potent hit were 

observed and their interactions with the protein were studied. The best and the most 

energetically favorable conformation of potent hits were selected. The identified hits 

showed all the necessary interactions which are important for effective JNK1 

inhibition. The detailed binding interactions of some of the hits (NCI M45394, NCI 

NCI M225348, and NCI M49693) are given in the following sections. 

 

3.8.1. Binding mode of NCI M45394, NCI M225348, and NCI M49693 

Figure 16 represents the binding mode of NCI M45394 and it showed four 

hydrogen bond interactions within the active site of JNK1 enzyme. Their hydrogen 

bond donor and acceptor features interact with Glu109, and Met111. As illustrated in 

the binding mode, one of the NH2 substituents of the pyrimidine ring forms an H-bond 

with backbone carbonyl group of Glu109 with a bond length value of 2.745 Å. 

Similarly another nitrogen and NH2 substituent interact with hinge residue Met111. The 

corresponding bond lengths are 1.867 Å and 2.262 Å.   
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Figure 16: Stereoview of Surflex predicted binding poses of NCI M45394, in the active 

site of the JNK1 enzyme. 
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Figure 17: Stereoview of Surflex predicted binding poses of NCI M225348, in the 

active site of the JNK1 enzyme. 
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Figure 18: Stereoview of Surflex predicted binding poses of NCI M49693, in the active 

site of the JNK1 enzyme. 

 

 

 

Figure 17 shows the binding mode of NCI M225348, it makes H-bond contacts 

with hinge region residues (Glu109, Met111,) additionally, the OH substituent of 
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pyrimidine ring forms H-bond with Asp112. The docking scores of the identified hits 

are comparatively greater than that of the reference compound. The better binding 

scores of the selected hits are due to the additional stabilizing interactions. For 

example, NCI M225348 shows interactions with Asp112 in addition to the core 

interactions.  

The binding mode of NCI M49693 within the active site residues of JNK1 

enzyme is given in Figure 18. It interacts with Glu109, Met111, and Asp169 and forms 

five H-bond contact with these active site residues. As illustrated in the binding mode, 

one of the NH2 substituents of the pyrimidine ring forms an H-bond with backbone 

carbonyl group of Glu109 with a bond length value of 2.331 Å. Similarly another 

nitrogen and NH2 substituent interact with hinge residue Met111. The corresponding 

bond lengths are 1.569 Å and 2.688 Å.  Additionally, the OH substituent of phenyl ring 

forms H-bond with Asp169 with a bond length value of 1.872 Å. The identified hits are 

expected to have critical pharmacophore features and it can be a new potential leads for 

JNK1.    

 

 

 

 

 

4. Conclusion 
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Comparative CoMFA and CoMSIA models were developed for the series of 

JNK1 inhibitors.  In this work, we applied various alignment methods to generate a 

reasonable 3D-QSAR model. The receptor-guided alignment method produced better 

models than the ligand based approach, because this alignment is directly associated 

with the receptor information, which is more realistic than in other techniques. The 

superposition of both CoMFA and CoMSIA contour maps within the receptor showed 

reasonable correspondence between the contour map property and the surrounding 

amino acid property of the active site region. This provides more detailed information 

about the interaction between the series of compounds and the JNK1 inhibitors. Our 

3D-QSAR models identified some crucial modifications for 4-anilinopyrimidines 

derivatives. The CoMFA map recognized that substitution of electropositive groups in 

the phenyl ring could possibly interact with Asp112, Ala113 and Asp114. The CoMSIA 

H-bond acceptor contour map found that further modification is required for the 

benzamide ring to interact with the negatively charged Asp169. Furthermore, the 

CoMSIA contour map explained the importance of the hydrophobic substitution in the 

5' position of the pyrimidine ring. Modification in this position seems remarkably 

important to produce more potent and selective JNK1 inhibitors. Furthermore, the MD 

simulation study concluded that two stable hydrogen bonds exist from the initial few 

picoseconds simulation time with the hinge residue (Met111). The superposition of 

binding modes correlated well with each other and showed that the compound 02 has 

similar orientation with the generated QSAR model. Finally, we have performed virtual 

screening, using the bound conformation from the JNK1 complex structure and 
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identified 8 compounds as new potential leads for JNK1, by using various filtration 

criteria. Results of this study might be useful for future drug design studies and we 

hope that it would be the starting point for the synthesis of more potent and selective 

JNK1 inhibitors.  
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