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1. Introduction

One of the basic problems in the differential geometry is to study the

set of curvature funtions over a given manifold.

The well-known problem in differential geometry is whether a given

metric on a compact Riemannian manifold is necessarily pointwise con-

formal to some metric with constant scalar curvature or not.

In a recent study [14, 15, 16], Leung has studied the problem of scalar

curvature functions on Riemannian warped product manifolds and ob-

tained partial results about the existence and nonexistence of Riemann-

ian warped metric with some prescribed scalar curvature function. In

this paper, we study the existence and nonexistence of Lorentzian warped

metric with prescribed scalar curvature functions on some Lorentzian

warped product manifolds.

By the results of Kazdan and Warner [10, 11, 12], if N is a compact

Riemannian n-manifold without boundary n ≥ 3 , then N belongs to

one of the following three categories:

(A) A smooth function on N is the scalar curvature of some Reiman-

nian metric on N if and only if the function is negative somewhere.

(B) A smooth function on N is the scalar curvature of some Reiman-
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nian metric on N if and only if the function is either identically zero or

strictly negative somewhere.

(C) Any smooth function onN is the scalar curvature of some Reiman-

nian metric on N .

This completely answers the question of which smooth functions are

scalar curvatures of Riemannian metrics on a compact manifold N .

In [10, 11, 12], Kazdan and Warner also showed that there exists

some obstruction of a Riemannian metric with positive scalar curvature

(or zero scalar curvature) on a compact manifold.

For noncompact Riemannian manifolds, many important works have

been done on the question how to determine which smooth functions are

scalar curvature of complete Riemannian metrics on an open manifold

[3, 6, 7, 13, 14]. Results of Gromov and Lawson [9] show that some open

manifolds cannot carry complete Riemannian metrics of positive scalar

curvature, for example, weakly enlargeable manifolds.

Furthermore, they show that some open manifolds cannot even admit

complete Riemannian metrics with scalar curvatures uniformly positive

outside a compact set and with Ricci curvatures bounded [9], [13,p.322].

On the other hand, it is well known that each open manifold of di-

mension bigger than 2 admits a complete Riemannian metric of constant
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negative scalar curvature [7]. It follows from the results of Aviles and

McOwen [3] that any bounded negative function on an open manifold of

dimension bigger than 2 is the scalar curvature of a complete Riemannian

metric.

In [14,15], the author considered the scalar curvature of some Rie-

mannian warped product and its conformal deformation of warped prod-

uct metric. And also in [8], the authors considered the existence of a

nonconstant warping function on a Lorentzian warped product manifold

such that the resulting warped product metric produces the constant

scalar curvature when the fiber manifold has the constant scalar curva-

ture.

Ironically, even though there exists some obstruction of positive or

zero scalar curvature on a Riemannian manifolds, results in [8], say,

Theorem 3.1, Theorem 3.5 and Theorem 3.7 of [8] show that there ex-

ists no obstruction of positive scalar curvature on a Lorentzian warped

product manifold, but there may exist some obstruction of negative or

zero scalar curvature.

In this paper, when N is a compact Riemannian manifold, we con-

sider the nonexistence of conformal deformations on a warped product

manifold M = (a,∞) ×f N with specific scalar curvatures, where a is
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a positive constant. That is, it is shown that if the fiber manifold N

belongs to class (A) then M does not admit a Lorentzian metric with

some positive scalar curvature near the end outside a compact set.

5



2. Preliminaries on a warped product manifold

First of all, in order to induce a partial differential equation, we

need some definitions of connections, curvatures and some results about

warped product manifolds.

Definition 2.1. Let X(M) denote the set of all smooth vector fields

defined on M , and let ℑ(M) denote the ring of all smooth real-valued

functions on M . A connection ∇ on a smooth manifold M is a function

∇ : X(M)× X(M) → X(M)

such that

(D1) ∇VW is ℑ-linear in V .

(D2) ∇VW is R-linear in W .

(D3) ∇V (fW ) = (V f)W + f∇VW for f ∈ ℑ(M).

(D4) [V,W ] = ∇VW −∇WV .

(D5) X < V,W >=< ∇XV,W > + < V,∇XW > for all X,V,W ∈

X(M).

If ∇ satisfies axioms (D1) ∼ (D3), then ∇VW is called the covariant

derivative of W with respect to V for the connection ∇. If ∇ satisfies
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axioms (D4) ∼ (D5), then ∇ is called the Levi - Civita connection of M ,

which is characterized by the Koszul formula ([17]).

