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ABSTRACT 
 

Sparse Reconfigurable 적응 필터를 위한  

변형된 적응 알고리즘 

 

  Chang Hong    

Advisor: Prof. Hwang Suk-seung, Ph.D. 

 Department of Advanced parts and 

Materials Engineering,  

Graduate School of Chosun University 

 

스파스 재설정 적응 필터(SRAF, Sparse Reconfigurable Adaptive Filter)는 입력지연

장치, 재설정 연결기와 적응 가중치들을 포함하는 광스위치, 그리고 출력지연장치로 

구성되어 있다. 이 시스템 구조는 다수의 적응 가중치들과 다양한 시간 지연기들로 

구성된 스파스 탭이 부착된 지연선(TDL, Tapped-Delay-Line)을 구동하기 위하여 사

용될 수 있다. 적응 알고리즘들은 광스위치를 위한 SRAF 사용 시에 핵심적인 역할

을 한다. 본 논문에서는 SRAF에 대한 성능을 수학적으로 분석할 수 있는 변형된 

시스템-기반 (MSB, Modified System-Based) 알고리즘을 제안한다. MSB 적응 알고리즘

은 백색 입력 신호들과 비백색 입력신호들 모두에 대하여 좋은 성능을 가질 뿐만 

아니라, 빠른 수렴 속도에 의해 낮은 복잡도를 가지므로 상호-상관-기반(CCB, 

Cross-correlation-based)이나 시스템-기반(SB, System-Ba- sed)과 같은 일반적인 알고리

즘보다 효율적이라고 할 수 있다. 알고리즘의 수렴 속도를 개선시키기 위해 MSB는 
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행렬구조를 가지는 가중치들의 각 행 또는 열을 독립적으로 적응시킨다. 또한, 본 

논문에서는 MSB를 위해 요구되는 중간 학습 신호들의 구조제시한다. 

최대 행렬 요소들을 순차적으로 선택하는 방법을 기반으로 하는 일반적인 연

결 알고리즘은 SRAF가 요구하는 연결 제한 조건을 수행할 시 동일한 절대 가중치 

값들의 합이 존재하면 완벽한 성능을 기대할 수 없다. CCB와 SB의 경우를 위해 이

러한 문제점 해결을 위한 시스템 식별 정확도를 계량할 하고, 일반적인 알고리즘

보다 개선된 솔루션을 얻는 것을 목적으로 진보된 계산을 사용하는 개선된 연결 

제한 알고리즘을 제안한다. 또한, MSB 적응 알고리즘의 시스템 식별 성능 항상을 

위한 개선된 연결 제한 알고리즘을 제시한다. 

지연 연결기 들의 선택을 목적으로 하는 가중치 벡터를 계산하기 위한 일반적

인 알고리즘들은 LMS(Least-Mean-Square) 알고리즘에 국한되어 있지만, 본 논문에서

는 시스템 식별을 위한 수렴 속도를 향상시키기 위해 SB 알고리즘에 RLS(Recursive 

Least-Squares) 적응 알고리즘을 사용하고 그에 따른 결과를 제시한다. 
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I. INTRODUCTION 
 

A. Research Overview 
 

In this thesis, we focus on adaptive system identification methods for sparse 

reconfigurable adaptive filter (SRAF) [1], but first we need to review some important 

details about the sparse filter. A sparse filter is a large TDL that has relatively few and 

possibly widely spaced nonzero coefficients. The design of the filter has to continually 

adapt to the changing environment [2]. One of the first adaptive finite-impulse-response 

(FIR) filters with a sparse impulse response was studied in [3]-[7]. An interpolated FIR 

(IFIR) filter based on a sparse filter and an interpolator was proposed in [8] and [9] to 

reduce the computational complexity of a conventional FIR filter when the number of 

coefficients is large. An improved adaptive IFIR (AIFIR) structure using the 

least-mean-square (LMS) algorithm [10] was presented in [11], and the double AIFIR 

(DAIFIR) filter was proposed in [12]. The Haar transform was considered in [13] and [14] 

to reduce the computational complexity and improve the convergence rate for the 

identification of a sparse impulse response. Recently, the simplified signed sparse LMS 

(SSSLMS) algorithm, which is a special case of the adaptive natural gradient algorithm 

[15], was proposed in [16] and [17]. For a sparse system, the generalized subband 

decomposition (GSD) structure and the block exact fast affine projection (BEFAP) 

algorithm were also considered in [18] and [19], respectively. Many sparse adaptive 

filters have previously been studied, but they do not utilize the unique matrix 

architecture of the nonblocking optical switch considered here.  
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Although TDL filters have previously been considered for optical fiber technology 

[20], previous systems have been limited by the small size of the optical switches. 

Recently developed three-dimensional (3-D) microelectronmechanical system (MEMS) 

optical switches have overcome this limitation [21]-[24] with sizes up to 1200 × 1200, 

so that many applications are now possible. The SRAF considered here is based on a 

photonic switch with an input and output connection architecture that can be 

represented by a matrix of adaptive weights. These tap weights can be represented by 

a sparse matrix (size 𝑁 × 𝑁) with the constraint that at most only one element in each 

row and column is nonzero; the nonzero weights combine the input and output delays 

so that up to 𝑁2 different time delays are possible.  

