ccreative

 commons

 commons}
$\begin{array}{lllllllllll}\text { C } & \mathrm{O} & \mathrm{M} & \mathrm{M} & \mathrm{O} & \mathrm{N} & \mathrm{S} & \mathrm{D} & \mathrm{E} & \mathrm{E} & \mathrm{D}\end{array}$

저작자표시-비영리-변경금지 2.0 대한민국
이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건 을 명확하게 나타내어야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 숩게 요약한 것입니다.

$$
\text { Disclaimer } \square
$$

c)Collection

2010 年 8月
博士學位論文

Synthesis and structure activity relationship of thiazolidinedione derivatives as $15-\mathrm{PGDH}$ inhibitors for drug design

朝鮮大學校 大學院

高分子工學科

武 营

약물설계를 위한

thiazolidinedione계 15－PGDH 억제제

합성 및 구조 활성 분석

Synthesis and structure activity relationship of thiazolidinedione derivatives as 15－PGDH inhibitors for drug design

$$
2010 \text { 年 } 8 \text { 月 } 25 \text { 日 }
$$

朝鮮大學校 大學院

高分子工學科
武 营
약물설계를 위한

thiazolidinedione계 15－PGDH 억제제

합성 및 구조 활성 분석

指道数授 超 勳

이 論文을 工學博士學位申請 論文으로 提出함．
$$
2010 \text { 年 } 4 \text { 月 }
$$

朝鮮大學校 大學院
高分子工學科
武 营

武 营의 博士學位論文을 認准함

委員長 朝鮮大學校 教授 최철희 印
委 員 朝鮮大學校 教授 최재곤 印
委 員 斛鮮大學校 教授 유지강 印
委 員 朝鮮大學校 教授 홍진후 印
委 員 觛鮮大學校 教授 조 훈 印
2010年6月

CONTENTS

List of Tables iii
List of Schemes iv
List of Figures v
Abbreviations. vi
국문초록 viii
ABSTRACT X

1. Introduction1
1.1. Prostaglandins 1
1.1.1. Basic definitions 1
1.1.2. Biosynthesis of prostaglandins1
1.1.3. Metabolism of PGE_{2} 3
1.2. 15-Hydroxyprostaglandin dehydrogenase (15-PGDH) 5
1.2.1. Basic definitions 5
1.2.2. Function of $15-\mathrm{PGDH}$ 6
1.2.3. Three-dimensional structure of $15-\mathrm{PGDH}$ 7
1.2.4. Reaction mechanism for 15-PGDH 9
1.3. Thiazolidinediones (TDs) 10
1.4. Necessity of $15-\mathrm{PGDH}$ inhibitors 12
2. Results and discussion. 14
2.1. Chemistry. 14
2.1.1. Synthesis of compounds ($\mathbf{1 b} \mathbf{- 3 6 b}$) 14
2.1.2. Synthesis of compounds (37b - 50b) 14
2.1.3. Synthesis of compounds (51b - 57b) 15
2.1.4. Synthesis of compounds (78b - 92b) 15
2.1.5. Synthesis of compounds (93-98) 15
2.1.6. Synthesis of compounds (99-106) 16
2.1.7. Synthesis of compounds (107-109) 16
2.2. In vitro evaluation. 16
3. Experimental. 30
3.1. Materials and chemical agents 30
3.2. Expression and purification of $15-\mathrm{PGDH}$ 30
3.3. 15-PGDH inhibitors activity assay 31
3.4. General procedure for the synthesis of compounds 31
4. Conclusion 104
5. References 106
${ }^{1}$ H NMR Spectra 118
Acknowledgements 151

List of Tables

Table 2.2.1. Inhibitory potency of the compounds $\mathbf{1 b} \mathbf{- 3 6 b}$ 19
Table 2.2.2. Inhibitory potency of the compounds $\mathbf{3 7 b} \mathbf{- 5 0 b}$ 23
Table 2 2.3. Inhibitory potency of the compounds 51b-77b 24
Table 2.2.4. Inhibitory potency of the compounds 78b-92b 26
Table 2.2.5. Inhibitory potency of the compounds 93-98. 27
Table 2.2.6. Inhibitory potency of the compounds 99-106 28
Table 2.2.7. Inhibitory potency of the compounds 107-109. 29