As indicated above, (D4) is the condition that ∇ is torsion free, and

(D5) is the condition that the connection ∇ is compatible with metric

g.

For semi-Riemannian manifolds, the connection coefficients are given

by

(2.1) Γk
ij =

1

2

n∑
a=1

gak
(
∂gia
∂xj

− ∂gij
∂xa

+
∂gaj
∂xi

)
where (gij) represents the (2,0) tensor defined by

n∑
a=1

giagaj = δij for 1 ≤ i, j ≤ n.

Definition 2.2. The curvature tensor of the connention ∇ is a linear

transformation valued tensor R in Hom(X(M),X(M)) defined by :

R(X,Y ) = ∇X∇Y −∇Y ∇X −∇[X,Y ].

Thus, for Z ∈ X(M),

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

It is well-known that R(X,Y )Z at p depends only upon the values of

X,Y, and Z at p ([17]).
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If ω ∈ T ∗
p (M) is a cotangent vector at p and x, y, z ∈ Tp(M) are

tangent vectors at P , then one defines

R(ω, x, y, z) = (ω,R(X,Y )Z) = ω(R(X,Y )Z)

for X,Y, and Z smooth vector fields extending x, y, and z, respectively.

The curvature tensor R is a (1,3) tensor field which is given in local

coordinates by

R =
n∑

i,j,k,m=1

Ri
jkm

∂

∂xi
⊗ dxj ⊗ dxk ⊗ dxm,

where the curvature components Ri
jkm are given by

Ri
jkm =

∂Γi
mj

∂xk
−
∂Γi

kj

∂xm
+

n∑
a=1

(Γa
mjΓ

i
ka − Γa

kjΓ
i
ma).

Notice that

R(X,Y )Z = −R(Y,X)Z, R(ω,X, Y, Z) = −R(ω, Y,X,Z)

and Ri
jkm = −Ri

jmk.

Furthermore, if X = ΣXi∂
∂xi , Y = ΣY i∂

∂xi , Z = ΣZi∂
∂xi and ω = Σωidx

i

then

R(X,Y )Z =

n∑
i,j,k,m=1

Ri
jkmZ

jXkY m ∂

∂xi
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and

R(ω,X, Y, Z) =
n∑

i,j,k,m=1

Ri
jkmωiZ

jXkY m.

Consequently, one has R(dxi, ∂
∂xk ,

∂
∂xm ,

∂
∂xj ) = Ri

jkm.

The local representations gij and gij may be used to raise and lower

indices.

For example, if the upper index of the curvature tensor is lowered,

one obtains the components of the Riemann-Christoffel tensor which is

also known as the covariant curvature tensor

Rijkm =
n∑

a=1

gaiR
a
jkm.

Alternatively, one may define the Riemann-Christoffel tensor R̃ as the

(0, 4) tensor such that

R̃(W,Z,X, Y ) = g(W,R(X,Y )Z).

Some standard curvature identities satisfied by the components of this

tensor are

Rijkm = Rkmij = −Rjikm = −Rijmk

and

Rijkm +Rikmj +Rimjk = 0.
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The trace of the curvature tensor is the Ricci curvature, a symmetric

(0, 2) tensor. For each p ∈ M , the Ricci curvature may be interpreted

as a symmetric bilinear map Ricp : TpM × TpM → R. To evaluate

Ric(v, w), let e1, e2, · · · , en be an orthonormal basis for TpM . Then

Ric(v, w) =

n∑
i=1

g(ei, ei)g(R(ei, w)v, ei).

or equivalently,

Ric(v, w) =

n∑
i=1

g(ei, ei)R̃(ei, v, ei, w).

One may express v and w in the natural basis as v =
∑
vi ∂

∂xi and

w =
∑
wi ∂

∂xi and then write

Ric(v, w) =
n∑

i,j=1

Rijv
iwj

where

(2.2) Rij =

n∑
a=1

Ra
iaj .

Definition 2.3. A semi-Riemannian metric g for a manifold M is a

smooth symmetric tensosr field of type (0,2) on M which assign to each

point p ∈ M a nondegenerate inner product g|p : Tp(M) × Tp(M) → R

of signature (−, · · · ,−,+, · · · ,+).
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Here nondegenerate means that for each nontrivial vector v ∈ Tp(M)

there is some w ∈ Tp(M) such that gp(v, w) ̸= 0. If g has components gij

in local coordinates, then the nondegeneracy assumption is equivalent to

the condition that the determinant of the matrix (gij) is nonzero.