In previous work [1], a cross-correlation-based (CCB) algorithm for selecting the 

specific switch connections was investigated. In the CCB algorithm and the similar 

approach in [25], the connections are determined by computing a cross-correlation 

function between the input and a desired response signal that depends on the 

particular application. The algorithm chooses the connections to maximize the norm of 

the cross-correlation vector, and the LMS algorithm [26]-[29] is applied to compute the 

weight values for the chosen delays. Although this approach has good performance for 

white input signals, it may not find the best delay combinations when the input signal is 

non-white. In order to compensate for this limitation, an algorithm that is motivated by 

the system identification formulation presented in [1], which we refer to as the 

system-based (SB) approach [30], was also be considered. This algorithm first adapts 

the weights using the LMS algorithm and then chooses appropriate delay combinations 



 -3- 
 

to have improved performance for non-white input signals compared with the basic 

CCB algorithm. 

   In order to improve the convergence rate of the algorithm, a modified system-based 

(MSB) algorithm whose performance can be understood mathematically is considered 

in this paper. The MSB separately updates each row or column of the weights with the 

structure of a matrix. The LMS algorithm is also be utilized to calculate weight values 

for choosing delay connections. 

Finally, we extend the use of the method of least squares (LS) [31]-[33] to develop a 

recursive algorithm for the design of adaptive transversal filters [34] such that, given the 

least-squares estimate of the tap-weight vector of the filter at (𝑁 − 1)th iteration, we 

may compute the updated estimate of this vector at 𝑁th iteration upon the arrival of 

new data. We refer to the resulting algorithm as the recursive least-squares (RLS) 

algorithm [35]. The RLS algorithm may be viewed as a special case of the Kalman filter 

[36]-[39]. An important feature of the RLS algorithm is that it utilizes information 

contained in the input data, extending back to the instant of time when the algorithm is 

initiated. The resulting rate of convergence is therefore typically faster than the LMS 

algorithm. This improvement in performance, however, is achieved at the expense of a 

large increase in computational complexity. 
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B. Thesis Organization 
 

The structure of this paper is organized as follows. In section Ⅱ, we present the 

MSB algorithm for the SRAF to improve the convergence rate of the adaptive algorithm. 

An implementation of the connection constraint for the MSB algorithm is discussed in 

section Ⅲ, for increasing the accuracy of adaptive algorithms, an upgraded connection 

constraint algorithm for the CCB and SB to choose the optimal connection as the same 

values exist when computing the summation of the largest weights is proposed. 

Moreover, another upgraded connection constraint algorithm, which can improve the 

performance of the MSB algorithm, is also presented. In section Ⅳ, a brief introduction 

of the RLS adaptive algorithm for the SB to compute adaptive weight vector is 

presented. Finally, the conclusion of this study is summarized in section Ⅴ.  
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II.  MSB ADAPTIVE ALGORITHM  

 

A. Introduction 
 

The adaptive algorithm [40] used by the SRAF chooses the appropriate time delays 

and computes the weight values of the optical switch according to the specific 

application. In previous work [1], we investigated the CCB algorithm for selecting the 

specific switch connections. The CCB approach has good performance for white input 

signals, but it may not find the optimal delay combinations for non-white input signals. 

In order to overcome this problem, a SB approach in [30] based on a system 

identification formulation that adapts the weights and chooses the appropriate delay 

combinations and has good performance for white and non-white input signals was 

investigated.  

In this paper, the MSB adaptive algorithm whose performance can be understood 

mathematically for the SRAF, and has faster convergence rate than conventional CCB 

and SB algorithms, has been presented. The connection constraint algorithm for the 

CCB and SB adaptive algorithms considers the entire 𝑁 × 𝑁 weight matrix when 

selecting a subset of 𝑁 values. The MSB adaptive algorithm initially uses 𝑁 values 

and considers other values only if the current weight value matches previously chosen 

values. Thus, the convergence rate of the MSB is faster and the computational 

complexity of enforcing the connection constraint of the MSB algorithm is less than 

them of the conventional algorithms such as CCB and SB. It, also, has good 
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performance for white and non-white input signals. Considering separately updates 

each row/column of weight matrix to improve the convergence rate, a special signal 

structure for the reference signals is presented for this algorithm. The properties of the 

proposed SRAF algorithm are demonstrated by computer simulation for a system 

identification application.  
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B. Signal Model for the Switch 
 

1. Conventional Signal Model 
 

A set of input and output signals for the 𝑁 × 𝑁 switch represented by the weight 

matrix for the SRAF can be defined by 

 

𝐱(𝑘) ≜ [𝑥1(𝑘), … , 𝑥𝑁(𝑘)]𝑇                                                   (1.1) 

𝐲(𝑘) ≜ [𝑦1(𝑘), … , 𝑦𝑁(𝑘)]𝑇                                                   (1.2) 

