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. INTRODUCTION

A. Research Overview

In this thesis, we focus on adaptive system identification methods for sparse
reconfigurable adaptive filter (SRAF) [1], but first we need to review some important
details about the sparse filter. A sparse filter is a large TDL that has relatively few and
possibly widely spaced nonzero coefficients. The design of the filter has to continually
adapt to the changing environment [2]. One of the first adaptive finite-impulse-response
(FIR) filters with a sparse impulse response was studied in [3]-[7]. An interpolated FIR
(IFIR) filter based on a sparse filter and an interpolator was proposed in [8] and [9] to
reduce the computational complexity of a conventional FIR filter when the number of
coefficients is large. An improved adaptive IFIR (AIFIR) structure using the
least-mean-square (LMS) algorithm [10] was presented in [11], and the double AIFIR
(DAIFIR) filter was proposed in [12]. The Haar transform was considered in [13] and [14]
to reduce the computational complexity and improve the convergence rate for the
identification of a sparse impulse response. Recently, the simplified signed sparse LMS
(SSSLMS) algorithm, which is a special case of the adaptive natural gradient algorithm
[15], was proposed in [16] and [17]. For a sparse system, the generalized subband
decomposition (GSD) structure and the block exact fast affine projection (BEFAP)
algorithm were also considered in [18] and [19], respectively. Many sparse adaptive
filters have previously been studied, but they do not utilize the unique matrix

architecture of the nonblocking optical switch considered here.



Although TDL filters have previously been considered for optical fiber technology
[20], previous systems have been limited by the small size of the optical switches.
Recently developed three-dimensional (3-D) microelectronmechanical system (MEMS)
optical switches have overcome this limitation [21]-[24] with sizes up to 1200 x 1200,
so that many applications are now possible. The SRAF considered here is based on a
photonic switch with an input and output connection architecture that can be
represented by a matrix of adaptive weights. These tap weights can be represented by
a sparse matrix (size N x N) with the constraint that at most only one element in each
row and column is nonzero; the nonzero weights combine the input and output delays
so that up to N? different time delays are possible.

In previous work [1], a cross-correlation-based (CCB) algorithm for selecting the
specific switch connections was investigated. In the CCB algorithm and the similar
approach in [25], the connections are determined by computing a cross-correlation
function between the input and a desired response signal that depends on the
particular application. The algorithm chooses the connections to maximize the norm of
the cross-correlation vector, and the LMS algorithm [26]-[29] is applied to compute the
weight values for the chosen delays. Although this approach has good performance for
white input signals, it may not find the best delay combinations when the input signal is
non-white. In order to compensate for this limitation, an algorithm that is motivated by
the system identification formulation presented in [1], which we refer to as the
system-based (SB) approach [30], was also be considered. This algorithm first adapts

the weights using the LMS algorithm and then chooses appropriate delay combinations



to have improved performance for non-white input signals compared with the basic
CCB algorithm.

In order to improve the convergence rate of the algorithm, a modified system-based
(MSB) algorithm whose performance can be understood mathematically is considered
in this paper. The MSB separately updates each row or column of the weights with the
structure of a matrix. The LMS algorithm is also be utilized to calculate weight values
for choosing delay connections.

Finally, we extend the use of the method of least squares (LS) [31]-[33] to develop a
recursive algorithm for the design of adaptive transversal filters [34] such that, given the
least-squares estimate of the tap-weight vector of the filter at (N — 1)th iteration, we
may compute the updated estimate of this vector at Nth iteration upon the arrival of
new data. We refer to the resulting algorithm as the recursive least-squares (RLS)
algorithm [35]. The RLS algorithm may be viewed as a special case of the Kalman filter
[36]-[39]. An important feature of the RLS algorithm is that it utilizes information
contained in the input data, extending back to the instant of time when the algorithm is
initiated. The resulting rate of convergence is therefore typically faster than the LMS
algorithm. This improvement in performance, however, is achieved at the expense of a

large increase in computational complexity.