In local coordinates (U, (x1, x2, · · · , xn)) on M , the metric g is repre-

sented by

g|U =

n∑
i,j=1

gij(x)dx
i ⊗ dxj

with

gij = gji and det(gij) ̸= 0.

If g has s negative eigenvalues and r = n − s positive eigenvalues,

then the signature of g will be denoted by (s, r). For each fixed p ∈M ,

there exist local coordinates (U, (x1, x2, · · · , xn)) such that gp = g|Tp(M)

can be represented as the diagonal matrix diag {−, · · · ,−,+, · · · ,+}.

For each semi-Riemannian manifold (M, g) there is an associated semi-

Riemannian manifold (M,−g) obtained by replacing g with −g. Aside

from some minor changes in sign, there is no essential difference between

(M, g) and (M,−g). Thus, results for spaces of signature (s, r) may

always be translated into corresponding results for spaces of signature

(r, s) by appropriate sign changes and inequality reversals.
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Definition 2.4. The trace of the Ricci curvature is the scalar curvature

τ . That is, S =
∑n

ij=1Rijg
ij .

Thus if e1, e2, · · · , en is an orthonormal basis of TpM , one has

τ = R =

n∑
i=1

g(ei, ei)Ric(ei, ei).

The gradient and Hessian are defined for semi-Riemannian manifolds

just as for Riemannian manifolds. If f : M → R is a smooth function,

then df is a (0, 1) tensor field (i.e., one-form) on M , and grad f is the

(1,0) tensor field (i.e., vector field) which corresponds to df . Thus,

Y (f) = df(Y ) = g(grad f, Y )

for an arbitrary vector field Y. In local coordinates (U, (x1, x2, · · · , xn)),

the vector field grad f is represented by

grad f =

n∑
i,j=1

gij
∂f

∂xi
∂

∂xj
.

The Hessian Hf is defined to be the second covariant differential of

f :

Hf = ∇(∇f).

For a given f ∈ ℑ(M), the Hessian Hf is a symmetric (0,2) tensor field

which is related to the gradient of f through the formula

Hf (X,Y ) = g(∇x(grad f), Y )
12



for arbitrary vector fields X and Y .

Definition 2.5. (Laplacian) The Laplacian of f is defined to be the

divergence of the gradient of f . That is, △f = div (grad f). The

Laplacian in a local chart can be written as follows:

∆φ = ∇i(g
ij∇jφ)

= ∂i(g
ij∂jφ) + gkj∂jφΓ

i
ik

= |g|− 1
2 ∂i[g

ij
√

|g|∂jφ],

because Γi
ik = ∂k log

√
|g| ([2,17]).

Definition 2.6. A tangent vector v ∈ Tp(M) is classified as timelike,

nonspacelike, null or spacelike if g(v, v) is negative, nonpositive, zero, or

positive, respectively:

(A) g(v, v) < 0 (timelike).

(B) g(v, v) ≤ 0 (nonspacelike or causal).

(C) g(v, v) = 0 (null or lightlike).

(D) g(v, v) > 0 (spacelike).

The set of all null vectors in Tp(M) is called the nullcone at p ∈ M

null vectors are also said to be lightlike.
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A Lorentzian manifold is a semi-Riemannian manifold (M, g) of sig-

nature (1, n− 1) [i.e., (−,+, · · · ,+)]. At each point p ∈ M the induced

metric on the tangent space is Minkowskian. Each point of a Lorentzian

manifold has timelike, null, and spacelike tangent vectors. A smooth

curve is said to be timelike, null, or spacelike if its tangent vectors are

always timelike, null, or spacelike, respectively.

A timelik curve in a Lorentzian manifold corresponds to the path of an

observer moving at less than the speed of light. Null curves correspond

to moving at the speed of light, and spacelike curves correspond to the

geometric equivalent of moving faster than light, spacelike curves are of

clear geometric interest.

Definition 2.7. A Lorentzian manifold (M, g) is a connected smooth

manifold of dimension ≥ 2 with a countable basis together with a smooth

Lorentzian metric g of signature (−,+,+,+, · · · ,+) ([4]).

Definition 2.8. A vector field X on M is timelike if g(X(p), X(p)) < 0

at all points of p ∈ M . A Lorentzian manifold with a given timelike

vector field X is said to be timeoriented by X. A space-time is a time

oriented Lorentzian manifold.
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Theorem 2.9. ([2]) Let (M, g) be a semi-Riemannian manifold with

scalar curvature R. Let g′ = efg be a conformal metric with f ∈ C∞(M)

and R′ be a scalar curvature of g′. Then R′ is given by

R′ = e−f [R+ (n− 1)∆f − (n− 1)(n− 2)

4
|∇f |2].