List of Schemes

Scheme 2.1.1. Synthesis of compounds 1b-36b 14
Scheme 2.1.2. Synthesis of compounds 37b - 50b 14
Scheme 2.1.3. Synthesis of compounds 51b-77b 15
Scheme 2.1.4. Synthesis of compounds 78b - 92b 15
Scheme 2.1.5. Synthesis of compounds 93b-98b 15
Scheme 2.1 6. Synthesis of compounds 99-106 16
Scheme 2.1.7. Synthesis of compounds 107-109 16

List of Figures

Fig. 1. Prostaglandin E_{2} 1
Fig. 2. Biosynthesis of PGE_{2} 3
Fig. 3. Summary of the chemical structures involved in the transformations of PGE_{2} into its major urinary metabolite. 4
Fig. 4. A stereoview of 3D structure of $15-\mathrm{PGDH}-\mathrm{NAD}^{+}-\mathrm{PGE}_{2}$ complex 8
Fig. 5. Catalytic mechanism of $15-\mathrm{PGDH}$ 10
Fig. 6. Structures of ciglitazone, rosiglitazone, troglitazone and CT-8 11
Fig. 7. Actions of PGE_{2} with EP receptors 18
Abbreviations
AA: Arachidonic acid
ADP: Adenosine diphosphate
cAMP: Cyclic adenosine monophosphate
COX: Cyclooxygenase
DEAD: Diethyl azodicarboxylate
DMF: N,N-Dimethylformamide
DMSO: Dimethylsulfoxide
DTT: Dithiothretitol
EDTA: Ethylenediamine-N,N,N',N'-tetraacetic acid
EFAS: Essential fatty acids
EP: Prostaglandin E receptor
GPCR: G protein-coupled receptor
IL: Interleukin
MAPEG: Membrane- associated proteins in eicosanoid and glutathione
NSAID: Non-steroidal anti-inflammatory drug
15-PGDH: 15-Hydroxyprostaglandin dehydrogenase
PGE $_{2}$: Prostaglandin E_{2}
PGHS: Prostaglandin H synthase
mPGES: Microsomal PGE synthase
PGT: Prostaglandin transporter
PLA: Poly lactic acid
PPh3: Triphenylphosphine

SAR: Structure activity relationship

SDS: Sodium dodecylsulfate

TXs: Thromboxanes

THF: Tetrahydrofuran

TLC: Thin layer chromatography

TDs: Thiazolidinediones

VEGF: Vascular endothelial growth factor

국문초록

약물설계를 위한 thiazolidinedione계15-PGDH 억제제 합성 및 구조 활성 분석

무 영

지도교수: 조훈
조선대학교 대학원 고분자공학과

Prostaglandins (PGs)은 prostaglandin endoperoxide를 거쳐 archidonic acid로 부터 합성되어 진다. Prostaglandin $\mathrm{E}_{2}\left(\mathrm{PGE}_{2}\right)$ 는 생리 및 병리학 측면에서 광범위하게 관여하고 있으며, 특 히 PGE_{2} 는 생체 내에서 reproductives, gastromtestinal, nevroendocrine 및 면역시스템을 조절 하는 중요한 역할을 담당하고 있다. 하지만 prostaglandin은 생체에서 15 hydroxyprostaglandin dehydrogenase (15-PGDH)에 의해 분해됨으로써 짧은 활성을 갖는다. Cytosolic 효소인 15 -PGDH는 prostaglandin의 15 -hydroxyl group을 ketone으로 변환시킴으로 써 prostaglandin이 갖고 잇는 생리활성을 잃게 하는 기능을 갖고 있다. 따라서 이 효소의 활성을 억제하는 것은 PGE_{2} 부족으로부터 유발되는 여러 가지 질병 치료에 사용이 가능 할 것이다.