 

where 𝑘 is the discrete-time index, shown in Figure 2.1. Delays at the input and output 

of the switch can be represented by the following matrices  

 

𝐔𝐼(𝑧−1) ≜ [𝑧−𝑚1, … , 𝑧−𝑚𝑁]𝑇                                               (1.3) 

𝐔𝑂(𝑧−1) ≜ [𝑧−𝑛1, … , 𝑧−𝑛𝑁]𝑇 .                                              (1.4) 

 

The switch weight matrix 𝐖(𝑘) connects the elements of 𝐱(𝑘) and 𝐲(𝑘) such that at 
most there is only one nonzero element in each row and each column. Combining 
these definitions, the overall output can be written in terms of the input as follows 

 

𝑦(𝑘) = 𝐔𝑇
𝑂(𝑧−1)𝐖(𝑘)𝐔𝐼(𝑧−1)𝑥(𝑘)                                      (1.5) 

 

where 𝑧−1 in this time-domain expression is the delay operator (i.e., 𝑧−1𝑥(𝑘) = 𝑥(𝑘 −
1)). 
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Figure 2.1: Architecture of sparse reconfigurable adaptive filter (SRAF). 
 

 

The output error can be written as: 

 

𝑒(𝑘) ≜ 𝑑(𝑘) − 𝑦(𝑘)                                                         (1.6) 

 

where 𝑑(𝑘) is the desired signal. The LMS algorithm for computing the extended 

weight vector is 

 

𝐰(𝑘 + 1) ≜ 𝐰(𝑘) + 2𝜇𝒓(𝑘)𝑒(𝑘)                                            (1.7) 

 

where 𝜇 > 0 is the step-size parameter for controlling the convergence properties of 

the system, and with the regression vector 𝒓(𝑘) given by: 
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𝒓(𝑘) ≜ 𝐔𝑂(𝑧−1)𝐖(𝑘)𝐔𝐼(𝑧−1)𝟏𝑥(𝑘)       

= 𝐔𝑂(𝑧−1)𝐖(𝑘)𝐱(𝑘)                

 = 𝐔𝑂(𝑧−1)𝐲(𝑘)                                                                           (1.8) 

 

where 𝟏 ≜ [1, … ,1]𝑇 is of size N. 

 

2. Specific Structure of the Switch 
 

The extended weight vector 𝐰� (size N2

 

𝐖� = �ω1,1, … , ω1,𝑁 , ω2,1, … ,ω2,𝑁 , … ,ω𝑁,1, … , ω𝑁,𝑁 , � 𝑇                       (1.9) 

) (we ignore the time argument (𝑘) in this 

chapter) can be written as: 

 

For convenience, (1.9) can be rewritten in the form of a weight matrix as  

 

𝐖� = [𝐰1, … ,𝐰N]                                                           (1.10) 

 

where 𝐰𝑗 ≜ �ω1,𝑗, … , ω𝑁,𝑗�
𝑇. The subscript 𝑖  of ω𝑖,𝑗  corresponds to the 𝑖th  input 

switch and the subscript 𝑗 refers to the 𝑗th output switch. A block diagram of the MSB 

adaptive algorithm is show in Figure 2.2. Obviously, the main difference between the 

SB and MSB is that we have to separately update each column vector 𝐰𝑗 using the 

LMS algorithm with the corresponding input signal vector and desired response signal. 

Thus, the input vector for the MSB can be written as:  
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𝐱𝑗(𝑘) ≜ �𝑥1,𝑗(𝑘), … , 𝑥𝑁,𝑗(𝑘)�𝑇.                                              (1.11) 

 

Observe that 𝑥𝑖,𝑗(𝑘) = 𝑥(𝑘 −𝑚𝑖 − 𝑛𝑗) where 𝑚𝑖 and 𝑛𝑗  (𝑖, 𝑗 = 1,2,⋯ , 𝑁) denote the 

𝑖th input and 𝑗th output delay, respectively. And the corresponding output vector is: 

 

𝑦𝑗(𝑘) = 𝐰𝒋
𝑻x𝑗(𝑘).                         (1.12) 

 

 

 

Figure 2.2: Modified system-based (MSB) adaptive algorithm. 
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In order to obtain the specific desired signal for updating the 𝑗th column vector 

𝐰𝑗  of 𝐖� , we have to arrange the weight matrix to process the input signals to include 

appropriate input signal vector 𝐱𝑗(𝑘) that only corresponding to the 𝑗th output y𝑗(𝑘), 

and make other column input signal values with zero instead. This process can be 

expressed by a special structure as shown in Figure 2.3. For example, if the λth (λ = 

1,2,···, N ) column of the weight matrix is updated, ( the input delays are 𝑚𝑖 = 1,2,⋯ ,𝑁, 

and the output delays are 𝑛𝑗 = 0,𝑁,⋯ , (𝑁 − 1)𝑁) the data structure is shown in Figure 

2.3(b). Meanwhile, the structure states of (λ-1) and (λ+1) columns are also represented 

by Figures 2.3(a) and 2.3(c), respectively. The shaded segments shown in Figure 2.3(b) 

are the reference data to adaptively update λth column of the weight matrix. 

