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1. Introduction

One of the basic problems in the differential geometry is to study the
set of curvature funtions over a given manifold.

The well-known problem in differential geometry is whether a given
metric on a compact Riemannian manifold is necessarily pointwise con-
formal to some metric with constant scalar curvature or not.

In a recent study [14, 15, 16], Leung has studied the problem of scalar
curvature functions on Riemannian warped product manifolds and ob-
tained partial results about the existence and nonexistence of Riemann-
ian warped metric with some prescribed scalar curvature function. In
this paper, we study the existence and nonexistence of Lorentzian warped
metric with prescribed scalar curvature functions on some Lorentzian
warped product manifolds.

By the results of Kazdan and Warner [10, 11, 12], if N is a compact
Riemannian n-manifold without boundary n > 3 , then N belongs to
one of the following three categories:

(A) A smooth function on N is the scalar curvature of some Reiman-
nian metric on N if and only if the function is negative somewhere.

(B) A smooth function on N is the scalar curvature of some Reiman-
2



nian metric on N if and only if the function is either identically zero or
strictly negative somewhere.

(C) Any smooth function on N is the scalar curvature of some Reiman-
nian metric on N.

This completely answers the question of which smooth functions are
scalar curvatures of Riemannian metrics on a compact manifold N.

In [10, 11, 12], Kazdan and Warner also showed that there exists
some obstruction of a Riemannian metric with positive scalar curvature
(or zero scalar curvature) on a compact manifold.

For noncompact Riemannian manifolds, many important works have
been done on the question how to determine which smooth functions are
scalar curvature of complete Riemannian metrics on an open manifold
[3, 6, 7, 13, 14]. Results of Gromov and Lawson [9] show that some open
manifolds cannot carry complete Riemannian metrics of positive scalar
curvature, for example, weakly enlargeable manifolds.

Furthermore, they show that some open manifolds cannot even admit
complete Riemannian metrics with scalar curvatures uniformly positive
outside a compact set and with Ricci curvatures bounded [9], [13,p.322].

On the other hand, it is well known that each open manifold of di-

mension bigger than 2 admits a complete Riemannian metric of constant

3



negative scalar curvature [7]. It follows from the results of Aviles and
McOwen [3] that any bounded negative function on an open manifold of
dimension bigger than 2 is the scalar curvature of a complete Riemannian
metric.

In [14,15], the author considered the scalar curvature of some Rie-
mannian warped product and its conformal deformation of warped prod-
uct metric. And also in [8], the authors considered the existence of a
nonconstant warping function on a Lorentzian warped product manifold
such that the resulting warped product metric produces the constant
scalar curvature when the fiber manifold has the constant scalar curva-
ture.

Ironically, even though there exists some obstruction of positive or
zero scalar curvature on a Riemannian manifolds, results in [8], say,
Theorem 3.1, Theorem 3.5 and Theorem 3.7 of [8] show that there ex-
ists no obstruction of positive scalar curvature on a Lorentzian warped
product manifold, but there may exist some obstruction of negative or
zero scalar curvature.

In this paper, when N is a compact Riemannian manifold, we con-
sider the nonexistence of conformal deformations on a warped product

manifold M = (a,00) x¢ N with specific scalar curvatures, where a is
4



a positive constant. That is, it is shown that if the fiber manifold N
belongs to class (A) then M does not admit a Lorentzian metric with

some positive scalar curvature near the end outside a compact set.



2. Preliminaries on a warped product manifold

First of all, in order to induce a partial differential equation, we
need some definitions of connections, curvatures and some results about

warped product manifolds.

Definition 2.1. Let X(M) denote the set of all smooth vector fields
defined on M, and let (M) denote the ring of all smooth real-valued

functions on M. A connection V on a smooth manifold M is a function

V: X(M) x X(M) — X(M)

such that

(D1) Vy W is Q-linear in V.

(D2) VyW is R-linear in W.

(D3) Vy(fW) = (VW + fVyW for f e I(M).

(D4) [V,W]=VyW —Vy V.

(D5) X < VW >=< VxV.W > 4+ < V,VxW > for all X, VW €

x(M).

If V satisfies axioms (D1) ~ (D3), then VW is called the covariant

derivative of W with respect to V' for the connection V. If V satisfies
6



axioms (D4) ~ (D5), then V is called the Levi - Civita connection of M,
which is characterized by the Koszul formula ([17]).

