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Abstract

Prediction of Axial DNBR Distribution in a Hot Nuclear
Fuel Rod Using Support Vector Regression
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I . Introduction

The pressurized water reactors (PWRs) generally operate in the nucleate boiling
regime. However, if the fuel rod is operating at high power density, the nucleate
boiling may eventually reach the film boiling accompanied by severe reduction of
heat transfer capability. The conversion of the nucleate boiling into the film boiling
induces the boiling crisis that in the long run may cause fuel clad melting. This
type of boiling crisis is a phenomenon called Departure from Nucleate Boiling
(DNB). The DNB phenomena overheat the cladding and fuel pellet if the reactor is
not immediately shutdown [1]. It is very important to monitor and predict the DNB
Ratio (DNBR) to prevent the boiling crisis and clad melting. Here, the DNB Ratio
(DNBR) is defined as the ratio of the expected critical heat flux (CHF) to the
actual fuel rod heat flux. So far, lots of researches have been carried out on the
prediction of DNBR values [2-7].

In this thesis, a correlation limit DNBR is established based on the variance of
the correlation such that there is a 95% probability at 95% confidence levels that
DNB will not take place when the calculated DNBR is at the correlation limit
DNBR. The variable value design method presumes that the DNBR on the limiting
power rod is greater than the correlation limit DNBR by statistically combining the
effects of uncertainties of the input parameters. The design limit DNBR is
determined by utilizing the DNBR sensitivities and variances in three input
parameter categories: plant operating parameters, nuclear and thermal parameters,
and fabrication parameters [8].

OPR1000 and APR1400 which are nuclear reactors developed by Korea hydro and
nuclear power company (KHNP), employ the Core Operating Limit Supervisory
System (COLSS) for monitoring and the Core Protection Calculator System (CPCS)
for protection. These systems continuously calculate DNBR and Local Power
Density (LPD) in order to assure that the specified acceptable fuel design limits on

DNB and centerline melt are not exceeded during anticipated operational
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occurrences. The CPCS calculates faster than COLSS but produces more
conservative values than COLSS. Even though the COLSS calculates more accurate
DNBR than the CPCS, the COLSS calculates the minimum DNBR (MDNBR) using
the pseudo hot rod axial power distribution which is defined as multiplication of
the core average axial power distribution and the planewise peaking factor
according to the control rod configuration. Therefore, the pseudo hot rod axial
power distribution is different from the real hot rod axial power distribution in the
reactor core and the MDNBR is usually underestimated about 35% as much as
best-estimated DNBR. If the proposed algorithm can predict the DNBR within
about 109 error, it will be successful.

A number of mathematical algorithms requiring high precision have been studied
to solve engineering system problems, such as monitoring and diagnostics. Artificial
intelligence methods have been extensively and successfully applied to nonlinear
function approximation such as the problem in question for predicting DNBR
values, which are a function of various input variables [3], [6], [9], [10], [11].
Among them, this work employed the support vector regression (SVR) model to
predict axial DNBR distribution in the reactor core based on measured signals from
the reactor coolant system. Also, the proposed DNB estimation algorithm is verified
by using nuclear and thermal data [10] acquired from lots of numerical simulations
of the Yonggwang nuclear power plant unit 3 (YGN-3). The used input data are
the reactor power, the core inlet temperature, the pressurizer pressure, the coolant
flowrate of the reactor core, the axial shape index (ASI), a variety of control rod
positions and the output data is DNBR values at each axial location of a hot rod.
Also, hot rod DNB data was obtained by running the MASTER [12] and COBRA
[13] codes.



IO. Support Vector Regression

A. Model Development

Currently, on-line monitoring techniques using artificial intelligence are explained
in literatures [14-15] on applications to a nuclear engineering field. The SVMs are
an alternative training method using a kernel function for an artificial neural
network (ANN) and are useful for recognizing subtle patterns in complex data sets.
Generally, The SVMs are trained with a learning algorithm that originates from
theoretical foundations of statistical learning theory and structural risk minimization
(SRM). Figure 1 depicts the SRM principle graphically [16]. The risk bound is the
sum of the empirical risk and the confidence interval. Empirical risk minimization
(ERM) methods only depend on minimizing the empirical risk under no
circumstances, whereas SRM methods finds the function f that gives the smallest
guaranteed risk R(f*) for the given data set. In Figure 1, d, denotes the dimension
of the set of functions of the learning machines. A structure on the set of
functions is determined by the nested subsets of functions; S, € S, € Sy C---. Any
element S, of structrue has a finite dimension d;. The difference in risk
minimization leads to better generalization in SVMs than ANNs [16].