 

 

 

 
 

Figure 2.3: Structure of intermediate desired signals for MSB algorithm. 



 -12- 
 

C. MSB Adaptive Algorithm 
 

Using the specific structure discussed previously with intermediate desired signal 

𝑑𝑗(𝑘), the output error of the system can be written as 

 

𝑒𝑗(𝑘) ≜ 𝑑𝑗(𝑘) − 𝑦𝑗(𝑘)                                                      (1.13) 

 

and the mean-square-error (MSE) cost function is  

 

 𝛼𝑗 ≜ 𝐸�𝑒𝑗2(𝑘)� 

                   = 𝜎𝑑2𝑗 − 2𝐰𝑗𝑇𝐏𝑗 + 𝐰𝑗𝑇𝐑𝑗𝐰𝑗                                (1.14) 

 

where 𝐩𝑗 ≜ 𝐸�𝐱𝑗(𝑘)𝑑𝑗(𝑘)� is the cross-correlation vector, 𝐑𝑗 ≜ 𝐸�𝐱𝑗(𝑘)𝐱𝑗𝑇(𝑘)�  is the 

input signal autocorrelation matrix, and σ𝑑2𝑗  is the variance of the desired signal 𝑑𝑗(𝑘) 

(assuming that it has ‘0’ mean). Differentiating 𝛼𝑗 with respect to 𝐰𝑗, setting the result 

equal to the zero vector, and solving for 𝐰𝑗 , we can obtain the optimal weights 

𝐰𝑗,𝑜 = 𝐑𝑗−1𝐩𝑗 ,  the minimum MSE (MMSE) is given by the equation 

 

 𝛼𝑗,𝑚𝑖𝑛 = 𝜎𝑑𝑗
2 − p𝑗𝑇𝐑𝑗−1𝐩𝑗  

                                  = 𝜎𝑑𝑗
2 − 𝐰𝑗,𝑜

𝑇 𝐑𝑗𝐰𝑗,𝑜 .                                               (1.15) 

 

Since from the optimal weights 𝐰𝑗,𝑜 we can choose only one weight element (due to 

the switch constraint), (1.15) can be rewritten as 
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𝛼𝑗,𝑚𝑖𝑛 = 𝜎𝑑𝑗
2 − 𝜔𝑗,𝑜

2 𝜎𝑗2                                                        (1.16) 

 

where 𝛼𝑗,𝑜 is one of the elements in 𝐰𝑗,𝑜 and 𝜎𝑗2  is the variance of 𝐱𝑗(𝑘) (assuming 

that 𝐱𝑗(𝑘) has ‘0’ zero mean). Since 𝜎𝑗2  is a constant value for both white and 

non-white input signals, the lowest 𝛼𝑗,min   only depends on 𝜔𝑗,𝑜
2 . From this expression, 

it is obvious that 𝜀𝑗,min   achieves the lowest minimum when 𝜔𝑗,𝑜
2 𝜎𝑗2 is maximum. To 

make 𝛼𝑗,min  have the lowest minimum value for any input signal, we have to choose 

the maximum 𝜔𝑗,𝑜 after each update of the adaptive algorithm. 

From this discussion, we can summarize the MSB adaptive algorithm as follows. 

 

1). Adapt weight vector 𝐰𝑗 with size of N from the weight matrix 𝐖�  using the LMS 

algorithm. The LMS algorithm for computing the weight vector is 

 

𝐰𝑗(𝑘 + 1) = 𝐰𝑗(𝑘) + 2𝜇𝐱𝑗(𝑘)𝑒𝑗(𝑘)                 (1.17) 

 

with 𝑒𝑗(𝑘) given by (1.13). 

2). Choose the largest weight (magnitude) of 𝐰𝑗  subject to the connection 

constraint (discussed in the next section). 

3). Continue this process until 𝑁 weights have been selected. 

4). Copy these selected nonzero weights to the proper locations in the 𝑁 × 𝑁 switch 

weight matrix 𝐖(𝑘). 
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D. Computer Simulation 
 

In this section, we present computer simulation example to demonstrate the 

performance of the MSB algorithm for implementing the filter. Parks-McClellan 

algorithm is used to generate a linear-phase FIR bandpass filter with 64 coefficients. 

The impulse and frequency responses of the system are shown in Figure 2.4. It is 

obvious that the impulse response is symmetric about the center tap as expected since 

this filter has the linear-phase characteristic and we can observe the passband over the 

normalized frequency range [0.25 0.3], stop-bands in the range [0 0.2] and [0.35 1], 

and the transition bands in the range [0.2 0.25] and [0.35 1]. The magnitude of the 

frequency response shows that the stop-band is 30-40 dB lower than the passband.  

 

 
 

Figure 2.4: Impulse response and frequency response of the actual system with 64 
coefficients. 
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Figure 2.5: Impulse response and frequency response of the CCB adaptive system 
with 64 nonzero coefficients for a white input signal. 