As indicated above, (D4) is the condition that V is torsion free, and
(D5) is the condition that the connection V is compatible with metric
g.

For semi-Riemannian manifolds, the connection coefficients are given

by

1 agia agz 1 aga j
2.1 Ik =2 ak L Y J
(2.1) o2 2319 < Jxi  Ox@ * Ox* )

a=

where (g*) represents the (2,0) tensor defined by

Zn:gmgaj = (5; for 1<i,j5<n.

a=1
Definition 2.2. The curvature tensor of the connention V is a linear
transformation valued tensor R in Hom(X(M ), X(M)) defined by :

R(X,Y)=VxVy —VyVx — Vixy].
Thus, for Z € X(M),
R(X,Y)Z =VxVyZ —VyVxZ - Vixy 2.

It is well-known that R(X,Y)Z at p depends only upon the values of

X,Y, and Z at p ([17]).



If w € T;(M) is a cotangent vector at p and z,y,z € T,(M) are

tangent vectors at P, then one defines
R(w,z,y,2) = (w, R(X,Y)Z) =w(R(X,Y)Z)

for X,Y, and Z smooth vector fields extending x,y, and z, respectively.
The curvature tensor R is a (1,3) tensor field which is given in local
coordinates by
R:' Z kma ® dr! ® da* @ dz™
i,7,k,m=1

7: .
where the curvature components R, are given by

. or: . o1 . n . .
7 _ mj kj a 7 a 7
jkm — oxk - ox™ + § :(Fm] ka — ‘tkj ma)'

a=1

Notice that

R(X,Y)Z =-R(Y,X)Z, Rw,X,Y,Z)=-Rw,Y,X,2)

and R;km = R;mk
Furthermore, if X = Eg;?, Y =3 8;?, Z = Eg;? and w = Yw;dx’
then
R(X,Y)Z = Z L ZIXRy™m 0
’ ox’

‘7]7k7m 1

8



and

Rw,X,Y,Z)= Y R, wZ Xy

jkm
i,j,k,m:l
i _0 o) o) i
Consequently, one has R(dz", 5%, goms 557) = R

The local representations g/ and g;; may be used to raise and lower
indices.

For example, if the upper index of the curvature tensor is lowered,
one obtains the components of the Riemann-Christoffel tensor which is

also known as the covariant curvature tensor

n
a
Rz’jkm:E Gai 5o, -
a=1

Alternatively, one may define the Riemann-Christoffel tensor R as the

(0, 4) tensor such that

RW,Z,X,Y) = g(W,R(X,Y)Z).

Some standard curvature identities satisfied by the components of this

tensor are
Rijkm = kaij = _Rjikm = _Rijmk
and

Rijim + Rikmj + Rimjr = 0.
9



The trace of the curvature tensor is the Ricci curvature, a symmetric
(0, 2) tensor. For each p € M, the Ricci curvature may be interpreted
as a symmetric bilinear map Ric, : T,M x T,M — R. To evaluate

Ric(v,w), let ey, ez, -, e, be an orthonormal basis for T, M. Then

n

Ric(v,w) = Z g(ei,e)g(R(e;, w)v, e;).

i=1
or equivalently,

n

Ric(v,w) = Z g(ei,e;)R(e;, v, e;,w).

=1

One may express v and w in the natural basis as v = > v° 68i and
xr

w=> w 821- and then write

Ric(v,w) = Z Rijv'w?

Q=1
where
n
(22) RZJ = ZR?aj'
a=1

Definition 2.3. A semi-Riemannian metric g for a manifold M is a
smooth symmetric tensosr field of type (0,2) on M which assign to each
point p € M a nondegenerate inner product g, : T,(M) x T,(M) — R

of signature (—, -+, —,+,--- ,+).
10



Here nondegenerate means that for each nontrivial vector v € T,,(M)
there is some w € T}, (M) such that g,(v,w) # 0. If g has components g;;
in local coordinates, then the nondegeneracy assumption is equivalent to

the condition that the determinant of the matrix (g;;) is nonzero.

In local coordinates (U, (x!,22,--- ,2™)) on M, the metric g is repre-

sented by
90 = 3 gy (@)de’ @ do?
i,j=1
with

9ij = gji and  det(gi;) # 0.