ANNs use conventional ERM principle to minimize approximation errors of the
training data. On the other hand, SVMs use an SRM principle to minimize the
upper bound of the expected risk, which enables SVMs to have an optimum
structure. But in case that there are many training data, SVMs require long
training time. But after completion of training, there is no difference in the
calculation time of DNBR which is too fast. The SVMs can be well applied to
regression and classification problems. In other words, there are two main
categories for support vector machines: support vector classification (SVC) and

support vector regression (SVR). This thesis solves a typical regression problem
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which is to approximate an unknown function, which can be expressed as a linear

expansion of basis functions.

—0—  empirical risk
—O— confidence interval
—h— bound on risk

structure index ( /)

h, h h

n,

Fig. 1. Graphical description of the SRM principle

An SVR model learns a relationship between the inputs and the output from the

training data set {(wz, yi)}?[:IERmXR where z; is the input vector to an SVR

model, y, the actual output value, IV the total number of data, and m the number

of input signals. The support vector approximation is expanded as follows:

N
y=f@)=Ywe@)+b=w"dl)+b 1)
i=1
where
w= [w1 Wy -+ wN]T ;
¢ = [¢1 Gy - ¢N]T-



After input vectors z are mapped into vectors ¢ of the multidimensional
kernel-induced feature space, the nonlinear regression model turns into a linear
regression model in the feature space. The function ¢,(z) is called the feature, and
parameters w and b are support vector weight and bias, which are calculated by

minimizing the following regularized risk function [16]:

N
R(w):%wquL)\E|y,¢—f(ar:)|E (2)
i=1
where
B 0 if |y, —flz)|<e
by = ()l = |yi_f(l')|—€ otherwise )

In Eq. (2), the first term is a weight vector norm that is characterized as model
complexity and the second term is an approximation error. The constant A which
1s one of the user-specified parameters is known as the regularization parameter.
The regularization parameter determines the trade-off between the approximation

error and the weight vector norm. Also, the function |y,—f(z)| using another

user-specified parameter e is called the e-insensitive loss function [17]. The loss
equals zero if the predicted value f(z) falls inside the insensitivity zone e, that
means that the predicted value is within the insensitivity zone. For all other
estimated points outside the error level, €, the loss is equal to the magnitude of the

difference between the estimated value and e (see Fig. 2 and 3)
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Fig. 2. Linear e-insensitive loss function
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Fig. 3. Insensitive e—tube for the SVR model

Minimizing the regularized risk function is equivalent to minimizing the following

constrained risk function:
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The parameters §&; and 5: are the slack variables that represent the upper and

lower constraints on the output of the system, respectively, and are positive values
(refer to Fig. 3).

The constrained optimization problem can be solved by applying the Lagrange
multiplier technique to Eqgs. (4) and (5), which is expressed by the following

Lagrange functional:

N N
Blusb 6,600, 6,8 )= S0l AN (6+€)- Doy [wB@htb—y,+e e (®)
i=1 i=1

N N
Mo [y, —w"(@)-b+e+]— Z}l(@sﬁﬂ?é‘)

=1 =

Minimizing Eq. (6) with respect to the primal variables, w,b,¢;, §L , gives the

following conditions:

w= Z (ozi - a:)qﬁ(wl) (7)



3o —al)=0

i=1

A—a,—B,=0, i=1,2, ---,N

A—a,—f3 =0, i=1,2, N

Lagrange function is calculated by Eq. (7) as following:
N N

ool Yulo a3l a5 LY o)l ~a o le)ole)  ®

i=1 i=1=1

subject to the constraints

f} (ai — a:)z 0

i=1

0<a; <\ i=12 - N ©)
0<a, <\ i=12 - N

The above Lagrange functional can be solved by determining the values for o
and af using a quadratic programming technique. Finally, the regression function
of Eq. (1) is expressed as follows:

N

y:f(w):Z(ai—a:)K(w,wi)ﬁ-b:27,;[((3:,:1:,;)-!—6 (10)

i=1 i=1

where K(z,z;)=¢"(z;)¢(x) is known as kernel function. A lot of coefficients

7, = (a;—«, ) have nonzero values and the corresponding training data points are
known as support vectors (SVs) that have an approximation error that is greater

than or equal to e. In this thesis, we use the following radial basis function:

(z—2/)e—2)

20°

K(w,w,;): exp|— (11)



The kernel function parameter determines the sharpness of the radial basis kernel
function. The bias b is calculated as [17]

N
b:_%ZVi(K(wra$i)+K(ws’mi)) "

i=1

where z, and z, are SVs and these are data points outside the e-insensitivityzone.