B. Thesis Organization

The structure of this paper is organized as follows. In section |l, we present the
MSB algorithm for the SRAF to improve the convergence rate of the adaptive algorithm.
An implementation of the connection constraint for the MSB algorithm is discussed in
section I, for increasing the accuracy of adaptive algorithms, an upgraded connection
constraint algorithm for the CCB and SB to choose the optimal connection as the same
values exist when computing the summation of the largest weights is proposed.
Moreover, another upgraded connection constraint algorithm, which can improve the
performance of the MSB algorithm, is also presented. In section |V, a brief introduction
of the RLS adaptive algorithm for the SB to compute adaptive weight vector is

presented. Finally, the conclusion of this study is summarized in section V.



Il.  MSB ADAPTIVE ALGORITHM

A. Introduction

The adaptive algorithm [40] used by the SRAF chooses the appropriate time delays
and computes the weight values of the optical switch according to the specific
application. In previous work [1], we investigated the CCB algorithm for selecting the
specific switch connections. The CCB approach has good performance for white input
signals, but it may not find the optimal delay combinations for non-white input signals.
In order to overcome this problem, a SB approach in [30] based on a system
identification formulation that adapts the weights and chooses the appropriate delay
combinations and has good performance for white and non-white input signals was
investigated.

In this paper, the MSB adaptive algorithm whose performance can be understood
mathematically for the SRAF, and has faster convergence rate than conventional CCB
and SB algorithms, has been presented. The connection constraint algorithm for the
CCB and SB adaptive algorithms considers the entire N x N weight matrix when
selecting a subset of N values. The MSB adaptive algorithm initially uses N values
and considers other values only if the current weight value matches previously chosen
values. Thus, the convergence rate of the MSB is faster and the computational
complexity of enforcing the connection constraint of the MSB algorithm is less than

them of the conventional algorithms such as CCB and SB. It, also, has good



performance for white and non-white input signals. Considering separately updates
each row/column of weight matrix to improve the convergence rate, a special signal
structure for the reference signals is presented for this algorithm. The properties of the
proposed SRAF algorithm are demonstrated by computer simulation for a system

identification application.



B. Signal Model for the Switch

1. Conventional Signal Model

A set of input and output signals for the N X N switch represented by the weight

matrix for the SRAF can be defined by

x(k) £ [x1(k), ..., xy ()] (1D

y(k) & [y1(k), .., yw (I (1.2)

where k is the discrete-time index, shown in Figure 2.1. Delays at the input and output

of the switch can be represented by the following matrices

U(zH2[z7™,.,z7™]T (1.3)

Up(z™H) 2 [z™,..,z7W]T, (1.4)

The switch weight matrix W(k) connects the elements of x(k) and y(k) such that at
most there is only one nonzero element in each row and each column. Combining
these definitions, the overall output can be written in terms of the input as follows

y(k) =UT5(z"HW(K)U,(z7Hx(k) (1.5)

where z~1 in this time-domain expression is the delay operator (i.e., z71x(k) = x(k —

1)).
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Figure 2.1: Architecture of sparse reconfigurable adaptive filter (SRAF).

The output error can be written as:

e(k) 2 d(k) —y(k) (1.6)

where d(k) is the desired signal. The LMS algorithm for computing the extended

weight vector is

w(k +1) 2 w(k) + 2ur(k)e(k) 1.7)

where u > 0 is the step-size parameter for controlling the convergence properties of

the system, and with the regression vector r(k) given by:



r(k) 2 Up(z- )W), (2~ ) 1x (k)
= Uy (z"HW(k)x(k)

= Up(zDy(k) (1.8)

where 1 2 [1,...,1]7 is of size N.

2. Specific Structure of the Switch

The extended weight vector W (size N?) (we ignore the time argument (k) in this

chapter) can be written as:

W = [(1)1’1, ey wl,N B (,02‘1, ey 0‘)2,1\/ PR wN,ll ey (DN,N ,] T (1.9)

For convenience, (1.9) can be rewritten in the form of a weight matrix as

W = [wy, ..., wy] (1.10)

where w; £ [wllj,...,wN‘j]T. The subscript i of w;; corresponds to the ith input

switch and the subscript j refers to the jth output switch. A block diagram of the MSB
adaptive algorithm is show in Figure 2.2. Obviously, the main difference between the
SB and MSB is that we have to separately update each column vector w; using the
LMS algorithm with the corresponding input signal vector and desired response signal.