Proof. By equation (2.1), if Γ
′l
ij and Γl

ij denote the Christoffel symbols

relating to g′ and g respectively:

Γ
′l
ij − Γl

ij =
1

2
[gkj∂if + gki∂jf − gij∂kf ] g

kl

=
1

2

[
δlj∂if + δli∂jf − gij∇lf

]
.

According to equation (2.2),

R
′

ij = R
′k
ikj = Rij −

n− 2

2
∇ijf +

n− 2

4
∇if∇jf

− 1

2

(
−∆f +

n− 2

2
|∇f |2

)
gij

so

R′ = e−f

[
R+ (n− 1)∇v

vf − (n− 1)(n− 2)

4
∇vf∇vf

]
.

�

If we consider the conformal deformation in the form g′ = φ
4

n−2 (with

φ ∈ C∞, φ > 0), the scalar curvature R′ satisfies the equation:

(2.3) 4((n− 1)/(n− 2))∆φ+Rφ+R′φ(n+2)/(n−2) = 0,
15



where ∆φ = ∇v∇vφ.

So Yamabe problem is equivalent to solve the equation (2.3) with

constant R′, and the solution φ must be smooth and strictly positive

([1, 19]).

We briefly recall some results on warped product manifolds. Complete

details may be found in ([3]), or ([17]). On a semi-Riemannian product

manifold B×F , let π and σ be the projections of B×F onto B and F ,

respectively, and let f > 0 be a smooth function on B.

Definition 2.10. The warped product manifold M = B ×f F is the

product manifold M = B × F furnished with metric tensor

g = π∗(gB) + (f ◦ π)σ∗(gF )

where gB and gF are metric tensors of B and F , respectively. In other

words, if v is tangent to M at (p, q), then

g(v, v) = gB(dπ(v), dπ(v)) + f(p)gF (dσ(v), dσ(v)).

Here B is called the base manifold of M and F the fiber manifold

([17]).
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Remark 2.11. Some well known elementary properties of the warped

product manifold M = B ×f F are as follows ;

(1) For each q ∈ F , the map π|σ−1(q)=B×q is an isometry onto B.

(2) For each p ∈ B, the map σ|π−1(p)=p×F is positive homothetic

onto F with scale factor 1√
f(p)

.

(3) For each (p, q) ∈ M , the horizontal leaf B × q and the vertical

fiber p× F are orthogonal at (p, q).

(4) The horizontal leaf σ−1(q) = B × q is a totally geodesic sub-

manifold of M and the vertical fiber π−1(p) = p× F is a totally

umbilic submanifold of M .

(5) If ϕ is an isometry of F , then 1 × ϕ is an isometry of M , and

if ψ is an isometry of B such that f = f ◦ ψ, then ψ × 1 is an

isometry of M .

Recall that vectors tangent to leaves are called horizontal and vector

tangent to fibers are called vertical. From now on, we will often use a

natural identification

T(p,q)(B ×f F ) ∼= T(p,q)(B × F ) ∼= TpB × TqF.

The decomposition of vectors into horizontal and vertical parts play

a role in our proofs. If X is a vector field on B, we define X at (p, q)
17



by setting X(p, q) = (Xp, 0q). Then X is π-related to X and σ-related

to the zero vector field on F . Similarly, if Y is a vector field on F , Y is

defined by Y (p, q) = (0p, Yq).

Lemma 2.12. If h is a smooth function on B, then the gradient of the

lift h ◦ π of h to M is the lift to M of gradient of h on B.

Proof. We must show that grad (h ◦ π) is horizonal and π-related to

grad h on B. If v is vertical tangent vector to M , then

(grad (h ◦ π), v) = v(h ◦ π) = dπ(v)h = 0, since dπ = 0.

Thus grad (h ◦ π) is horizonal. If x is horizonal,

g(dπ(grad (h ◦ π)), dπ(x)) = g(grad (h ◦ π), x)

= x(h ◦ π)

= dπ(x)h

= g(grad h, dπ(x)).