The Two most relevant design parameters for the SVR model are regularization
parameter A and the insensitivity zone e. An increase of the parameter A\ reduces
larger errors, which leads to a decrease in an approximation error. This can be
achieved by increasing the weights vector norm. However, an increase in the
welght vector norm does not make sure of the good generalization performance of
the SVR model. An increase in the insensitivity zone e means a reduction in
requirements for the approximation accuracy and it also decreases the number of

support vectors, leading to data compression.
B. Selection of the Training Data

An SVR model can be well trained when we use data that include much
information. In this thesis, a subtractive clustering (SC) scheme is adopted to select
the training data set. The SC scheme introduces the concept of the information
potential. The information potential of each data point indicates the information
quantity and it is expected that a data point with high information potential has
much information. Figure 4 shows data clusters and their centers (indicated as ‘+’

signs) for simple two-dimensional data.
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Fig. 4. Data clusters and cluster centers for simple two-dimensional data

The information potential of each data point is defined as a function of the

Euclidean distances to all other input data points [18].

]V 27.2
P (i)=Ne w19 N (13)

i=1

where a positive constant r, is a radius defining a particular neighborhood of the
cluster. The potential of a data point to be cluster center is higher when it is
surrounded by an amount of neighboring data. After calculating the potential of
each data point, the data point with the highest potential is considered as first
cluster center. Each time a cluster center is obtained. In general, after determining
the k-th cluster center ¢, and its potential value P,, the potential of each data

point is recalculated using the following equation:

Py ()= P )~ pPpe om0 oy N (14)

where a positive constant r; denotes radius of the neighborhood. Also, 75 is
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usually greater than r, in order to limit the number of clusters generated. When
the potentials of all data points are recalculated using Eq. (14), the data point with
the highest potential is selected as the (k-+ 1)th cluster center. The calculation stops
if P;< (P is true, otherwise calculation continues. If the calculation stops at an
iterative step N,, this means there are N, cluster centers. The input/output data

positioned in cluster centers are selected to train the SVR model.
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M. Verification of the Proposed Algorithm

The proposed SVR model was applied to the first fuel cycle of the YGN-3, a
prototype plant of OPR 1000 nuclear plants. The axial DNB distribution data of the
hot fuel rod were obtained by running MASTER (Multipurpose Analyzer for Static
and Transient Effects of Reactor) [12] and COBRA [13] codes. The MASTER code
which was developed by Korea Atomic Energy Research Institute (KAERI) is a
nuclear analysis and design code. The MASTER code has a variety of capabilities
such as static core design, transient core analysis and operation support and is
interfaced with COBRA code for thermo-hydraulic calculations. The COBRA code
has the CE-1 critical heat flux (CHF) correlation and the DNB distribution data are
calculated from this CHF correlation.

The hot rod DNB data from MASTER simulations consist of a total of 18316
input-output data pairs (z,z,, - g, y,). x; through z, are input signals, which
represent the reactor power, core inlet temperature, coolant pressure, coolant mass
flowrate, ASI, R2, R3, R4 and R5 control rod positions. Here, R2, R3, R4 and R5
stand for the names of the control rod banks. gy, is DNBR values at each axial
location of a hot nuclear fuel rod and calculated from ex-core neutron sensors. The
hot fuel rod is determined from 3-dimensional core calculation. Figure 5 shows
DNBR trends according to the input variables such as reactor power, coolant inlet
temperature, coolant pressure, and coolant mass flowrate that affect the DNBR

value.
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The ASI and the control rod position affect the axial power distribution of the

hot fuel rod that has a close relationship with DNBR distribution. The ASI is

PB_PT

————— where P, is a bottom part power of a reactor core and P
Pp+ Py

defined as

is a top part power. When the input values change in each specific range, DNBR
values of the hot fuel rod are obtained. The ranges of the input signals that are

used for training are shown in Table 1.