Thus, the input vector for the MSB can be written as:



% (k) 2 [y, (k), o 2, (O] (1.11)

Observe that x; (k) = x(k —m; —n;) where m; and n; (i,j = 1,2,-~+,N) denote the

ith input and jth output delay, respectively. And the corresponding output vector is:
yj (k) = w]x; (k). (1.12)
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Figure 2.2: Modified system-based (MSB) adaptive algorithm.

-10-



In order to obtain the specific desired signal for updating the jth column vector
w; of W, we have to arrange the weight matrix to process the input signals to include
appropriate input signal vector x;(k) that only corresponding to the jth output y;(k),
and make other column input signal values with zero instead. This process can be
expressed by a special structure as shown in Figure 2.3. For example, if the Ath (A =
1,2,---, N ) column of the weight matrix is updated, ( the input delays are m; = 1,2,---, N,
and the output delays are n; = 0,N, -, (N — 1)N) the data structure is shown in Figure
2.3(b). Meanwhile, the structure states of (A-1) and (A+1) columns are also represented
by Figures 2.3(a) and 2.3(c), respectively. The shaded segments shown in Figure 2.3(b)

are the reference data to adaptively update Ath column of the weight matrix.

N(N -A+1) (h—2)N
L
00 A
N
(a) (A-1)th column
NN 1) (.- DN
V)
00 )
77,
N
(b) Ath column
N(N-L-1) N
1
0ee) Q-0
/1
T
{c) (A +1)th column

Figure 2.3: Structure of intermediate desired signals for MSB algorithm.
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C. MSB Adaptive Algorithm

Using the specific structure discussed previously with intermediate desired signal

d;(k), the output error of the system can be written as

e](k) £ d](k) - y](k) (113)

and the mean-square-error (MSE) cost function is

a; & E[ej2 3]

= ajj — 2w/ P, + w/R;w; (1.14)

where p; £ E[x;(k)d; (k)] is the cross-correlation vector, R; £ E[x;(k)x] (k)] is the
input signal autocorrelation matrix, and og]. is the variance of the desired signal d; (k)
(assuming that it has ‘0’ mean). Differentiating a; with respect to w;, setting the result
equal to the zero vector, and solving for w;, we can obtain the optimal weights

W, = Rj‘lpj, the minimum MSE (MMSE) is given by the equation

— 2 Tp—1
Ajmin = 04, — PjR; "P;

= o2

i WfoRjo,o . (1.15)

Since from the optimal weights w;, we can choose only one weight element (due to

the switch constraint), (1.15) can be rewritten as

-12-



—_ 2 2 2
Xjmin = 04; = W},0j (1.16)

where «;, is one of the elements in w;, and sz is the variance of x;(k) (assuming

that x;(k) has ‘0’ zero mean). Since ajz is a constant value for both white and

non-white input signals, the lowest «; ,;, only depends on w?

70 From this expression,

it is obvious that ¢; ,,;, achieves the lowest minimum when wjz_oajz is maximum. To
make a;min, have the lowest minimum value for any input signal, we have to choose

the maximum w;, after each update of the adaptive algorithm.

From this discussion, we can summarize the MSB adaptive algorithm as follows.

1). Adapt weight vector w; with size of N from the weight matrix W using the LMS

algorithm. The LMS algorithm for computing the weight vector is

w;(k +1) = wj(k) + 2ux;(k)e;(k) (2.17)

with e; (k) given by (1.13).

2). Choose the largest weight (magnitude) of w; subject to the connection
constraint (discussed in the next section).

3). Continue this process until N weights have been selected.

4). Copy these selected nonzero weights to the proper locations in the N x N switch

weight matrix W(k).