Hence at each point, dπ(grad (h ◦ π)) = grad h. �

We denote the metric g by <,>. In view of Remark 2.11 (1) and

Lemma 2.12, we may also denote the metric gB by <,>. The metric gF

will be denoted by (, ).
18



In view of Lemma 2.12, we simplify the notations by writing h for

h ◦ π and grad (h) for grad (h ◦ π). For a covariant tensor A on B, its

lift A to M is just its pullback π∗(A) under the projection π : M → B.

That is, if A is a (1, s)-tensor, and if v1, v2, · · · , vs ∈ T(p,q)(M) then

A(v1, · · · , vs) = A(dπ(v1), · · · , dπ(vs)) ∈ Tp(B). Hence if vk is vertical,

then A = 0 on B. For example, if f is a smooth function on B, the lift

to M of the Hessian of f is also denoted by Hf . This agrees with the

Hessian of the lift f ◦π generally only on horizontal vectors. For detailed

computations, see Lemma 5.1 in ([17]).

In order to induce the d’Alembertian forM = B×fF , we will consider

the general warped product (B×fF, g) where g = π∗(gB)+(f ◦π)σ∗(gF ),

(F, gF ) is Riemannian and (B, gB) is equipped with a metric of signature

(−,+, · · · ,+). Let ∇1 denote the Levi-Civita connection for (B, gB)

and ∇2 denote the Levi-Civita connection for (F, gF ). Recall that the

connection ∇ for (B ×f F, g) is related to the metric g by the formula

2g (∇XY, Z) = Xg (Y,Z) + Y g (X,Z)− Zg (X,Y )

+ g ([X,Y ], Z)− g ([X,Z], Y )− g ([Y, Z], X).

Using this formula and setting ϕ = lnf , we obtain the following formula

for ∇ for vector fields X = (X1, 0) + (0, X2) and Y = (Y1, 0) + (0, Y2):

(2.4) ∇XY = ∇1
X1
Y1 +∇2

X2
Y2

19



+
1

2
{X1(ϕ)Y2 + Y1(ϕ)X2 − g (X2, Y2) grad ϕ}.

Here grad Φ denotes the gradient of the function Φ on (B, gB) and we are

identifying the vector (∇1
X1
Y1|p) ∈ Tp(B) with the vector (∇1

X1
Y1|p, 0q) ∈

T(p,q)(B × F ), and so on.

Now, we will calculate the d’Alembertian for Lorentzian warped prod-

ucts using the method of separation of variables. From now on, we refer

the results in [5]. Recall that if is a semi-Riemannian manifold and

Φ : M → R is a smooth function, then the symmetric (0,2) Hessian

tensor Hess(Φ) associated to Φ is given by

(2.5) Hess(Φ)(x, y) = g (∇x grad Φ, y)

for any tangent vectors x, y ∈ TpM . The d’Alembertian operator � :

C∞(M,R) → C∞(M,R) may then be defined by setting

(2.6) �Φ = tr ◦Hess(Φ)

or in local coordinates (U, x1, · · · , xn) :

(2.7) �ϕ = |g|−1/2 ∂

∂xi

(
|g|1/2gij ∂ϕ

∂xj

)
.

It may be verified that for ϕ1, ϕ2 ∈ C∞(M,R)

(2.8) �(ϕ1 · ϕ2) = ϕ1�ϕ2 + 2g (grad ϕ1, grad ϕ2) + ϕ2�ϕ1.
20



We now restrict our attention to Lorentzian warped products M =

(B × F , g). Recall that π : B × F → B and σ : B × F → F denote the

projection maps given by π(p, q) = p and σ(p, q) = q, respectively. We

will use the isomorphism T(p,q)(B×F ) ∼= TpB⊕TqF to decompose vector

fields X on M as X = (X1, X2). Also since we wish to use the method

of separation of variables, we will fix smooth functions ϕ1 : B → R and

ϕ2 : F → R and set

Φ = (ϕ1 ◦ π)(ϕ2 ◦ σ),

i.e., Φ(p, q) = ϕ1(p)ϕ2(q) for all (p, q) ∈ M . Letting grad Φ, gradB ϕ1

and gradF ϕ2 denote the gradient vector fields on (M, g), (B, gB) and

(F, gF ) respectively, it follows from the warped product formula that

(2.9) grad (ϕ1 ◦ π)(p, q) = (gradB ϕ1(p), 0q)

and

(2.10) grad (ϕ2 ◦ σ)(p, q) = (0p,
1

f(p)
gradF ϕ2(q))

where 0p and 0q denote the zero tangent vectors of TpB and TqF respec-

tively. We will let ∇, ∇1 and ∇2 denote the Levi-Civita connections of

(M, g), (B, gB) and (F, gF ) respectively. As an aid to calculating �Φ,

we consider a (1,1) tensor field

HΦ : T (M)× T (M)
21



given by:

(2.11) HΦ(ξ) = ∇ξ grad Φ

from which it follows using (2.5) that

(2.12) Hess (Φ) (ξ1, ξ2) = g (HΦ(ξ1), ξ2)

for all ξ1, ξ2 ∈ T(p,q)M . The following proposition may now be estab-

lished using (2.4).