 

 
Figure 2.6: Impulse response and frequency response of the CCB adaptive system 
with 64 nonzero coefficients for a non-white input signal. 

 

Figures 2.5 and 2.6 show the impulse response and frequency response of the 

converged CCB adaptive algorithm for white and non-white input signals, respectively. 

From these Figures, observe that the CCB adaptive algorithm is similar to the actual 

system for the white input, but has observable distortion for the non-white input.  
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Figure 2.7: Impulse response and frequency response of the SB adaptive system with 
64 nonzero coefficients for a white input signal. 

 

 
Figure 2.8: Impulse response and frequency response of the SB adaptive system with 
64 nonzero coefficients for a non-white input signal. 

 

The impulse and frequency responses of the SB adaptive algorithm for white and 

non-white input signals are shown in Figures 2.7 and 2.8, respectively. Observe that 

the SB adaptive algorithm has a performance similar to that of the CCB adaptive 

algorithm for a white input signal, but the performance for a non-white input signal is 

better than the CCB algorithm. 
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Figure 2.9: Impulse response and frequency response of the MSB adaptive system 
with 64 nonzero coefficients for a white input signal. 
 

 
Figure 2.10: Impulse response and frequency response of the MSB adaptive system 
with 64 nonzero coefficients for a non-white input signal. 

 

Figures 2.9 and 2.10 show the impulse and frequency responses of the MSB 

adaptive filter for white and non-white input signals, respectively. Observe that the MSB 

adaptive algorithm has a similar performance to that of the SB adaptive algorithm and 

has better performance than the CCB adaptive algorithm. It is obvious that the 

performance of the MSB algorithm for the non-white input signal is clear much better 

than it is for the CCB adaptive algorithm. 
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Figure 2.11: Squared-error learning curves of the CCB adaptive algorithm for white 
and non-white input signals. 

 
 

 
Figure 2.12: Squared-error learning curves of the SB adaptive algorithm for white and 
non-white input signals. 
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Figure 2.13: Squared-error learning curves of the MSB adaptive algorithm for white 
and non-white input signals. 

 

The trajectories of the LMS squared errors for a duration of 5,000 samples for the 

CCB, SB and MSB adaptive algorithms are shown in Figures 2.11, 2.12 and 2.13, 

respectively. Observe that the MSB algorithm (converged by approximately 150) 

converges faster than the CCB algorithm (converged by approximately 2000) and SB 

algorithm (converged by approximately 1500) due to the reduced number of adaptive 

weights updated in the MSB algorithm. 
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E. Conclusion 
 

Adaptive algorithm used by the SRAF chooses the appropriate time delays and 

computes the weight values of the optical switch according to the specific application. 

In order to improve the performance efficiency of the SRAF, the MSB adaptive 

algorithm whose performance can be understood mathematically was investigated in 

this paper. The main idea behind this method is to separately update each row or 

column vector of weight matrix using the LMS algorithm with the suitable input signal 

vector and intermediate desired response signal, which has been achieved by a 

specific structure of the input signals. Because of low computational complexity due to 

the fast convergence rate, compared with conventional SRAF adaptive algorithms such 

as the CCB and SB adaptive algorithms, the MSB algorithm is more efficient than them, 

and also has good performance for white and non-white input signals. The 

performance of the MSB adaptive algorithm was illustrated by computer simulation 

example. 
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III. IMPLEMENTATION OF THE CONNECTION 

CONSTRAINT 
 

A. Introduction 
 

The SRAF [41] uses adaptive algorithm [42] to choose the appropriate time delays 

and compute the weight values of the optical switch according to the specific 

application. The connection constraint algorithm for the CCB and SB adaptive 

algorithms considers the entire 𝑁 × 𝑁  weight matrix for selecting a subset of 𝑁 

values. The connection constraint algorithm for the MSB adaptive algorithm initially 

uses 𝑁 values and considers other values only if the current delay corresponding 

weight value matches previously chosen delays. Thus, the computational complexity of 

enforcing the connection constraint of the MSB adaptive algorithm is more efficient 

than conventional connection constraint. 

The purpose of this chapter is twofold. First, we describe conventional connection 

constraint algorithm for the MSB. Second, we propose two upgraded connection 

constraint algorithms: when the same values exist as computing the summation of the 

weight values, the conventional connection algorithm [41] for the CCB and SB adaptive 

algorithms might not work perfectly. In order to solve this problem, one upgraded 

algorithm used progressive computation to obtain the better solution is motivated, 

which can improve the accuracy of the system identification of the CCB and SB 

adaptive algorithms; and for improving the performance of system identification, 

another upgraded algorithm for the MSB adaptive algorithm is also be presented. 
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B. Conventional Connection Algorithm for the MSB  
 

For the MSB adaptive algorithm, we describe a conventional method of choosing 

the 𝑁  elements of each column weight vector 𝐰𝑗(𝑘)  (according to the largest 

magnitudes) subject to the connection constraint that at most one element of each row 

and column of 𝐖(𝑘) can be nonzero. After the weights are computed using the LMS 

algorithm, they are copied to the optical switch subject to this input connected only to 

one output at any given moment. Suppose the candidate vector consisting of the 

largest elements from all the 𝐰𝑗 is 

 

𝐰� = [𝜔�1, … ,𝜔�𝑁]𝑇                           (3.1) 

 

where  𝜔�𝑗 is the largest weight (based on magnitude) of the weight vector 𝐰𝑗.  