-13-



D. Computer Simulation

In this section, we present computer simulation example to demonstrate the
performance of the MSB algorithm for implementing the filter. Parks-McClellan
algorithm is used to generate a linear-phase FIR bandpass filter with 64 coefficients.
The impulse and frequency responses of the system are shown in Figure 2.4. It is
obvious that the impulse response is symmetric about the center tap as expected since
this filter has the linear-phase characteristic and we can observe the passband over the
normalized frequency range [0.25 0.3], stop-bands in the range [0 0.2] and [0.35 1],
and the transition bands in the range [0.2 0.25] and [0.35 1]. The magnitude of the

frequency response shows that the stop-band is 30-40 dB lower than the passband.

System Impulse Response System Frequency Response
20

0; /\ 0

A

o /\\ l' \ /\ :
AT g oA D,
U

TRy

ARV )

) :

-1 -100
0 10 20 30 40 50 60 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Index Normalized Frequency

Figure 2.4: Impulse response and frequency response of the actual system with 64
coefficients.
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CCB Adaptive Filter Impulse Response for White Input CCB Adaptive Filter Frequency Response for White Input
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Figure 2.5: Impulse response and frequency response of the CCB adaptive system
with 64 nonzero coefficients for a white input signal.

CCB Adaptive Filter Impulse Response for Non-White Input CCB Adaptive Filter Frequency Response for Non-White Input
20
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Figure 2.6: Impulse response and frequency response of the CCB adaptive system
with 64 nonzero coefficients for a non-white input signal.

Figures 2.5 and 2.6 show the impulse response and frequency response of the
converged CCB adaptive algorithm for white and non-white input signals, respectively.
From these Figures, observe that the CCB adaptive algorithm is similar to the actual

system for the white input, but has observable distortion for the non-white input.
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SB Adaptive Filter Impulse Response for White Input SB Adaptive Filter Frequency Response for White Input
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Figure 2.7: Impulse response and frequency response of the SB adaptive system with
64 nonzero coefficients for a white input signal.

SB Adaptive Filter Impulse Response for Non-White Input » SB Adaptive Filter Frequency Response for Non-White Input
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Figure 2.8: Impulse response and frequency response of the SB adaptive system with
64 nonzero coefficients for a non-white input signal.

The impulse and frequency responses of the SB adaptive algorithm for white and
non-white input signals are shown in Figures 2.7 and 2.8, respectively. Observe that
the SB adaptive algorithm has a performance similar to that of the CCB adaptive
algorithm for a white input signal, but the performance for a non-white input signal is

better than the CCB algorithm.
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MSB Adaptive Filter Impulse Response for White Input MSB Adaptive Filter Frequency Response for White Input
20
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Figure 2.9: Impulse response and frequency response of the MSB adaptive system
with 64 nonzero coefficients for a white input signal.
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Figure 2.10: Impulse response and frequency response of the MSB adaptive system
with 64 nonzero coefficients for a non-white input signal.

Figures 2.9 and 2.10 show the impulse and frequency responses of the MSB
adaptive filter for white and non-white input signals, respectively. Observe that the MSB
adaptive algorithm has a similar performance to that of the SB adaptive algorithm and
has better performance than the CCB adaptive algorithm. It is obvious that the
performance of the MSB algorithm for the non-white input signal is clear much better

than it is for the CCB adaptive algorithm.
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CCB Learning Cunve for White Input CCB Learning Curve for Non-White Input
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Figure 2.11: Squared-error learning curves of the CCB adaptive algorithm for white
and non-white input signals.

SB Learning Curve for White Input SB Learning Curve for Non-White Input
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Figure 2.12: Squared-error learning curves of the SB adaptive algorithm for white and
non-white input signals.
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MSB Learning Curve for White Input MSB Learning Curve for Non-White Input
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Figure 2.13: Squared-error learning curves of the MSB adaptive algorithm for white
and non-white input signals.