Proposition 2.13. Let ξ = (v, w) ∈ T(p,q)(M). Then,

Hϕ1◦π(ξ) =

(
Hϕ1(v),

1

2f(p)
(gradB ϕ1)|p(f)w

)
and

(2.13)

Hϕ2◦η(ξ) =

(
−w(ϕ2)
2f(p)

grad f(p),
1

f(p)
Hϕ2(w)−

v(f)

2(f(p))2
gradF ϕ2(q)

)
.

Proof. First

Hϕ1◦π(ξ) = ∇1
v grad ϕ1 +

1

2
(grad ϕ1)(lnf)w

= Hϕ1(v) +
1

2f
grad ϕ1(f)w

=

(
Hϕ1(v),

1

2f
grad ϕ1(f)w

)
,
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where we have used (2.4) to calculate the covariant derivative and (2.9)

to decompose grad ϕ1 into its components on B and F . Now

Hϕ2◦η(ξ) = ∇ξ
1

f
gradF ϕ2 = ξ

(
1

f

)
gradF ϕ2 +

1

f
∇ξ

1

f
gradF ϕ2

= v

(
1

f

)
gradF ϕ2 +

1

f
{∇2

w gradF ϕ2

+
1

2
[v(lnf)gradF ϕ2 − g(w, gradF ϕ2)grad(lnf)]}

= − v(f)

f2
gradF ϕ2 +

1

f
Hϕ2(w) +

v(f)

2f2
gradF ϕ2

− h(w, gradF ϕ2)
1

2f
grad f

= − v(f)

f2
gradF ϕ2 +

1

f
Hϕ2(w)− w(ϕ2)

2f
grad f

=

(
−w(ϕ

2)

2f
grad f,

1

f
Hϕ2(w)− v(f)

f2
gradF ϕ2

)
.

�

With proposition 2.14 in hand, we are ready to calculate �(ϕ1 ◦ π)

and �(ϕ2 ◦ σ). We will let �B denote the d’Alembetian of (B, gB) and

∆F denote the Laplace operator on (F, gF ) which is defined just as in

(2.6). Also let m = dim B and n = dim F below.

Proposition 2.14. If ϕ1 : B → R is a smooth function, then

(2.14) �(ϕ1 ◦ π)(p, q) = �Mϕ1(p) +
dim F

2f(p)
gradB ϕ1|p(f).
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Proof. Let {e1, e2, · · · , em} be a Lorentzian orthonormal basis for Tp(B)

with e1 timelike and let {em+1, · · · , em+n} be chosen in Tq(F ). If ej =

(0p, ej) form+1 ≤ j ≤ m+n, then {em+1, · · · , em+n} are g-orthonormal.

Also set ej = (ej , 0b) for 1 ≤ j ≤ m. Then,

�(ϕ1 ◦ π) =−Hess (ϕ1 ◦ π)(e1, e1) +
m+n∑
j=2

Hess (ϕ1 ◦ π)(ej , ej)

=−Hess (ϕ1)(e1, e1) +
m∑
j=2

Hess (ϕ1)(ej , ej)

− 1

2f(p)
(gradB ϕ1)|p(f)f(p)h(σ∗e1, σ∗e1)

+
1

2f(p)
(gradB ϕ1)|p(f)

m+n∑
j=2

f(p)h(σ∗ej , σ∗ej)

= �Mϕ1(p) +
dim F

2f(p)
gradB ϕ1|p(f).

�

Proposition 2.15. If ϕ2 : F → R is a smooth function, then

(2.15) �(ϕ2 ◦ η)(p, b) =
1

f(p)
∆Fϕ2(b).

Proof. Let {e1, · · · , en+m} be as in the proof of Proposition 2.14. Setting
24



vj = (f(p))1/2ej , we have using (2.13) that

�(ϕ2 ◦ η) =
1

f

m+n∑
m+1

fgF (Hϕ2(ej), ej)

=
1

f

m+n∑
m+1

Hess (ϕ2)(vj , vj)

=
1

f
∆Hϕ2,

since g(gradH ϕ2, ej) = 0 if 1 ≤ j ≤ m and g(gradM f, ej) = 0 if

m+ 1 ≤ j ≤ m+ n. �

Combining these preliminary propositions with (2.8), we obtain the

following result.