Thiazolidinedione 유도체인 5-(4-(2-cyclohexylethoxy)benzylidene)thiazolidine-2,4-dione (CT-8) 은 전에 발표된 $15-\mathrm{PGDH}$ 억제제 중 하나이다. 구조-활성 분석결과 thiazolidine-2,4-dione의 아민 그룹에 methyl 그룹을 도입하게 되면 $15-\mathrm{PGDH}$ 억제효과를 잃게 되며, ethylhydroxyl 그룹을 도입할 경우에는 여전히 억제 효과를 가지고 있음을 보였다. Thiazolidinedione 유도체의 구조와 억제효과에 대한 상관관계 분석으로부터 보다 선택적인 화합물을 합성하기 위해 phenyl ring에 다양한 치환체를 도입 하였으며, 유도체에 대한 억 제 활성을 평가하였다. CT-8 의 cyclohexylethyl group을 hetero five-member ring으로 치환할

경우여 활성이 증가하였다. 하지만 cyclohexylethyl group을 hetero six-member ring으로 치환 할 경우에는 반대로 억제효능이 현저히 감소함을 보였다. 또한 phenyl ring에 $-\mathrm{CH}_{3}$, -$\mathrm{OCH}_{3},-\mathrm{OEt},-\mathrm{NO}_{2},-\mathrm{CF}_{3},-\mathrm{F},-\mathrm{Cl},-\mathrm{Br}$ 과 같은 그룹을 도입할 경우 $15-\mathrm{PGDH}$ 에 대한 좋은 억제효과를 보였다. 그 중에서도 phenyl ring에 -Cl group을 포함하고 있는 43b 5-(3-chloro-4-(2-cyclohexylethoxy)benzylidene)thiazolidine-2,4-dione 화합물이 nanomalar 범위에서 가장 강력한 억제효과를 보였다.

ABSTRACT
\title{ Synthesis and structure activity relationship of thiazolidinedione derivatives as $\mathbf{1 5}$-PGDH for drug design }
Ying Wu
Academic Advisor : Prof. Cho Hoon, Ph. D.
Department of Polymer Science \& Engineering, Graduate School of Chosun University, South Korea

Prostaglandins (PGs) are derived from arachidonic acid through the prostaglandin endoperoxide synthase pathway. Prostaglandins have been implicated in a wide varity of physiological and pathological processes, Especially prostaglandin $\mathrm{E}_{2}\left(\mathrm{PGE}_{2}\right)$ regulated key responses in the major human systems including reproductives, gastrointestinal, neuroendocrine and immune systems. A cytosolic enzyme, NAD^{+}-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH) catalyzes the oxidation of $15-(S)$ hydroxyl group of prostaglandins to 15 -ketone, resulting in the biological inactivation of prostaglandins and a short life in vivo. Inhibitors of this enzyme will be valuable for the therapeutic management of many diseases.

Previously, 5-(4-(2-cyclohexylethoxy)benzylidene)thiazolidine-2,4-dione (CT-8), a thiazolidinedione analogue, was found to be a potent inhibitor of 15-PGDH. Structure-activity analysis indicated that the N-methylation of thiazolidine-2,4-dione of CT-8, abolished its inhibitory activity, whereas the introduction of an ethyl hydroxyl group at amine in CT-8 improved its inhibitory effect. Based on the structures of the thiazolidinedione analogues and inhibitory activities, a variety of benzylidene thiazolidinedione derivatives were synthesized with different substituents on the phenyl ring and then their inhibitory activities were evaluated. Replacement of the
cyclohexylethyl group of CT-8 with the hetero five-member ring increased the inhibitory potency and cyclohexylethyl group was replaced with a hetero six-member ring was decreased the inhibitory potency significantly. Furthermore, compounds with substituents such as $-\mathrm{CH}_{3},-\mathrm{OCH}_{3}$, $\mathrm{OEt},-\mathrm{NO}_{2},-\mathrm{CF}_{3},-\mathrm{F},-\mathrm{Cl}$ and -Br on the phenyl ring were good inhibitors of $15-\mathrm{PGDH}$. It was found that the most active $15-\mathrm{PGDH}$ inhibitors contain a -Cl group in the phenyl ring and compound $\mathbf{4 3 b}$ 5-(3-chloro-4-(2-cyclohexylethoxy)benzylidene)thiazolidine-2,4-dione is the most effective potent inhibitor.