Table 1. Input signal ranges

Input signals Nominal values Ranges
Reactor power (%) 100% 80 ~ 103
Inlet temperature (C) 295.8 290.6 ~ 301.7
Pressure (bar) 155.17 131.0 ~ 160.0
Mass flowrate (kg/m’~sec) 3565.0 2994.6 ~ 41354
R2 control rod positions (cm) - 0~ 381
R3 control rod positions (cm) - 0~ 381
R4 control rod positions (cm) - 0~ 381
R5 control rod positions (cm) - 0~ 381
Axial shape index - -0.534 T 0432

The DNB data are divided into the training and test data sets using the SC
scheme. The training data set comprise a half of the acquired input and output
data pairs and the test data set comprises a half of the total DNB data, which
means that the number of the test data are the same as that of the training data.

The training data are sampled to incorporate the whole input ranges shown in
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Table 1. The correlation between ASI and DNBR is largest among any other input
variable. Therefore, two different types of SVR models are used for DNBR data
that are divided into two ASI cases; one positive ASI (9408 data points) case and
another negative ASI case (9408 data points) which takes on different aspects,
respectively. A total of 26 SVR models are designed to estimate the DNBR for
both positive and negative ASIs at 13 axial locations (26 =13 x2). The parameters
of the SVR models used in this thesis are €=0.01, A=10 and o=5. These
parameters can be easily chosen through numerical simulations.

The DNBR value of 13 axial positions is calculated by the SVR models starting
from the bottom of a hot rod to the top. It is expected that if we use the DNBR
value pre-estimated for the one step lower axial location of a hot rod as an input
of the SVR models, the errors can be decreased. Therefore, this pre-estimated
DNBR value would be used. Table 2 shows the RMS errors calculated by SVR
models at 13 axial positions. It is be shown from this table that the proposed
algorithm estimates DNBR values for negative ASI better than positive ASI
and that the errors of the estimated DNBR values become relatively high at
the top locations of the hot rod for the positive ASI values.

_16_



Table 2. RMS error calculated by SVR models at 13 axial positions

Non pre-estimated Pre-estimated

Training data Test data Training data Test data

Axial | Positive | Negative | Positive | Negative | Positive | Negative | Positive | Negative
position ASI ASI ASI ASI ASI ASI ASI ASI

4763 | 1.2371 1.1364 1.4894 1.2665 | 1.2371 1.1363 1.4894 1.2665

95.25 | 0.8997 1.0017 1.0668 1.0988 | 0.8919 | 0.7559 1.0055 | 0.9969

142.88 | 0.5866 | 0.7372 0.6453 0.7900 | 0.5870 | 0.6929 | 0.6171 0.7265

15875 | 0.5189 | 0.5822 0.5197 0.6852 | 0.3831 0.5022 0.4998 | 0.6721

174.63 | 0.4811 0.5545 0.4272 0.6016 | 0.3480 | 0.5122 0.4388 | 0.5992

190.5 0.4831 0.4792 0.4089 0.5388 | 0.4061 0.4573 | 04616 | 0.5414

206.38 | 0.6741 0.4817 0.6310 0.5056 | 0.5286 | 0.4332 0.5869 | 0.5262

222.25 | 0.8420 | 0.4506 0.8560 0.4760 | 0.7164 | 0.3561 0.7646 | 04771

238.13 | 1.1263 0.4048 1.1745 0.4534 | 1.0724 0.3778 1.0004 0.4675

254.00 | 1.4011 0.3691 1.4903 0.3986 | 1.3332 0.3487 1.2040 | 0.4430

269.88 | 1.6487 | 0.3470 1.7785 0.3810 | 1.5590 | 0.3264 1.4506 | 0.4195

301.63 | 2.2471 0.3610 2.5345 0.4215 | 2.0416 | 0.3471 2.1016 | 0.4263

349.25 | 3.3670 1.0689 3.9665 1.2023 | 3.2032 | 09782 | 3.3682 1.0918

Figure 6 shows the relative DNBR error distribution at an axial mid-position

(190.5cm) of a hot rod of which length is 381cm. The relative error is defined as

= 9|

” where y is an estimated value and vy, is a target value.
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Figure 7 shows the root mean square (RMS) errors of DNBR values and
compares both results that use or do not use the pre-estimated DNBR wvalues.
When the pre-estimated signals are used, the RMS error is smaller than when the

pre—estimated signals are not used.

13 located valued

—&— pre-estimated signal used (positive ASI)
—®— pre-estimated signal not used (positive ASI)
—4&— pre-estimated signal used (negative ASI)
—%— pre-estimated signal not used (negative ASI)

RMS error (%)

1 - .\F‘\

.\"4"*\9-970

\.