If g has s negative eigenvalues and » = n — s positive eigenvalues,
then the signature of g will be denoted by (s,r). For each fixed p € M,
there exist local coordinates (U, (2!, 22, -+ ,2™)) such that g, = g|T,(M)
can be represented as the diagonal matrix diag {—,---,—,+, - ,+}.
For each semi-Riemannian manifold (M, g) there is an associated semi-
Riemannian manifold (M, —g) obtained by replacing g with —g. Aside
from some minor changes in sign, there is no essential difference between
(M,g) and (M,—g). Thus, results for spaces of signature (s,r) may
always be translated into corresponding results for spaces of signature

(r,s) by appropriate sign changes and inequality reversals.

11



Definition 2.4. The trace of the Ricci curvature is the scalar curvature

7. That is, S = 77" _| Rijg".
Thus if ey, ez, -+ , e, is an orthonormal basis of 1}, M, one has

T=R= Zg(ei, e;)Ric(e;, e;).

=1

The gradient and Hessian are defined for semi-Riemannian manifolds
just as for Riemannian manifolds. If f : M — R is a smooth function,
then df is a (0, 1) tensor field (i.e., one-form) on M, and grad f is the

(1,0) tensor field (i.e., vector field) which corresponds to df. Thus,

Y(f)=df(Y) = g(grad f,Y)

for an arbitrary vector field Y. In local coordinates (U, (z!,22,--- ,2™)),

the vector field grad f is represented by

t L Of D
prm— ZJ
grad f= 3 9 5

=1

The Hessian H/ is defined to be the second covariant differential of

HI =V (Vf).

For a given f € (M), the Hessian H/ is a symmetric (0,2) tensor field

which is related to the gradient of f through the formula

Hf(X7Y) = g(vx(grad f)aY)
12



for arbitrary vector fields X and Y.

Definition 2.5. (Laplacian) The Laplacian of f is defined to be the
divergence of the gradient of f. That is, Af = div (grad f). The
Laplacian in a local chart can be written as follows:
Ap = Vi(g"V;p)
= 0,(9"7050) + g™ 00T,
= |91 20ilg"7 /1910, 2],

because I, = 9 logr/g| ([2,17]).

Definition 2.6. A tangent vector v € T),(M) is classified as timelike,
nonspacelike, null or spacelike if g(v, v) is negative, nonpositive, zero, or
positive, respectively:

(A) g(v,v) <0 (timelike).

(B) g(v,v) <0 (nonspacelike or causal).

(C) g(v,v) =0 (null or lightlike).

(D) g(v,v) > 0 (spacelike).

The set of all null vectors in 7},(M) is called the nullcone at p € M

null vectors are also said to be lightlike.
13



A Lorentzian manifold is a semi-Riemannian manifold (M, g) of sig-
nature (1,n — 1) [i.e.,(—,+, -+ ,+)]. At each point p € M the induced
metric on the tangent space is Minkowskian. Each point of a Lorentzian
manifold has timelike, null, and spacelike tangent vectors. A smooth
curve is said to be timelike, null, or spacelike if its tangent vectors are
always timelike, null, or spacelike, respectively.

A timelik curve in a Lorentzian manifold corresponds to the path of an
observer moving at less than the speed of light. Null curves correspond
to moving at the speed of light, and spacelike curves correspond to the
geometric equivalent of moving faster than light, spacelike curves are of

clear geometric interest.

Definition 2.7. A Lorentzian manifold (M, g) is a connected smooth
manifold of dimension > 2 with a countable basis together with a smooth

Lorentzian metric g of signature (—, 4+, +,+, -+ ,+) ([4]).

Definition 2.8. A vector field X on M is timelike if g(X(p), X(p)) <0
at all points of p € M. A Lorentzian manifold with a given timelike
vector field X is said to be timeoriented by X. A space-time is a time

oriented Lorentzian manifold.

14



Theorem 2.9. ([2]) Let (M,g) be a semi-Riemannian manifold with
scalar curvature R. Let g’ = e/ g be a conformal metric with f € C°(M)

and R’ be a scalar curvature of ¢'. Then R’ is given by

(n—1)(n—2)

R=e/l [R+(n—1)Af~— 1

IV FI].

Proof. By equation (2.1), if F;g and ng denote the Christoffel symbols

relating to ¢’ and g respectively:

/ 1
Fié‘ - Féj =3 (95 0i f + gri0j f — GijOn f] g™

1
3 (650, f + 610, f — 9i;V' f] .