The trajectories of the LMS squared errors for a duration of 5,000 samples for the
CCB, SB and MSB adaptive algorithms are shown in Figures 2.11, 2.12 and 2.13,
respectively. Observe that the MSB algorithm (converged by approximately 150)
converges faster than the CCB algorithm (converged by approximately 2000) and SB
algorithm (converged by approximately 1500) due to the reduced number of adaptive

weights updated in the MSB algorithm.
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E. Conclusion

Adaptive algorithm used by the SRAF chooses the appropriate time delays and
computes the weight values of the optical switch according to the specific application.
In order to improve the performance efficiency of the SRAF, the MSB adaptive
algorithm whose performance can be understood mathematically was investigated in
this paper. The main idea behind this method is to separately update each row or
column vector of weight matrix using the LMS algorithm with the suitable input signal
vector and intermediate desired response signal, which has been achieved by a
specific structure of the input signals. Because of low computational complexity due to
the fast convergence rate, compared with conventional SRAF adaptive algorithms such
as the CCB and SB adaptive algorithms, the MSB algorithm is more efficient than them,
and also has good performance for white and non-white input signals. The
performance of the MSB adaptive algorithm was illustrated by computer simulation

example.
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I11. IMPLEMENTATION OF THE CONNECTION
CONSTRAINT

A. Introduction

The SRAF [41] uses adaptive algorithm [42] to choose the appropriate time delays
and compute the weight values of the optical switch according to the specific
application. The connection constraint algorithm for the CCB and SB adaptive
algorithms considers the entire N x N weight matrix for selecting a subset of N
values. The connection constraint algorithm for the MSB adaptive algorithm initially
uses N values and considers other values only if the current delay corresponding
weight value matches previously chosen delays. Thus, the computational complexity of
enforcing the connection constraint of the MSB adaptive algorithm is more efficient
than conventional connection constraint.

The purpose of this chapter is twofold. First, we describe conventional connection
constraint algorithm for the MSB. Second, we propose two upgraded connection
constraint algorithms: when the same values exist as computing the summation of the
weight values, the conventional connection algorithm [41] for the CCB and SB adaptive
algorithms might not work perfectly. In order to solve this problem, one upgraded
algorithm used progressive computation to obtain the better solution is motivated,
which can improve the accuracy of the system identification of the CCB and SB
adaptive algorithms; and for improving the performance of system identification,

another upgraded algorithm for the MSB adaptive algorithm is also be presented.
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B. Conventional Connection Algorithm for the MSB

For the MSB adaptive algorithm, we describe a conventional method of choosing
the N elements of each column weight vector w;(k) (according to the largest
magnitudes) subject to the connection constraint that at most one element of each row
and column of W(k) can be nonzero. After the weights are computed using the LMS
algorithm, they are copied to the optical switch subject to this input connected only to
one output at any given moment. Suppose the candidate vector consisting of the

largest elements from all the w; is

W= [y, .., dn]" (3.1)

where @; is the largest weight (based on magnitude) of the weight vector w;.

From this discussion, we can summarize the algorithm as follows:

1) Determine the largest weight (magnitude) of W and save the corresponding i
(row index) and j values.

2) Choose the next largest weight (magnitude) value of w and check the
corresponding i value.

3) Compare these i values, If the i value chosen from 2) matches previously
chosen, exclude the corresponding chosen largest weight, include the next
largest weight (magnitude) of the corresponding column weight vector in w, and
go to the previous step. Otherwise, if the i value chosen from 2) does not match

previously chosen, choose the corresponding weight value, save i and j values

and go to next step.
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4) Continue this process until N weights have been selected, and let the
corresponding elements be denoted by the weight vector w.

5) Select the input and output delays (m;,n;) of the optical switch associated with
the N elements of w, and copy the adaptive weights to the switch to realize the
input/output connections.

This algorithm is illustrated by the flowchart in Figure 3.1.

stiali
q=0,w,=0

]
Determine largest weight
and save the corresponding
i and jvalues

l

Determine next largest Excludecurrent
weight and save the largest value, include
comesponding i value mext largest value of
l corresponding w;

Compare i values.

Exclude
Chosen
W

Yes

If i have
same values?

No

q-qtl
W, =W, (Chosen)

Figure 3.1: Algorithm flowchart for choosing the N largest weights subject to the
connection constraint for the MSB algorithm.
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C. Upgraded Connection Constraint Algorithms

Although a connection algorithm based on sequentially choosing the maximum
elements is investigated previously, it might not work perfectly if the same values exist
as computing the summation of weight values. In order to solve this problem, an
upgraded connection constraint algorithm is motivated. A simple example is considered

as follows:

2 4 9

W= [5 8 6 l (3.2)
7 12 13

Using the conventional connection algorithm, 13 [located at (3,3)], 8 [located at (2,2)],

and 2 [located at (1,1)] would be chosen. Because we want to maximize the sum of the

weight magnitudes, this selection is not optimal. The optimal connection is given by 12

[located at (3,2)], 9 [located at (1,3)], and 5 [located at (2,1)].