T T T T T T T T T T T T T T
0 50 100 150 200 250 300 350 400
axial poisition (cm)

Fig. 7. Effect of using pre-estimated signals

Figure 8 shows the RMS error and the maximum error at each axial location.
For the training data set, the RMS errors averaged for 13 axial locations of the
hot rod are 1.1006 percent for positive ASI values and 0.5572 percent for negative
ASI values. For the test data set, the RMS errors averaged at 13 different axial
locations of the hot rod are 1.1530 percent for positive ASI values and 0.6657
percent for negative ASI values. The maximum errors are not as important as the
RMS errors and are graphed to show that the maximum value could be high at a

specific operating condition but is not so high.
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The numerical values shown in Table 3 indicate two kinds (RMS and maximum)
of the errors that average the DNBR errors for 13 axial positions of the hot rod
where indicates the maximum or RMS errors at each axial location. As shown in
this table, if both the ASI and the pre-estimated DNBR values are used as inputs
of the SVR models, the performance is best comparing to cases they are not used.
Also, it 1s known that the RMS error of the SVR for the test data is almost the
same as RMS error for the training data. Therefore, if the SVR models are trained
first using the data for various operating conditions, it can accurately predict the

DNBR for any other operating data.

Table 3. DNBR estimation results

Errors (Training data) Errors (Test data)
Application )
range Pre-estimated | RMS error | Max. error | RMS error | Max. error
(%) (%) (%) (%)
Positive No 1.1933 12.2599 1.3068 13.6065
ASI Yes 1.1006 10.7495 1.1530 13.8966
Negative No 0.6134 8.5802 0.6784 6.5997
ASI Yes 0.5572 71672 0.6657 6.8540
No 0.9034 10.4201 0.9926 10.1031
Total
Yes 0.8289 8.9584 0.9094 10.3753

As an example of the prediction performance, figure 9 shows the target DNBR
and the estimated DNBR distribution at the hot rod position for one specific case
(for an operating condition in the test data). It is shown that the proposed SVR

models can estimate well the reference DNBR.
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specific operating condition

_22_



In addition, DNBR distribution trends due to a transient event are shown Figure
10. The transient was induced by the R5 control bank ejection from steady state
85 percent power (the R5 bank position was 280 cm and all other control banks
were ejected). Although the RMS error level is relatively high at higher DNBR
values, it 1s known that the proposed method estimate well the DNBR distribution
for the transient event. It is important to estimate well the DNBR values at the
lowest DNBR positions in safety aspects and it can be inferred from Figure 8 that
the proposed algorithm predict DNBR at the lower DNBR positions more

accurately.
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Fig. 10. DNBR distribution trends for a transient case
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Fig. 10. Continued

Table 4 shows the comparison of the proposed SVR method with previously
studied fuzzy neural network (FNN) [19]. Note that SVR and FNN [19] used the
same data and conditions. Comparing the prediction performance for developed two
models, it is from the Table 4 known that the SVR method is slightly superior to
the FNN method.
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Table 4. Comparison of the performance for two developed models (FNN, SVR)

Errors (Training data) Errors (Test data)
Model Pre-estimated | RMS Error | Max. Error | RMS Error | Max. Error
(%) (%) (%) (%)
No 1.1315 15.4977 1.0894 18.0101
FNN
Yes 1.0603 15.3731 1.0397 19.8579
SVR No 0.9034 10.4201 0.9926 10.1031
Yes 0.8289 8.9584 0.9094 10.3753
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IV. Conclusions

In this thesis, SVR models have been developed to estimate the DNBR
distribution at respective axial locations of the hot nuclear fuel rod in a reactor
core. Two different types of SVR models are used for DNBR data that are divided
into positive and negative ASIs, which takes on different aspects. The SVR models
have been trained by using training data set and verified by using the test data
set independent from the training data. The developed SVR models have been
applied to the first fuel cycle of the Yonggwang unit 3 PWR plant. The simulation
results show that using the pre-estimated DNBR data slightly reduce the prediction
errors compared to when the pre-estimated DNBR data are not used. The errors
of the training and test data sets are almost the same, which means that once
SVR models are trained, the SVR models can be applied to estimate the DNBR in
a reactor core for any other operating data. In addition, the proposed method
estimated well the DNBR distribution for the transient event. From this application,
it was known that this algorithm can predict the DNBR distribution accurately
each time step and provide reliable protection and monitoring information for the

nuclear power plant operation.
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