According to equation (2.2),

/ / n—2 n—2
- 5 <_Af + 92 ’v.ﬂ ) gzg
SO
—1 -2
R o=e ' [R+(n—1)vgf— (n {4(” )vvavf].

If we consider the conformal deformation in the form ¢’ = goﬁ (with

p € C® ¢ > 0), the scalar curvature R’ satisfies the equation:

(23)  4((n—1)/(n—2))Ap + Rp + R/ =g,
15



where Agp =V'V,¢.
So Yamabe problem is equivalent to solve the equation (2.3) with

constant R’, and the solution ¢ must be smooth and strictly positive

([1, 19]).

We briefly recall some results on warped product manifolds. Complete
details may be found in ([3]), or ([17]). On a semi-Riemannian product
manifold B x F', let w and o be the projections of B x F onto B and F,

respectively, and let f > 0 be a smooth function on B.

Definition 2.10. The warped product manifold M = B x; F' is the

product manifold M = B x F furnished with metric tensor

g=7"(gp)+ (fom)o*(gr)

where gp and gg are metric tensors of B and F', respectively. In other

words, if v is tangent to M at (p,q), then

9(v,v) = gp(dr(v), dr(v)) + f(p)gr(do(v), do(v)).

Here B is called the base manifold of M and F the fiber manifold

([17]).
16



Remark 2.11. Some well known elementary properties of the warped

product manifold M = B X F' are as follows ;

(1) For each g € F', the map 7|,-1(4)=Bx4 IS an isometry onto B.

(2) For each p € B, the map o|,-1(p)=pxr is positive homothetic

onto F' with scale factor \/ﬁ.

(3) For each (p,q) € M, the horizontal leaf B x ¢ and the vertical
fiber p x F' are orthogonal at (p, q).

(4) The horizontal leaf 0= 1(¢) = B x ¢ is a totally geodesic sub-
manifold of M and the vertical fiber 7=1(p) = p x F' is a totally
umbilic submanifold of M.

(5) If ¢ is an isometry of F', then 1 x ¢ is an isometry of M, and
if ¢ is an isometry of B such that f = f o), then ¢ x 1 is an

isometry of M.

Recall that vectors tangent to leaves are called horizontal and vector
tangent to fibers are called vertical. From now on, we will often use a

natural identification
Tip,g)(B x5 F) =T, q)(Bx F)2T,B xT,F.

The decomposition of vectors into horizontal and vertical parts play

a role in our proofs. If X is a vector field on B, we define X at (p,q)
17



by setting X (p,q) = (X,,0,). Then X is m-related to X and o-related
to the zero vector field on F. Similarly, if Y is a vector field on F, Y is

defined by Y (p,q) = (0,, Y,).

Lemma 2.12. If h is a smooth function on B, then the gradient of the

lift hom of h to M 1is the lift to M of gradient of h on B.

Proof. We must show that grad (h o m) is horizonal and m-related to

grad h on B. If v is vertical tangent vector to M, then

(grad (hom),v) =v(homw)=dr(v)h =0, since dm=0.

Thus grad (h o 7) is horizonal. If x is horizonal,
gldr(grad (h o)), dn(x)) = g(grad (hom),x)
=x(hom)
=dn(x)h
= g(grad h,dr(x)).

Hence at each point, dr(grad (h o)) = grad h. |

We denote the metric g by <,>. In view of Remark 2.11 (1) and

Lemma 2.12, we may also denote the metric gg by <,>. The metric gp

will be denoted by (,).
18



In view of Lemma 2.12, we simplify the notations by writing h for
hom and grad (h) for grad (h o 7). For a covariant tensor A on B, its
lift A to M is just its pullback 7*(A) under the projection 7 : M — B.
That is, if A is a (1,s)-tensor, and if vi,v2,--- ,vs € T{; g (M) then
Avy, -+ ,vs) = A(dm(vy), -+ ,dr(vs)) € Tp(B). Hence if vy, is vertical,
then A = 0 on B. For example, if f is a smooth function on B, the lift
to M of the Hessian of f is also denoted by H/. This agrees with the

Hessian of the lift fom generally only on horizontal vectors. For detailed

computations, see Lemma 5.1 in ([17]).