Proposition 2.16. Let Φ : (B ×f F, g) → R be a smooth function of

the form Φ = (ϕ1 ◦ π)(ϕ2 ◦ σ), where ϕ1 : B → R and ϕ2 : F → R are

smooth. Then,

(2.16)

�Φ(p, q) =

{
�Mϕ1(p) +

dim F

2f(p)
(gradM ϕ1)|p(f)

}
ϕ2(q)

+
ϕ1(p)

f(p)
∆Hϕ2(q).

Proof. This is immediate since g(grad (ϕ1 ◦ π), grad (ϕ2 ◦ η)) = 0, using

formulas (2.9) and (2.10). �
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3. Main results

In this section, we let (N, g0) be a compact Riemannian n-dimensional

manifold with n ≥ 3 and without boundary.

We consider the (n + 1)-dimensional Riemannian warped manifold

M = [a,∞)×fN with the metric g = −dt2+f(t)2g0, where f is a positive

function on [a,∞). Let u(t, x) be a positive smooth function on M and

let g have a scalar curvature equal to r(t, x). If the conformal metric gc =

u(t, x)
4

n−1 g has a scalar curvature R(t, x), which is an arbitrary smooth

function in C∞(M), by equation (2.3) then u(t, x) satisfies equation

(3.1)
4n

n− 1
�gu(t, x)− r(t, x)u(t, x) +R(t, x)u(t, x)

n+3
n−1 = 0

where �g is the d’Alembertian for a Lorentzian warped manifold M =

[a,∞)×f N .

Proposition 3.1. Let M = (a,∞) ×f N have a Lorentzian warped

product metric g = −dt2 + f(t)2g0. Then the d’Alembertian �g is given

by

�g = − ∂2

∂t2
− nf ′(t)

f(t)

∂

∂t
+

1

f(t)2
∆x,

where ∆x is the Laplacian on fiber manifold N .
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Proof. In the case that dim B = 1, and (B, gB) is given by an in-

terval ((a,∞),−dt2), we have �Bϕ1(t) = −ϕ′′

1 (t) and gradB ϕ1(t) =

−ϕ′

1(t)(
∂
∂t ). Thus in this case, using f(t)2 instead of f(p) in (2.16),

formula (2.16) simplifies to

�Φ(t, b) = −
(
ϕ

′′

1 (t) +
dim H

f(t)
ϕ

′

1(t)f
′(t)

)
ϕ2(b)

+
ϕ1(t)

f(t)
2∆

H
F ϕ2(b).

�

By Proposition 3.1 equation (3.1) is changed into the following equa-

tion

(3.2)

∂2u(t, x)

∂t2
+
nf ′(t)

f(t)

∂u(t, x)

∂t
− 1

f(t)2
∆xu(t, x)

+
n− 1

4n
r(t, x)u(t, x)− n− 1

4n
R(t, x)u(t, x)

n+3
n−1 = 0.

We may assume that in Lorentzian warped manifoldM = [a,∞)×fN

admits a negative constant scalar curvature r(t, x) = −c > 0, where

c > 0, and the warping function f(t) with f(t) → ∞ as t → ∞ and∣∣∣∣f ′(t)f(t)

∣∣∣∣ ≤ constant.

If u(t, x) = u(t) is a positive function with only variable t, then equa-

tion (3.2) becomes

(3.3) u
′′
(t) +

nf
′
(t)

f(t)
u

′
(t)− cnu(t)−H(t, x)u(t)

n+3
n−1 = 0,
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where cn =
n− 1

4n
c and H(t, x) =

n− 1

4n
R(t, x). In order to prove the

following theorem, we develop the idea used in proof of Theorem 4.9 in

[16].

Theorem 3.2. Let u(t) be a positive solution of equation (3.3) and

let H(t, x) = H(t) be a smooth function with only variable t such that

H(t) ≥ c1, where c1 is a positive constant. Assume that there exist

positive constants t0 and C0 such that

∣∣∣∣∣f
′
(t)

f(t)

∣∣∣∣∣ ≤ C0 for all t > t0. Then

u(t) is bounded from above.

Proof. From equation (3.3) we have

(3.4)
(fnu

′
)
′

fn
= cnu+H(t)u

n+3
n−1 .

