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ABSTRACT

A study on the design of the lightweight bumper backbeam

consisting of functional plastics

Kim Se Hun

Advisor : Prof. Ahn Dong-Gyu, Ph. D

Dept. of Mechanical Engineering,

Graduate School of Chosun University

Recently, the demand of eco-friendly products with high energy efficiency and low

environmental impact has increased to cope with the energy depletion and environmental

regulation. Transport vehicle industries begins to make an effort to develop a lightweight

component, which satisfies theconsisting of requirements of rigidity, strength and

crashworthiness, for the reduction of overall weight and the improvement of the energy

consumption rate. Due to these trends, the direction of the development of the automotive

bumper is changed from the metal bumper to the plastic bumper. The objective of this

thesis is to obtain a proper design of the lightweight bumper backbeam consisting of

functional plastics for the automotive. Thermoplastic poly olefin (TPO), poly propylene with

20 % of glassfiber (PP( )) and glassfiber reinforced mat thermoplastic (GMT) were chosenα

as alternative materials of the bumper backbeam. In order to obtain mechanical properties

and strain-stress relationships with strain rate effects, tensile and high-speed tensile tests

were performed. Preliminary impact characteristics, including force-deflection curves,

deformation behaviours, energy absorption rates, failures, and fractures, of the alternative

materials were investigated through the drop impact tests for the specimen. The results of

the drop impact tests showed that the TPO material has a comparable impact property to

the GMT material. In order to obtain a proper design of the bumper backbeam,

three-dimensional finite element analysis was performed using a commercial code of

ABAQUS V6.5 explicit. Collision test conditions of US Federal Motor Vehicle Safety



Standard (FMVSS, pendulum collision type) were applied to the FE model. The results of

the FE analysis for the FMVSS condition showed that the impact characteristics of the

backbeam can be improved as front and rear parts of the backbeam are consisted of TPO

and TPO plastic materials, respectively. In addition, it was noted that influence of the ribs

in the longitudinal direction on the impact performance is higher than that of the ribs in

the width direction. Using these results, alternative designs of the ribs formation (five

types) for the backbeam were estimated. The repeated FE analyses for the alternative

designs of the ribs formation were carried out. From the results of the FE analysis, the

impact characteristics of the backbeam for alternative designs of the ribs formation were

compared from the viewpoints of the energy absorption characteristics, strain-stress

distributions, intrusion, and deflections. Using this comparison results, a proper rib design

of the backbeam was estimated. The collision tests for the FMVSS were carried out to

verify the estimated deisgn of the bumper backbeam. The specimen was manufactured from

the injection molding of front and rear parts and the vibration welding of the two parts.

The results of the collision tests showed that the designed bumper backbeam satisfies the

regulation of FMVSS. From this results, it was shown that the proposed design of the

bumper backbeam can be applied to the development of the lightweight bumper backbeam.

In the future, additional researches, including the FE analyses and the collision tests for the

regulation of Insurance Institute for Highway Safety (IIHS, barrier collision type), should be

carried out to commercialize the proposed design of the bumper backbeam.
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Fig. 2 Components of Bumper system
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Fig. 3 Research for flowchart
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1.

(Drop weight)

Fig. 4

Fig. 4 Experimental set-up of drop impact test
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(Load Cell)

LVDT (Linear Variable Differential Transformer)

LVDT

Fig. 5

0.01 Fig.

5

Fig. 5 Data acquirement system of impact tests

Fig. 6

10,000
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Fig. 6 High speed camera system to measure the collision between the impact head and

specimen
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2.

(Stretching)

Table 1 Fig. 4

Fig. 7 Schematics and experimental devices for stretching type of impact test
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Fig. 7

11.1 kg 20 mm, 40 mm 2

TPO TPO + α

Table 1 Design of specimen for stretching type of impact test

Specimen Width (mm) Length (mm) Thickness (mm) Weight (g)

TPO 120 120 6.05 86.7

PP( )α 120 120 5.60 83.8

GMT 120 120 6.08 114.4
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3.