In order to induce the d’Alembertian for M = B x ¢ F', we will consider
the general warped product (B X ¢ F, g) where g = 7*(gp)+(fom)o*(gr),
(F, gr) is Riemannian and (B, gg) is equipped with a metric of signature
(—,+,---,+). Let V! denote the Levi-Civita connection for (B, gg)
and V2 denote the Levi-Civita connection for (F,gr). Recall that the

connection V for (B X F, g) is related to the metric g by the formula
29 (VxY,2)=Xg (Y, 2)+Yyg (X, Z) - Zg (X,Y)

+g ([X,Y],Z) -9 ([X,Z],Y) -9 ([YvZ]aX)‘

Using this formula and setting ¢ = Inf, we obtain the following formula

for V for vector fields X = (X;,0) + (0, X2) and ¥ = (Y7,0) + (0, Y3):

(2.4) VxY =Vi Y+ V5, Ye
19



+%{X1(¢)Yz +Y1(0) Xz — g (X2, Y2) grad ¢}

Here grad ® denotes the gradient of the function ® on (B, gp) and we are
identifying the vector (V, Y1|p) € T,(B) with the vector (Vi Y1|p,04) €

Tp,q)(B x F), and so on.

Now, we will calculate the d’Alembertian for Lorentzian warped prod-
ucts using the method of separation of variables. From now on, we refer
the results in [5]. Recall that if is a semi-Riemannian manifold and
® : M — R is a smooth function, then the symmetric (0,2) Hessian

tensor Hess(®) associated to ® is given by
(2.5) Hess(®)(z,y) = g (Vo grad @,y)

for any tangent vectors x,y € T,M. The d’Alembertian operator U :

C>*(M,R) — C*°(M,R) may then be defined by setting

(2.6) O® = tr o Hess(®)
or in local coordinates (U, z!, -+, a"):

9 96
27 |:| — 71/2—. 1/2 U—. .
(2.7 o=l (I 2 02

It may be verified that for ¢1, ¢ € C*°(M,R)

(2.8) O(¢1 - ¢2) = ¢10¢2 + 29 (grad ¢1, grad ¢2) + g2l
20



We now restrict our attention to Lorentzian warped products M =
(B x F, g). Recall that 7 : B x F'— B and o : B x F' — F' denote the
projection maps given by 7(p,q) = p and o(p, q) = g, respectively. We
will use the isomorphism T\, oy (B x F') = T, B&T, F to decompose vector
fields X on M as X = (X3, X2). Also since we wish to use the method
of separation of variables, we will fix smooth functions ¢; : B — R and
¢o : FF — R and set

® = (¢10m)(¢200),

ie., ®(p,q) = ¢1(p)92(q) for all (p,q) € M. Letting grad ®, gradp ¢1
and gradp ¢2 denote the gradient vector fields on (M, g), (B,gp) and

(F, gr) respectively, it follows from the warped product formula that

(2.9) grad (¢1 o )(p, q) = (gradp ¢1(p),04)
and

1
(2.10) grad (¢200)(p,q) = (0, m gradp ¢2(q))

where 0, and 0, denote the zero tangent vectors of T), B and T, F respec-
tively. We will let V, V! and V2 denote the Levi-Civita connections of
(M,g), (B,gp) and (F,gr) respectively. As an aid to calculating 1P,

we consider a (1,1) tensor field

Hg : T(M) x T(M)
21



given by:
(2.11) Hg(€) = Ve grad @
from which it follows using (2.5) that

(2.12) Hess (®) (£1,€2) = g (Ha(&1),&2)

for all £1,82 € T(p,q)M. The following proposition may now be estab-

lished using (2.4).

Proposition 2.13. Let { = (v,w) € T(p, o(M). Then,

Hopor(€) = ((Hor(0), 57 sradds 60l )
and
(2.13)
= _w(¢2) ra L w) — v(f) ra
H¢2on(€)—< 270 df(p),f(p)H¢2( ) TOIER dp ¢z(Q>>-

Proof. First
Hypor(€) = V) srad 61 + 3 (grad 61)(nf)uw
— Hoy, (1) + o grad é1(f)u

2f
1
= (H¢1 (U)a _f
22
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where we have used (2.4) to calculate the covariant derivative and (2.9)

to decompose grad ¢, into its components on B and F. Now

Hg,on(8) = V&%gmdF $2= & (%) gradp ¢o + %

= (%) gradp ¢2 + %{Vi gradr @2
+ Lu(nf)gradr é2 — glw, gradp é2)grad(inf)]}

- U}J;) gradp ¢z + %H& (w) + 2(_]{2) gradr ¢2
— h(w, gradp <152)i grad f

2f
v w 2
= — % gradF (,252 + %Hqg(’w) — gﬁ )

w(? v
= (— é(f‘ ) grad f, %H(ﬁz(w) - % gradp ¢2) .