From this discussion, we can summarize the algorithm as follows:  

1) Determine the largest weight (magnitude) of 𝐰� and save the corresponding 𝑖 

(row index) and 𝑗 values.  

2) Choose the next largest weight (magnitude) value of 𝐰�  and check the 

corresponding 𝑖 value. 

3) Compare these 𝑖 values, If the 𝑖 value chosen from 2) matches previously 

chosen, exclude the corresponding chosen largest weight, include the next 

largest weight (magnitude) of the corresponding column weight vector in 𝐰�, and 

go to the previous step. Otherwise, if the 𝑖 value chosen from 2) does not match 

previously chosen, choose the corresponding weight value, save 𝑖 and 𝑗 values 

and go to next step. 
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4) Continue this process until 𝑁  weights have been selected, and let the 

corresponding elements be denoted by the weight vector 𝐰. 

5) Select the input and output delays (𝑚𝑖, 𝑛𝑗) of the optical switch associated with 

the 𝑁 elements of 𝐰, and copy the adaptive weights to the switch to realize the 

input/output connections. 

This algorithm is illustrated by the flowchart in Figure 3.1. 

 

 

 

Figure 3.1: Algorithm flowchart for choosing the N largest weights subject to the 
connection constraint for the MSB algorithm. 
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C. Upgraded Connection Constraint Algorithms 
 

Although a connection algorithm based on sequentially choosing the maximum 

elements is investigated previously, it might not work perfectly if the same values exist 

as computing the summation of weight values. In order to solve this problem, an 

upgraded connection constraint algorithm is motivated. A simple example is considered 

as follows:  

 

W = �
2 4 9
5 8 6
7 12 13

�.                        (3.2)  

 

Using the conventional connection algorithm, 13 [located at (3,3)], 8 [located at (2,2)], 

and 2 [located at (1,1)] would be chosen. Because we want to maximize the sum of the 

weight magnitudes, this selection is not optimal. The optimal connection is given by 12 

[located at (3,2)], 9 [located at (1,3)], and 5 [located at (2,1)]. 

 

1. Upgraded Connection Constraint Algorithm for CCB and SB 
 

The proposed connection constraint algorithm for the CCB and SB is represented as 

follows:  

1) Choose the largest and next largest values (magnitudes) from those located in 

the different row and column of the weight matrix. 

2) Store the sum of the two largest weights. 
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3) Based on original weight matrix, generate a modified weight matrix by using zero 

instead of the largest weight. 

4) Repeat 1) and 2), and choose the largest and next largest weights based on the 

modified weight matrix. 

5) Store the sum of the two largest weights selected from 4). 

6) If the value in 2) exceeds that in 5), then the largest weight from 1) is chosen. 

Otherwise, if the value in 5) exceeds that in 2), the largest weight from 4) is 

chosen. 

7) If the value in 2) equals that in 5), then based on 2) and 5), including each next 

largest value, restore the sums of the largest weights, respectively, and go to 6). 

8) Continue this procedure until N weights have been selected. 

Figure 3.2 shows an algorithm flowchart for the proposed connection algorithm. 
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Figure 3.2: Algorithm flowchart of upgraded connection constraint algorithm for the 
CCB and SB. 
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2. Upgraded Connection Constraint Algorithm for MSB 
 

Although the upgraded connection constraint algorithm for the CCB and SB has 

better performance than the conventional algorithm, at the expense of an increase in 

the computational complexity. In order to improve the efficiency, an upgraded 

connection algorithm for the MSB adaptive algorithm is also presented. The proposed 

connection constraint algorithm for the MSB algorithm is summarized as follows:  

1) Choose 𝑁 largest weights (magnitudes) from each column of the weight vector, 

and save the 𝑖 (row index) of each largest weight. 

2) Compare the 𝑖 chosen previously. If there is not same value exist, then the 𝑁 

largest weights (magnitudes) selected form 1) are the solution. However, if the 

same value exists, go to next steps. 

3) Based on the first largest weight of 𝑁 largest weights selected from 1), search 

the corresponding adaptive weights using conventional algorithm for the MSB, 

and save the sum of the weight values as S1.   

4) Based on the second largest weight of 𝑁 largest weights selected from 1), 

search the corresponding adaptive weights using conventional algorithm, and 

store the sum of the weight values as S2. 

5) If S1 is greater than S2, then the adaptive weights from 3) are chosen. Otherwise, 

the adaptive weights from 4) are chosen. 

6) Continue this procedure until N weights have been selected. 