1. Upgraded Connection Constraint Algorithm for CCB and SB

The proposed connection constraint algorithm for the CCB and SB is represented as
follows:
1) Choose the largest and next largest values (magnitudes) from those located in
the different row and column of the weight matrix.

2) Store the sum of the two largest weights.
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3) Based on original weight matrix, generate a modified weight matrix by using zero
instead of the largest weight.

4) Repeat 1) and 2), and choose the largest and next largest weights based on the
modified weight matrix.

5) Store the sum of the two largest weights selected from 4).

6) If the value in 2) exceeds that in 5), then the largest weight from 1) is chosen.
Otherwise, if the value in 5) exceeds that in 2), the largest weight from 4) is
chosen.

7) If the value in 2) equals that in 5), then based on 2) and 5), including each next
largest value, restore the sums of the largest weights, respectively, and go to 6).

8) Continue this procedure until N weights have been selected.

Figure 3.2 shows an algorithm flowchart for the proposed connection algorithm.
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q=0,w,=0
¥
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weightnrnian.
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!
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weight|é, | and next largest
value |44

T

Y Exchude

Storethe sums of the largest Chosen
‘weights selected from W, and Based on W, and w
‘W, as 8, and 5,, respectively. ‘W, includingeach
next largest value.

F=0

&>0

Choosethe largest
weight w, according to
S,and S,.

q=q+1, W, =%

Figure 3.2: Algorithm flowchart of upgraded connection constraint algorithm for the
CCB and SB.
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2. Upgraded Connection Constraint Algorithm for MSB

Although the upgraded connection constraint algorithm for the CCB and SB has
better performance than the conventional algorithm, at the expense of an increase in
the computational complexity. In order to improve the efficiency, an upgraded
connection algorithm for the MSB adaptive algorithm is also presented. The proposed
connection constraint algorithm for the MSB algorithm is summarized as follows:

1) Choose N largest weights (magnitudes) from each column of the weight vector,
and save the i (row index) of each largest weight.

2) Compare the i chosen previously. If there is not same value exist, then the N
largest weights (magnitudes) selected form 1) are the solution. However, if the
same value exists, go to next steps.

3) Based on the first largest weight of N largest weights selected from 1), search
the corresponding adaptive weights using conventional algorithm for the MSB,
and save the sum of the weight values as S;.

4) Based on the second largest weight of N largest weights selected from 1),
search the corresponding adaptive weights using conventional algorithm, and
store the sum of the weight values as S,.

5) If S, is greaterthan S,, then the adaptive weights from 3) are chosen. Otherwise,
the adaptive weights from 4) are chosen.

6) Continue this procedure until N weights have been selected.

Figure 3.3 shows an algorithm flowchart for the proposed connection constraint

algorithm for the MSB.
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- !
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Figure 3.3: Algorithm flowchart of upgraded connection constraint algorithm for the

MSB adaptive algorithm.
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D. Computer Simulation

Figures 3.4 and 3.5 compare the mean-square-error (MSE) obtained by averaging
the squared error over 10,000 samples independent computer runs for the
conventional algorithm and upgraded connection constraint algorithms, respectively.
Observe that the dotted lines (MSE of proposed algorithms) are lower than the solid
lines (MSE of conventional algorithm) for all matrix sizes of the switch, and both of the
proposed connection constraint algorithms have better performance than the
conventional algorithm. Also it can be easily observe that the proposed algorithm for

the MSB converged faster than the proposed algorithm for the CCB and SB.
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Figure 3.4: MSE curves for conventional algorithm and proposed connection constraint
algorithm for CCB and SB.
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Figure 3.5: MSE curves for conventional algorithm and proposed connection constraint
algorithm for MSB.
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E. Conclusion

The SRAF is highly flexible due to its ability to choose from a wide range of delay
values. In order to verify accurate system identification, two upgraded connection
algorithms that can choose the better input and output delays for implementing the
connection constraints for the SRAF are described in this chapter.