1
Vg? gradp ¢o

[\

grad f

With proposition 2.14 in hand, we are ready to calculate (¢ o )
and O(¢ 0 o). We will let OF denote the d’Alembetian of (B, gg) and
AT denote the Laplace operator on (F,gr) which is defined just as in

(2.6). Also let m = dim B and n = dim F below.

Proposition 2.14. If ¢ : B — R is a smooth function, then

(214)  O(g1om)(pq) = 0o (p) + % erady 61l (f).
23



Proof. Let {e1, ez, -+ ,en} be a Lorentzian orthonormal basis for T}, (B)
with e; timelike and let {ep,+1, -, €m+n} be chosen in Ty (F). If €; =
(0p, ) form+1 < j < m+n, then {€,,41, - , €m+n} are g-orthonormal.

Also set €; = (e;,0p) for 1 < j < m. Then,

m—+n

O(¢p1 o) = — Hess (¢1 om)(€1,€1) + Z Hess (¢1 o 7)(€;,¢€;)

=2

= — Hess (¢1)(€1,€1) + ZHGSS (¢1)(ejvej)

=2

1 _ _
— %(gradg ¢1)|p(f)f(p)h(0.E1, 0.21)
m—+n

1
+ W(gradB o)p(f) D f(p)h(0.8), 0.8;)

= DM¢1(}?) +

j=2

dim I ads é1ly(f).

2f(p)

Proposition 2.15. If ¢ : F — R is a smooth function, then

1

F
f(p)A ?2(0).

(2.15) D(g2 o n)(p, b) =

Proof. Let {e1,--- ,€,tm} be as in the proof of Proposition 2.14. Setting
24



v; = (f(p))}/?e;, we have using (2.13) that
1 m+n
O(¢20m) = ? Z ng(H¢2(ej)7 ej)

m—+1

m—+n

— % Z Hess (¢2)(vj,v;)

m+1

= %AH%,

since g(grady ¢2,€;) = 0if 1 < j < m and g(grady f,€;) = 0 if

m+1<j3<m+n. [ |

Combining these preliminary propositions with (2.8), we obtain the

following result.

Proposition 2.16. Let ¢ : (B x¢ F,g) — R be a smooth function of
the form ® = (¢1 om)(¢p2 0 o), where ¢1 : B — R and ¢ : F — R are

smooth. Then,

O®(p,q) = {DMdn(p) + C;i;rzpjj
¢1(p)

H
+ WA b2(q)-

(gradys ¢1)|p(f)} 62(q)
(2.16)

Proof. This is immediate since g(grad (¢1 o), grad (¢ 0n)) = 0, using

formulas (2.9) and (2.10). [
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3. Main results

In this section, we let (N, gg) be a compact Riemannian n-dimensional
manifold with n > 3 and without boundary.

We consider the (n + 1)-dimensional Riemannian warped manifold
M = [a,00) X s N with the metric g = —dt?+ f(t)go, where f is a positive
function on [a,00). Let u(t,x) be a positive smooth function on M and
let g have a scalar curvature equal to r(¢, ). If the conformal metric g. =
u(t, .:1;)ﬁ g has a scalar curvature R(t,x), which is an arbitrary smooth

function in C°°(M), by equation (2.3) then u(¢, x) satisfies equation

4 n
nlljgu(t, z) — r(t, 2)u(t, z) + R(t, )u(t,z) 1 =0

(3.1)

where [, is the d’Alembertian for a Lorentzian warped manifold M =

la,00) xf N.

Proposition 3.1. Let M = (a,00) xy N have a Lorentzian warped

product metric g = —dt* + f(t)?go. Then the d’Alembertian O, is given

by

2 afwo 1
o= "or T T o TRt

where A, is the Laplacian on fiber manifold N .
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Proof. In the case that dim B = 1, and (B,gp) is given by an in-
terval ((a,o0), —dt?), we have OB (t) = —¢, (t) and gradp ¢;(t) =
—gb/l(t)(%). Thus in this case, using f(¢)? instead of f(p) in (2.16),

formula (2.16) simplifies to

(1, b) = (qs;’ ()« I H (t)f’(t)> 62(0)

f(t)
¢1(t)

A gy (b).
et

By Proposition 3.1 equation (3.1) is changed into the following equa-

tion
D%u(t,z)  nf'(t) du(t, ) 1
(5.2 N (B TR O Lt
n—1 n+3

r(t,x)u(t,z) —

-1
+ " —R(ta)u(t,a) 7T =0
We may assume that in Lorentzian warped manifold M = [a, 00) x § N

admits a negative constant scalar curvature r(t,z) = —c > 0, where

¢ > 0, and the warping function f(¢) with f(f) — oo as t — oo and
f'(t)
ft)

' < constant.