Figure 3.3 shows an algorithm flowchart for the proposed connection constraint 

algorithm for the MSB. 
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Figure 3.3: Algorithm flowchart of upgraded connection constraint algorithm for the 
MSB adaptive algorithm. 
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D. Computer Simulation 
 

Figures 3.4 and 3.5 compare the mean-square-error (MSE) obtained by averaging 

the squared error over 10,000 samples independent computer runs for the 

conventional algorithm and upgraded connection constraint algorithms, respectively. 

Observe that the dotted lines (MSE of proposed algorithms) are lower than the solid 

lines (MSE of conventional algorithm) for all matrix sizes of the switch, and both of the 

proposed connection constraint algorithms have better performance than the 

conventional algorithm. Also it can be easily observe that the proposed algorithm for 

the MSB converged faster than the proposed algorithm for the CCB and SB. 

 

 
Figure 3.4: MSE curves for conventional algorithm and proposed connection constraint 
algorithm for CCB and SB. 
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Figure 3.5: MSE curves for conventional algorithm and proposed connection constraint 
algorithm for MSB. 
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E. Conclusion 
 

The SRAF is highly flexible due to its ability to choose from a wide range of delay 

values. In order to verify accurate system identification, two upgraded connection 

algorithms that can choose the better input and output delays for implementing the 

connection constraints for the SRAF are described in this chapter.  

For implementing the proposed connection constraint algorithm for the CCB and SB, 

under the circumstance that the same values of summation of the weight magnitudes 

exist, based on the previous calculation, another largest weight has to be considered 

for choosing the better solution. Although the proposed connection algorithm for the 

CCB and SB has improved the accuracy of system identification, at the expense of an 

increase in the computational complexity. Also, the proposed connection algorithm for 

MSB has been investigated for better implementing the SRAF. The properties of the 

proposed connection algorithms were illustrated by computer simulation example. 
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IV. ADAPTIVE ALGORITHM BASED ON RLS 

FOR THE SB ALGORITHM 
 

A. Introduction 
 

The least-mean-square (LMS) algorithm and the recursive least-squares (RLS) 

algorithm [35] have established themselves as the principal tools for linear adaptive 

filtering [43]. While the LMS algorithm represents the simplest and most easily applied 

adaptive algorithm, the RLS algorithm represents increased complexity, computational 

cost, fidelity, and fast convergence rate. In performance, RLS approaches the Kalman 

filter [36], in adaptive filtering applications, at somewhat reduced required throughput in 

the signal processor. Recently, various theories have been written on a comparative 

evaluation of the tracking behaviors of the LMS and RLS algorithms. The convergence 

behaviors of both of these algorithms are now well understood [44]. Typically, the RLS 

algorithm has a faster rate of convergence than the LMS algorithm.  

In previous work [41], the cross-correlation-based (CCB) and system-based (SB) 

adaptive algorithms have focused on the LMS algorithm to compute the weight vector 

for choosing delay connections. In this chapter, the RLS adaptive algorithm is 

considered for the SB algorithm to improve the convergence rate of system 

identification.  
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B. RLS Adaptive Algorithm 
 

   Similar to the LMS algorithm, from which it can be derived, the RLS adaptive 

algorithm minimizes the total squared error between the desired signal and the output 

from the unknown system. An important feature of the RLS algorithm is that it utilizes 

information contained in the input data, extending back to the instant of time when the 

algorithm is initiated. Figure 4.1 shows the representation of the RLS adaptive 

algorithm. Figure 4.1(a) shows the block diagram of the RLS algorithm, and Fig. 4.1(b) 

depicts a signal-flow-graph representation of the RLS algorithm that complements the 

Figure 4.1(a). 

 

 
 

 
 

Figure 4.1: Response of the RLS algorithm: (a) block diagram; (b) signal-flow graph. 
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Where 𝐱(𝑘) is the tap-weight vector at time 𝑘, and e(𝑘) is a priori estimation error 

defined by  

 

e(𝑘) = 𝑑(𝑘) − 𝐰�𝑇(𝑘 − 1)𝐱(𝑘)                                                  (4.1) 

 

the inner product 𝐰�𝑇(𝑘 − 1)𝐱(𝑘) represents an estimate of the desired response 𝑑(𝑘). 

The RLS algorithm for computing the extended weight vector 𝐰� in (1.9) is given by  

 

𝐰�(𝑘) = 𝐰�(𝑘 − 1) + 𝐆(𝑘)𝑒(𝑘).                                                 (4.2) 

 

The vector 𝐆(𝑘) (size 𝑁 × 1) is referred to as the gain vector, defined by 

 

𝐆(𝑘) =
λ−1𝛃(𝑘 − 1)𝐱(𝑘)

1 + λ−1𝐱𝑇(𝑘)𝛃(𝑘 − 1)𝐱(𝑘)                                           (4.3) 

 

where matrix 𝛃(𝑘) (size 𝑁 × 𝑁) is referred to as the inverse correlation matrix, defined 

by  

 

𝛃(𝑘) = λ−1𝛃(𝑘 − 1) − λ−1𝐆(𝑘) 𝐱𝑇(𝑘)𝛃(𝑘 − 1).                             (4.4) 

 

The forgetting factor λ is a positive constant close to, but less than 1. When λ equals 

1, we have the ordinary method of least squares. The inverse of 1 – λ is, roughly 

speaking, a measure of the memory of the algorithm. 
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C. Computer Simulation 
 

Next, we present computer simulation results of the SB based on the LMS and RLS 

adaptive algorithms. Figures 4.2 and 4.3 show the impulse and frequency responses of 

the SB adaptive algorithm for white and non-white input signals based on the LMS 

algorithm, respectively. Also, the impulse and frequency responses of the SB adaptive  

 

 
Figure 4.2: Impulse response and frequency response of the SB adaptive system with 
64 nonzero coefficients for a white input signal based on the LMS algorithm. 