(Load Cell) LVDT

(1)

Fig. 8 Cumulative absorption energy

   ×    

×  ×    (1)

  ×   

×  ×   

※  

(2)

  (3)

(2)
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   (4)

 


×  (5)
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1.

α

Fig. 9 Specimens of functional plastics
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Table 2 Failure mode of specimen for stretching type of impact test

Specimen GMT TPO PP( )α

D = 20 mm 9.79 J crack 5.44 J whitening 1.09 J whitening

D = 40 mm 10.88 J crack 27.20 J whitening 1.09 J whitening

Fig. 10 Deformed shape of functional plastic panels for the case of stretching boundary

conditions

α
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α

Fig. 11 SEM image of PP( ) (Polypropylene + Glassfiber 20%)α
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2.

Table 3 Results of impact test of functional plastic panel and that of GMT panel for the

case of stretching boundary conditions (D=40mm)

Specimen
H

(cm)

Ein

(J)

Eab,max

(J)

χ

(%)

Pmax

(N)

δmax

(mm)

Er

(J)

GMT

13 14.2 7.30 51.6 4,508.0 5.35 10.5

65 70.8 53.63 75.8 10,054.8 11.07 22.8

150 163.3 134.12 82.1 12,642.0 15.73 29.2

TPO

13 14.2 4.79 33.9 2,254.0 7.79 8.8

65 70.8 52.45 74.1 4,939.2 17.47 13.8

150 163.3 140.90 86.3 7,222.6 26.80 17.5

PP( )α

13 14.2 10.49 74.1 2,812.6 6.04 5.8

65 70.8 43.27 - 4,468.8 - -
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Fig. 12 Results of impact test of functional plastic panel and that of GMT panel for the

case of stretching boundary conditions (P-δ curve)

α
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Fig. 13 Comparison of the absorbed impact energy and energy absorption rate for GMT

panel and that for functional plastics

α

α
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Fig. 14 Force-time curves for the GMT panel and functional plastic panels

α

α
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Fig. 15 Variation of specific force according to impact energy
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1 3

1.

(Pendulum)

.

(Explicit time integration finite element method)

.

Fig. 16 Modeling of pendulum
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,

. ,

,

.

CATIA V5 Fig. 16

,

.

CATIA V5 2

, CATIA V5

(Preprocessing) .

Fig. 17 ,

ABAQUS V6.5 .

Fig. 17 FE model of the impact analysis for bumper backbeam

4 (4-node linear element)

, , Fig. 18

4 (shell) (4-node linear element) .
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Fig. 18 FE model of the impact analysis for pendulum

,

,

.

Table 4 .

Table 4 Number of nodes and elements of three-dimensional finite element analysis

Bumper Backbeam

(EA)

Bumper Stay

(EA)

Bumper Frame

(EA)

Pendulum

(EA)

Node 22,444 4,998 1,986 276

Element 70,006 13,920 1,990 242

8 5 3 CPU 3.16 GHz

2 (Intel Core2 Duo CPU of 3.16GHz) RAM 3.25 GB

, 55 40 .
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2.

Fig. 19 .

,

Z .

1.6 ton ,

.

Fig. 19 Boundary conditions of pendulum impact test

,

(Multi Point Constraint)

, .
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3.

. TPO (Thermoplastic Poly Olefin)

20 % (PP( )) ,α

1,040 kg/mm3, 1,050 kg/mm3 .

Table 5 , , .

Table 5 Material properties of TPO and PP( )α

TPO PP( )α

E (GPa) 3.2 3.5

υ 0.404 0.465

σt (MPa) 25.54 82.21

ɛt 0.3379 0.0685

,

TPO

PP( )α

.

Steel

Johnson-Cook ,

, Fig. 20 Fig. 21

ABAQUS .
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Fig. 20 Results of high speed tensile tests for TPO

Fig. 21 Results of high speed tensile tests for PP( )α
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,

.

. ( tΔ s)

(Cd) (6) . 2

mm , (6)

1.09 × 10
-6

1.05 × 10
-6 kg/sec

.

∆ 












(6)
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4.

.