If u(t, z) = u(t) is a positive function with only variable ¢, then equa-

tion (3.2) becomes

(3.3) u (t) +




-1 -1
where ¢, = D~ "¢ and H(t,z) = o R(t,x). In order to prove the
4n 4n

following theorem, we develop the idea used in proof of Theorem 4.9 in

[16].

Theorem 3.2. Let u(t) be a positive solution of equation (3.3) and
let H(t,x) = H(t) be a smooth function with only variable t such that

H(t) > ¢1, where ¢y is a positive constant. Assume that there exist

U]

ft)

positive constants to and Cy such that < Cy for allt > ty. Then

u(t) is bounded from above.

Proof. From equation (3.3) we have

u/>/ nis

=cpu+ H(t)un—1.

(f"
(3.4) Iz

Let x € C§°((a,0)) be a cut-off function. Multiplying both sides of

equation (3.4) by x"*!u and then using integration by parts, we obtain

o] , n+1 ' 0o 00 B
_/ (fnu)(x nu) dtzcn/ Xn+1u2dt+/ H(t)Xn+1u2n_+12dt

f
o0 ntl  2nt2
> X" Tu =T dt.
a

From the left side of the above equation, we have

/ ’

/ Xn+1u i / /f
) (XY == ot = ot
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Applying Cauchy’s inequality, we get
—(n+ 1)X"ux/ul = —2((n+ 1)XnTH_1uxl) (

1 /
X" u 7

< (n+ 12" "R P+ 1

and

Together with the above equations, we obtain

’

9
/ <f?> X”+1u2dt+/ x"_1u2]x/]2dt

o0 ] 2n+2 1 o0 11 72
ch/ X" Tun=Tdt + = / X" u |dt.
a 2 a

Applying Young’s inequality and using the bound < Cy, we have

Flo
f

1 o Y o0 1 2n+2
—/ X" | dt+cl/ X" =T dt
2 a a

(3.5) -
< Cl/ (X[ + X"t

where € is a positive constant. Let x = 0 on (a,r] U[r + 3,00) with

/ 1
r>toand x=1on [r+1,r+2], x >0on [a,00) and |x | < 3 From
equation (3.4) we have

r+2 ' r+2 anl2
lu [“dt + uwntdt < C"
r+1 r+1
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for all r > ty, where C" is a constant independent on r. Therefore u is

bounded from above. [ |

Theorem 3.3. Let (M,g) be a Lorentzian manifold with scalar curva-

ture equal to —c (c > 0). Assume that there exist positive constants tg
t)

>
U]

f(t)

scalar curvature satisfying H(t) > c1, where ¢1 is a positive constant,

and Cy such that < Cy for all t > tog. If H(t,z) = H(t) is a

then equation (3.3) has no positive solution.

Proof. If w = wu(t) is a positive solution of equation (3.3), then by
Theorem 3.2 u(t) is bounded from above on (a,c0). Then, by Omori-
Yau maximum principle ([18]), there exists a sequence {t;} such that
My o0 u(ty) = SUDse(q 00) u(t), [/ (tk)] g% and u (t;) < % Since

SUDPje[q,00) U(t) = c2 > 0, there exist a number € > 0 and K such that

(enu(ts) + H(tp)u(ty) 1) > €

for all k£ > K, which is a contradiction to the fact that

1—}-7100

u () < p

17 n
U (tk) +

for all £ > K. Therefore equation (3.3) has no positive solution. [
30



The following corollary is derived easily from the previous theorem

3.3.

Corollary 3.4. Let (M,g) = ((a,00) x5 N, g) be a Lorentzian manifold

with scalar curvature equal to h(t) < 0. Assume that there exist positive

£ ()

()

where C' is a positive constant, then the following equation

constants tg and Cy such that < Cy for allt > ty. If H(t) = C,

")+ LW - n4f1h(t)u(t) + Cu(t)n

also has no positive solution.
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