1. Introduction

1.1. Prostaglandins

1.1.1. Basic definitions

Prostaglandins are members of a group of lipid compounds that are derived enzymatically from essential fatty acids (EFAs) and have important functions in the animal body. Every prostaglandin contains 20 carbon atoms, including a 5 -carbon ring. Prostaglandin name derives from the prostate gland. When prostaglandins were first isolated from seminal fluid in 1935 by the Swedish physiologist Ulf von Euler and independently by M.W. Goldblatt, it was believed to be part of the prostatic secretions. Later it was shown that many other tissues secrete prostaglandins for various functions. Prostaglandin $E_{2}\left(\mathrm{PGE}_{2}\right)$ is a founding member of the prostaglandins, a class of mediators that belongs to the still growing family of bioactive autacoids known as the eicosanoids. The chemical structure of PGE_{2} was shown in Fig. 1.

Fig. 1. Chemical structure of Prostaglandin E_{2}.

1.1.2. Biosynthesis of prostaglandins

PGs are formed by most cells in our bodies and act as autocrine and paracrine lipid mediators (i.e., they signal at or immediately adjacent to their site of synthesis). They are not stored but are synthesized de novo from membrane-released arachidonic acid (AA) [1]. When cells are activated by mechanical trauma or by specific cytokine growth factor, and other stimuli [e.g., collagen and
adenosine diphosphate (ADP) in platelets, bradykinin and thrombin in endothelium]. A host of enzymes exquisitely regulate cellular levels of AA, keeping it esterified until mobilized by phospholipases $\left(\mathrm{PLA}_{2}\right)$. The control of AA release from membranes has undergone several paradigm shifts in recent years with the continuing identification of new PLA_{2} members [2]. Despite this, type IV cytosolic $\mathrm{PLA}_{2}\left(\mathrm{cPLA}_{2}\right)$ remains the key player for eicosanoid production because cells lacking cPLA 2 are generally devoid of eicosanoid synthesis.

Cell-specific and agonist-dependent events coordinate translocation of cPLA_{2} to the nuclear envelope, endoplasmic reticulum (ER), and Golgi apparatus [3]. At the ER and nuclear membrane, AA released by cPLA_{2} is presented to prostaglandin H synthase (PGHS; referred to colloquially as COX for cyclooxygenase) and is converted to prostanoids, including the PGs and the thromboxanes (TXs), via the reaction of cyclooxygenase (COX), which results in the formation of an unstable endoperoxide intermediate, prostaglandin $\mathrm{H}_{2}\left(\mathrm{PGH}_{2}\right)$ (Fig. 2). PGHS exists as two isoforms referred to as PGHS-1 (COX-1) and PGHS-2 (COX-2) [4]. In simplistic terms, COX-1 is the enzyme responsible for basal, constitutive prostaglandin synthesis, whereas COX-2 is important in various inflammatory and "induced" settings. COX-2 is induced by cytokines, growth factors, tumor promoters or other agents. There are notable exceptions to this oversimplification, but in general this classification has aided the rapid advancement in this field since the discovery of COX2. The COX enzymes are monotopically inserted in the ER and nuclear membrane with the substrate binding pocket precisely orientated to take up released AA. The crystal structures of COX-1 and COX-2 are remarkably similar, with one notable amino acid difference that leads to a larger "side-pocket" for substrate access in COX-2 [4]. Then the endoperoxide intermediate, PGH_{2} is metabolized to prostaglandin $\mathrm{D}_{2}\left(\mathrm{PGD}_{2}\right)$, prostaglandin $\left(\mathrm{PGE}_{2}\right)$, prostaglandin $\mathrm{F}_{2 \alpha}\left(\mathrm{PGF}_{2 \alpha}\right)$, prostaglandin $\mathrm{I}_{2}\left(\mathrm{PGI}_{2}\right)$ and thromboxane-2 $\left(\mathrm{TXA}_{2}\right)$ by downstream enzymes is intricatelyorchestrated in a cell-specific fashion.