Let χ ∈ C∞
0 ((a,∞)) be a cut-off function. Multiplying both sides of

equation (3.4) by χn+1u and then using integration by parts, we obtain

−
∫ ∞

a

(fnu
′
)

(
χn+1u

fn

)′

dt = cn

∫ ∞

a

χn+1u2dt+

∫ ∞

a

H(t)χn+1u
2n+2
n−1 dt

≥ c1

∫ ∞

a

χn+1u
2n+2
n−1 dt.

From the left side of the above equation, we have

−(fnu
′
)

(
χn+1u

fn

)′

= −(n+ 1)χnuχ
′
u

′
− χn+1|u

′
|2 + nχn+1uu

′ f
′

f
.
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Applying Cauchy’s inequality, we get

−(n+ 1)χnuχ
′
u

′
= −2((n+ 1)χ

n+1
2 −1uχ

′
)

(
1

2
χ

n+1
2 u

′
)

≤ (n+ 1)2χn−1u2|χ
′
|2 + 1

4
χn+1|u

′
|2

and

nχn+1uu
′ f

′

f
= 2

(
nχ

n+1
2 u

f
′

f

)(
1

2
χ

n+1
2 u

′
)

≤ n2χn+1

(
f

′

f

)2

u2 +
1

4
χn+1|u

′
|2.

Together with the above equations, we obtain∫ ∞

a

(
f

′

f

)2

χn+1u2dt+

∫ ∞

a

χn−1u2|χ
′
|2dt

≥ c1

∫ ∞

a

χn+1u
2n+2
n−1 dt+

1

2

∫ ∞

a

χn+1|u
′
|2dt.

Applying Young’s inequality and using the bound

∣∣∣∣∣f
′

f

∣∣∣∣∣ ≤ C0, we have

(3.5)

1

2

∫ ∞

a

χn+1|u
′
|2dt+ c1

∫ ∞

a

χn+1u
2n+2
n−1 dt

≤ C
′
∫ ∞

a

(|χ
′
|n+1 + χn+1)dt,

where C
′
is a positive constant. Let χ ≡ 0 on (a, r] ∪[r + 3,∞) with

r > t0 and χ ≡ 1 on [r + 1, r + 2], χ ≥ 0 on [a,∞) and |χ′ | ≤ 1

2
. From

equation (3.4) we have∫ r+2

r+1

|u
′
|2dt+

∫ r+2

r+1

u
2n+2
n−1 dt ≤ C

′′
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for all r > t0, where C
′′
is a constant independent on r. Therefore u is

bounded from above. �

Theorem 3.3. Let (M, g) be a Lorentzian manifold with scalar curva-

ture equal to −c (c > 0). Assume that there exist positive constants t0

and C0 such that

∣∣∣∣∣f
′
(t)

f(t)

∣∣∣∣∣ ≤ C0 for all t > t0. If H(t, x) = H(t) is a

scalar curvature satisfying H(t) ≥ c1, where c1 is a positive constant,

then equation (3.3) has no positive solution.

Proof. If u = u(t) is a positive solution of equation (3.3), then by

Theorem 3.2 u(t) is bounded from above on (a,∞). Then, by Omori-

Yau maximum principle ([18]), there exists a sequence {tk} such that

limk→∞ u(tk) = supt∈[a,∞) u(t), |u′(tk)| ≤
1

k
and u

′′
(tk) ≤

1

k
. Since

supt∈[a,∞) u(t) = c2 > 0, there exist a number ϵ > 0 and K such that

(cnu(tk) +H(tk)u(tk)
n+3
n−1 ) > ϵ

for all k > K, which is a contradiction to the fact that

u
′′
(tk) +

nf
′
(tk)

f(tk)
u

′
(tk) ≤

1 + nC0

k

for all k > K. Therefore equation (3.3) has no positive solution. �
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The following corollary is derived easily from the previous theorem

3.3.

Corollary 3.4. Let (M, g) = ((a,∞)×f N, g) be a Lorentzian manifold

with scalar curvature equal to h(t) ≤ 0. Assume that there exist positive

constants t0 and C0 such that

∣∣∣∣∣f
′
(t)

f(t)

∣∣∣∣∣ ≤ C0 for all t > t0. If H(t) = C,

where C is a positive constant, then the following equation

u
′′
(t) +

nf
′
(t)

f(t)
u

′
(t) =

4n

n− 1
h(t)u(t) + Cu(t)

n+3
n−1

also has no positive solution.
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