,

(NHTSA)

(FMVSS 49CFR) Part 581 CMVSS 215, EC R42

.

(FMVSS

49CFR) 54 .

FMVSS

.

Table. 6 .

Table 6 Impact regulations conditions

FMVSS 49 CFR

Impactor Pendulum

쇼Impact Veloci
2.5 mile/h

(= 4.02 km/h)

Impact Height
18 inch

(= 457.2 mm)
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2 3

1.

,

/ .

Intrusion

Deflection . Intrusion

, Deflection

.

101 / 47 mm

.

. TPO

20 % PP( )α

FMVSS PART 571

.

2 PART TPO PP( )α

Fig. 22 4 .

Fig. 22 Design of bumper backbeam according to material combinations
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Table 7 Result of FE analysis according to material combinations

Ein

(KJ)

Eab,max

(KJ)

χ

(%)

Pmax
(KN)

δI

(mm)

δD

(mm)

TPO+TPO 0.85 0.74 86.7 30.30 47.69 50.09

PP( )+TPOα 0.85 0.74 86.7 35.56 41.60 43.63

TPO+PP( )α 0.85 0.69 80.9 39.73 37.68 38.89

PP( )+PP( )α α 0.85 0.67 78.5 49.45 34.76 33.01

(a) Deformation according to material combinations
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(b) P-δI curve & P-t curve

(c) Energy absorption characteristics

Fig. 23 Comparison of the force-intrusion and the energy-intrusion curves according to

material combinations
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FMVSS PART 571

Table 7 Fig. 23 . Table 7

, , , ,

. (Ein) (7) .

   (7)

Table 7 Fig. 23 (a) PP( )α

33.5 %

. ,

. TPO PP( )α

.

Fig. 23 (b) PP( ) 49.45 KNα

4 . TPO

30.30 KN

.

Fig. 23 (C) 2

TPO PP( )α

. ,

.
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Fig. 24 Variation of effective stress distributions for material combinations

Fig. 25 Variation of principal strain distributions for different material combinations

Fig. 24 Fig. 25 TPO PP( )α

.

240

mm .
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.

,

.

PP( )α

.

, PP( )α

. PP( )α

.

TPO

.
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2.

TPO .

/

Fig. 26

, Table 8 .

Fig. 26 Design of bumper backbeam according to section shapes

ABAQUS V6.5 ,

, ,

.
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Table 8 Number of nodes and elements of three-dimensional finite element analysis

Bumper Backbeam

(EA)

Bumper Stay

(EA)

Bumper Frame

(EA)

Pendulum

(EA)

OPEN TYPE
Node 22,444 4,998 1,986 276

Element 70,006 13,920 1,990 242

CLOSE TYPE
Node 21,509 4,998 1,986 276

Element 66,865 13,920 1,990 242

3 , ,

, , Table 9 .

Table 9 Result of FE analysis according to section shapes

Ein

(KJ)

Eab,max

(KJ)

χ

(%)

Pmax
(KN)

δI

(mm)

δD

(mm)

OPEN TYPE 0.85 0.74 86.7 30.30 47.69 50.09

CLOSE TYPE 0.85 0.74 86.7 31.50 45.89 49.32

Table 9

. ,

,

Fig. 28

.
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(a) Force - intrusion curves (b) Force - time curves

Fig. 27 Influence of sectional shapes on the force-intrusion curves and force-time curves of

bumper backbeam

Table 9 Fig. 27

2.4 KN .

1.1 mm / 2.4 mm

. Fig 28 (a) (b)

,

, Fig.

28

.
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Fig. 28 Contact area between the pendulum and bumper backbeam

Fig. 29 Energy absorption characteristics

Table 9 Fig. 29

.

.

.

0.74 KJ

,

.
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Fig. 30 Variation of effective stress distributions for different section shapes

Fig. 31 Variation of principle strain distributions for different section shapes

Fig. 30 Fig. 31

.

. 1

,

.

,

.
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3. /

2

17

.

Fig. 32 .