 

 
Figure 4.3: Impulse response and frequency response of the SB adaptive system with 
64 nonzero coefficients for a non-white input signal based on the LMS algorithm. 
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Figure 4.4: Impulse response and frequency response of the SB adaptive system with 
64 nonzero coefficients for a white input signal based on the RLS algorithm. 

 

 
Figure 4.5: Impulse response and frequency response of the SB adaptive system with 
64 nonzero coefficients for a non-white input signal based on the RLS algorithm. 

 

algorithm for white and non-white input signals based on the RLS algorithm are shown 

in Figures 4.4 and 4.5, respectively. Observe that the performance of the SB adaptive 

algorithm based on the RLS has a performance similar to that of based on the LMS 

algorithm. 
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Figure 4.6: LMS squared-error learning curves of the SB adaptive algorithm for white 
and non-white input signals. 

 

 
Figure 4.7: RLS squared-error learning curves of the SB adaptive algorithm for white 
and non-white input signals. 

 

Finally, we present computer simulation results of the LMS and RLS algorithms for 

the SB algorithm. For this computer simulation, the algorithms were run for 𝐿 = 5,000 

iterations, the step-size parameter was μ = 0.001, and the forgetting factor λ = 0.98. 

Figure 4.6 shows the trajectory of the LMS squared error for the SB adaptive algorithm 
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with both types of input signals, observing that the algorithm has converged by 

approximately sample 1500. Also, the trajectory of the RLS squared error for the SB 

adaptive algorithm with both types of input signals is shown in Figure 4.7. Observe that 

the algorithm has converged by approximately sample 100. From these figures, we 

observe that the convergence rate of the RLS algorithm is faster than the LMS 

algorithm. This improvement in performance, however, is achieved at the expense of a 

large increase in computational complexity. 
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D. Conclusion 
 

The RLS is an adaptive algorithm which recursively finds the filter coefficients that 

minimize a weighted linear least squares cost function relating to the input signals. This 

is similar to other algorithms such as the LMS that aim to reduce the mean square error. 

Compared to the LMS algorithm, the RLS approach offers faster convergence. 

However, this benefit comes at the expense of requiring more computations. In order to 

improve the convergence rate of the SB algorithm, the RLS algorithm was considered 

in this chapter. Also, the performance of the LMS and RLS algorithms for the SB 

algorithm were illustrated by computer simulation example. 
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V. CONCLUSION 
 

Due to MEMS technology, large optical switches can be efficiently implemented, 

thus broadening the range of possible applications. The SRAF is highly flexible due to 

its ability to choose from a wide range of delay values. In order to improve the 

performance of the sparse reconfigurable adaptive filter (SRAF), a MSB adaptive 

algorithm whose performance can be understood mathematically was investigated in 

this thesis. The main idea behind this method is to separately update each row or 

column vector of weight matrix using the LMS algorithm with the suitable input signal 

vector and intermediate desired response signal, which has been achieved by a 

specific structure of the input signals. Because of less calculation compared with 

conventional CCB and SB algorithms, the MSB algorithm is more efficient, and also 

has good performance for white and non-white input signals. The performance of the 

MSB adaptive algorithm was illustrated by a computer simulation example. 

The connection constraint algorithm for the CCB and SB adaptive algorithms 

considers the entire 𝑁 × 𝑁 weight matrix when selection a subset of 𝑁 values. The 

connection constraint algorithm for the MSB adaptive algorithm initially uses 𝑁 values 

and considers other values only if the current weights value matches previously chosen 

values. When the same values exist as computing the summation of the weight values, 

the previous connection algorithm based on sequentially choosing the maximum 

elements might not work perfectly. In order to ensure accurate system identification, 

two upgraded connection algorithms that can choose the best input and output delay 

values for implementing the connection constraints for the SRAF is described in this 
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thesis. The proposed connection constraint algorithm for the CCB and SB is more 

accurate than the conventional algorithm, but at the expense of an increase in 

computational complexity; in order to improve the efficiency, another proposed 

connection constraint algorithm for the MSB was also proposed. 

In order to improve the convergence rate of the SB algorithm, an adaptive algorithm 

based on RLS was discussed. The convergence rate of the RLS algorithm is much 

faster than the LMS algorithm. The improvement in performance, however, is achieved 

at the cost of high computational complexity.  
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