For implementing the proposed connection constraint algorithm for the CCB and SB,
under the circumstance that the same values of summation of the weight magnitudes
exist, based on the previous calculation, another largest weight has to be considered
for choosing the better solution. Although the proposed connection algorithm for the
CCB and SB has improved the accuracy of system identification, at the expense of an
increase in the computational complexity. Also, the proposed connection algorithm for
MSB has been investigated for better implementing the SRAF. The properties of the

proposed connection algorithms were illustrated by computer simulation example.
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IV. ADAPTIVE ALGORITHM BASED ON RLS
FOR THE SB ALGORITHM

A. Introduction

The least-mean-square (LMS) algorithm and the recursive least-squares (RLS)
algorithm [35] have established themselves as the principal tools for linear adaptive
filtering [43]. While the LMS algorithm represents the simplest and most easily applied
adaptive algorithm, the RLS algorithm represents increased complexity, computational
cost, fidelity, and fast convergence rate. In performance, RLS approaches the Kalman
filter [36], in adaptive filtering applications, at somewhat reduced required throughput in
the signal processor. Recently, various theories have been written on a comparative
evaluation of the tracking behaviors of the LMS and RLS algorithms. The convergence
behaviors of both of these algorithms are now well understood [44]. Typically, the RLS
algorithm has a faster rate of convergence than the LMS algorithm.

In previous work [41], the cross-correlation-based (CCB) and system-based (SB)
adaptive algorithms have focused on the LMS algorithm to compute the weight vector
for choosing delay connections. In this chapter, the RLS adaptive algorithm is
considered for the SB algorithm to improve the convergence rate of system

identification.
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B. RLS Adaptive Algorithm

Similar to the LMS algorithm, from which it can be derived, the RLS adaptive
algorithm minimizes the total squared error between the desired signal and the output
from the unknown system. An important feature of the RLS algorithm is that it utilizes
information contained in the input data, extending back to the instant of time when the
algorithm is initiated. Figure 4.1 shows the representation of the RLS adaptive
algorithm. Figure 4.1(a) shows the block diagram of the RLS algorithm, and Fig. 4.1(b)
depicts a signal-flow-graph representation of the RLS algorithm that complements the

Figure 4.1(a).

Input vector

x® 2 W

Transversal filter Output
w(k-1)

>

Emor

Adaptive .

weight- control .&(@

mechanism A
Desired

response d (k)

()

l (i)

N
G(k) ) @ - )

'
.

-1

Wy (= ol Z ) w1

(b)

Figure 4.1: Response of the RLS algorithm: (a) block diagram; (b) signal-flow graph.
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Where x(k) is the tap-weight vector at time k, and e(k) is a priori estimation error

defined by

e(k) = d(k) — w" (k — 1)x(k) (4.1)

the inner product W7 (k — 1)x(k) represents an estimate of the desired response d(k).

The RLS algorithm for computing the extended weight vector w in (1.9) is given by

W(k) = Wk — 1) + G(k)e(k). (4.2)

The vector G(k) (size N x 1) is referred to as the gain vector, defined by

A Bk — Dx(k)

G(k) = 1+ A-1x7 (k)B(k — D)x(k)

(4-3)

where matrix B(k) (size N x N)is referred to as the inverse correlation matrix, defined

by

B(k) =2A7"B(k — 1) —A'G(k) x" ()B(k — 1). (44)

The forgetting factor A is a positive constant close to, but less than 1. When A equals

1, we have the ordinary method of least squares. The inverse of 1 — A is, roughly

speaking, a measure of the memory of the algorithm.
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C. Computer Simulation