Fig. 32 Design of bumper backbeam according to ribs direction

FMVSS PART 571

, Table 10

.
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Table 10 Number of nodes and elements of three-dimensional finite element analysis

Backbeam

(EA)

Stay

(EA)

Frame

(EA)

Pendulum

(EA)

VERTICAL TYPE
Node 15,322 4,998 1,986 276

Element 46,076 13,920 1,990 242

HORIZONTAL TYPE
Node 20,081 4,998 1,986 276

Element 59,631 13,920 1,990 242

Table 11 Results of FE analysis according to ribs direction

Ein

(KJ)

Eab,max

(KJ)

χ

(%)

Pmax
(KN)

δI

(mm)

δD

(mm)

VERTICAL TYPE 0.85 0.74 86.86 27.70 52.39 55.33

HORIZONTAL TYPE 0.85 0.74 86.07 32.79 44.34 38.58

3 Table 11 ,

, , ,

.

0.74 KJ ,

8 mm

.

. ,

.
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(a) Force - intrusion curves (b) Force - time curves

Fig. 33 Influence of ribs direction on the force-intrusion curves and force-time curves of

bumper backbeam

Table 11 Fig. 33

. Fig. 33 (a)

10%

. 14 %

. Fig. 33 (b)

,

.
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Fig. 34 A absorbed energy according to ribs direction

Table 9 Fig. 34

. 0.02

KJ

0.5 % .

.

Fig. 35 Variation of effective stress distributions for ribs direction
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Fig. 36 Variation of principal strain distributions for ribs direction

Fig. 35 Fig. 36

.

.

.
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4.

, , .

TPO

, ,

Fig 37 5 ..

Fig. 37 Design of the rib formation
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Fig.38 . CASE 1

·

CASE 2 3 % .

Table 12 Results of FE analysis according to ribs formation

Ein

(KJ)

Eab,max

(KJ)

χ

(%)

Pmax
(KN)

δI

(mm)

δD

(mm)

CASE 1 0.85 0.67 78.34 30.16 49.22 53.13

CASE 2 0.85 0.66 77.34 31.55 48.53 53.12

CASE 3 0.85 0.67 78.63 30.29 45.89 49.32

CASE 4 0.85 0.65 76.41 33.56 44.90 48.59

CASE 5 0.85 0.66 77.69 33.87 43.89 47.38

(a) Force - intrusion curves (b) Force - time curves

Fig. 38 Influence of rib formation on the force-intrusion curves and force-time curves of

bumper backbeam
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Table 12 Fig. 38

.

. 3 Fig. 38

. ,

.

Fig. 39 Absorbed energy according to rib formation

Fig. 39

. CASE 1

CASE 5

0.01 KJ .

.
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Fig. 40 Variation of effective stress distributions for rib formation

Fig. 41 Variation of principal strain distributions for rib formation

Fig. 40 Fig. 41

. CASE 1 CASE 2 CASE 3
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1

1.

3 Fig. 42

.

.

Fig. 42 Final design for bumper backbeam

. SM45C ,

Fig. 43 (a) NC , (b) , (c) , (d)

. Fig. 43

.
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Fig. 43 Manufacturing process of injection mould

Fig. 44 Fabricated mould set
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Fig. 45 850 ton

. 6 , 5 ,

250 .

Fig. 46

.

Fig. 45 Injecton molding apparatus

Fig. 46 Vibration welding and final product



- 53 -

2. Pendulum

(FMVSS 49CFR) .

Fig. 47

.

Fig. 47 Experimental devices for low-speed frontal collision test

1,368 kg

.
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Fig. 48

457 mm

.

.

Fig. 48 Experimental set-up of low-speed frontal collision test

1,368

kg , 2.5 mile/h .
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3. Pendulum /

3

(FMVSS 49CFR)

. Table 13 Fig. 49

.

Table 13 Results of low-speed frontal collision test

V

(km/h)

mR

(kg)

δI

(mm)

δD

(mm)

Experiment 10.1 1,368 30.0 25.0

Analysis 10.0 1,600 46.4 50.3

Fig. 49 Comparison of experiment and those of FE analysis

35 % ,

50 % .

1,710 kg 80 %
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