Next, we present computer simulation results of the SB based on the LMS and RLS
adaptive algorithms. Figures 4.2 and 4.3 show the impulse and frequency responses of
the SB adaptive algorithm for white and non-white input signals based on the LMS

algorithm, respectively. Also, the impulse and frequency responses of the SB adaptive
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Figure 4.2: Impulse response and frequency response of the SB adaptive system with
64 nonzero coefficients for a white input signal based on the LMS algorithm.
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Figure 4.3: Impulse response and frequency response of the SB adaptive system with
64 nonzero coefficients for a non-white input signal based on the LMS algorithm.
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Figure 4.4: Impulse response and frequency response of the SB adaptive system with
64 nonzero coefficients for a white input signal based on the RLS algorithm.
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Figure 4.5: Impulse response and frequency response of the SB adaptive system with

64 nonzero coefficients for a non-white input signal based on the RLS algorithm.

algorithm for white and non-white input signals based on the RLS algorithm are shown

in Figures 4.4 and 4.5, respectively. Observe that the performance of the SB adaptive

algorithm based on the RLS has a performance similar to that of based on the LMS

algorithm.
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Figure 4.6: LMS squared-error learning curves of the SB adaptive algorithm for white
and non-white input signals.
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Figure 4.7: RLS squared-error learning curves of the SB adaptive algorithm for white
and non-white input signals.

Finally, we present computer simulation results of the LMS and RLS algorithms for
the SB algorithm. For this computer simulation, the algorithms were run for L = 5,000
iterations, the step-size parameter was pu = 0.001, and the forgetting factor A = 0.98.

Figure 4.6 shows the trajectory of the LMS squared error for the SB adaptive algorithm

-37-



with both types of input signals, observing that the algorithm has converged by
approximately sample 1500. Also, the trajectory of the RLS squared error for the SB
adaptive algorithm with both types of input signals is shown in Figure 4.7. Observe that
the algorithm has converged by approximately sample 100. From these figures, we
observe that the convergence rate of the RLS algorithm is faster than the LMS
algorithm. This improvement in performance, however, is achieved at the expense of a

large increase in computational complexity.
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D. Conclusion

The RLS is an adaptive algorithm which recursively finds the filter coefficients that
minimize a weighted linear least squares cost function relating to the input signals. This
is similar to other algorithms such as the LMS that aim to reduce the mean square error.
Compared to the LMS algorithm, the RLS approach offers faster convergence.
However, this benefit comes at the expense of requiring more computations. In order to
improve the convergence rate of the SB algorithm, the RLS algorithm was considered
in this chapter. Also, the performance of the LMS and RLS algorithms for the SB

algorithm were illustrated by computer simulation example.
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V. CONCLUSION

Due to MEMS technology, large optical switches can be efficiently implemented,
thus broadening the range of possible applications. The SRAF is highly flexible due to
its ability to choose from a wide range of delay values. In order to improve the
performance of the sparse reconfigurable adaptive filter (SRAF), a MSB adaptive
algorithm whose performance can be understood mathematically was investigated in
this thesis. The main idea behind this method is to separately update each row or
column vector of weight matrix using the LMS algorithm with the suitable input signal
vector and intermediate desired response signal, which has been achieved by a
specific structure of the input signals. Because of less calculation compared with
conventional CCB and SB algorithms, the MSB algorithm is more efficient, and also
has good performance for white and non-white input signals. The performance of the
MSB adaptive algorithm was illustrated by a computer simulation example.

The connection constraint algorithm for the CCB and SB adaptive algorithms
considers the entire N x N weight matrix when selection a subset of N values. The
connection constraint algorithm for the MSB adaptive algorithm initially uses N values
and considers other values only if the current weights value matches previously chosen
values. When the same values exist as computing the summation of the weight values,
the previous connection algorithm based on sequentially choosing the maximum
elements might not work perfectly. In order to ensure accurate system identification,
two upgraded connection algorithms that can choose the best input and output delay

values for implementing the connection constraints for the SRAF is described in this
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thesis. The proposed connection constraint algorithm for the CCB and SB is more
accurate than the conventional algorithm, but at the expense of an increase in
computational complexity; in order to improve the efficiency, another proposed
connection constraint algorithm for the MSB was also proposed.

In order to improve the convergence rate of the SB algorithm, an adaptive algorithm
based on RLS was discussed. The convergence rate of the RLS algorithm is much
faster than the LMS algorithm. The improvement in performance, however, is achieved

at the cost of high computational complexity.
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