Thromboxane synthase is found in platelets and macrophages, prostacyclin synthase is found in endothelial cells and prostaglandin F synthase in uterus, and two types of prostaglandin D synthase are found in brain and mast cells. Microsomal PGE synthase (mPGES), a member of the MAPEG (membrane- associated proteins in eicosanoid and glutathione metabolism) family, is responsible
for PGE_{2} synthesis [5]. Coordinate induction of multiple enzymes in the prostanoid pathway, in particular mPGES and COX-2, in inflammatory settings is a current concept being developed [6].

Fig. 2. Biosynthesis of prostaglandins [7].

1.1.3. Metabolism of PGE_{2}

The eicosanoids are made in a burst of enzymatic activity in cells, following a specific stimulus. Further more, these molecules transmit the information of cellular activation to cells in the immediate vicinity. Thus, it is felt that some means for rapid inactivation is important for regulation of their actions. The major route of inactivation of eicosanoids is through metabolic conversion into
inactive products. A large number of enzymes are involved in the eicosanoid deactivation process. One of the most widely distributed enzymes involved in the metabolic inactivation of eicosanoids is 15 -hydroxyprostaglandin dehydrogenase, which has been purified to homogeneity from various sources [8]. This cytosolic enzyme appears to be present in two different types, requiring either oxidized nicotinamide-adenine dinucleotide $\left(\mathrm{NAD}^{+}\right)$for activity or, as a second type found in kidney, brain, and erythrocytes, which uses oxidized nicotinamide-adenine dinucleotide phosphate $\left(\mathrm{NADP}^{+}\right)$as a cofactor. This enzyme converts the 15 -hydroxy group in prostaglandins into a conjugated α, β-unsaturated ketone at the 15 position. Another enzyme, prostaglandin 13, 14 reductase, then reduces the double bond at these positions of the 15 -keto-prostaglandin metabolite to yield the corresponding 13, 14-dihydro-15-keto-prostaglandin metabolites. This enzyme has been partially purified and requires reduced $\mathrm{NAD}(\mathrm{NADH})$ for activity [9]. For PGE_{2}, the metabolite 15 -keto-13, 14-dihydro- PGE_{2} can be cyclyzed in vitro or in vivo to yield the bicyclePGE_{2} metabolite illustrated in Fig. 3.

Fig. 3. Summary of the chemical structures involved in the transformations of PGE_{2} into its major
urinary metabolite.
This metabolite can be measured in blood or urine as an index of the production of PGE_{2} in vivo [10]. In addition, extensive metabolic transformations also occur with the 15 -keto-13, 14-dihydroPGE_{2} metabolite following omega-oxidation of C 20 terminus to the omega carboxy group and formation of CoA ester at C1 carboxy terminus followed by one or two cycles of betaoxidation. It has been recently suggested that the peroxisomes in the hepatocyte may be responsible for much of the beta-oxidation of prostaglandins [11]. This latter route of metabolic conversion leads to the metabolites of dinor and tetranor series. A dinor metabolite PGE_{2} is illustrated in Fig. 3.

1.2. 15-Hydroxyprostaglandin dehydrogenase (15-PGDH)

1.2.1. Basic definitions

NAD^{+}-dependent $15-\mathrm{PGDH}$ is ubiquitously present in mammalian tissues and has been purified to apparent homogeneity from several mammalian tissues. The enzyme is believed to be a dimer composed of identical subunits with a molecular weight of 29 kDa , although it has also been proposed that the monomeric enzyme might be active [12]. 15-PGDH can use a wide variety of prostaglandins as substrates with K_{m} values in the $\mu \mathrm{M}$ range for $\mathrm{PGE}_{1}, \mathrm{PGE}_{2}, \mathrm{PGF}_{1 \alpha}, \mathrm{PGF}_{2 \alpha}, \mathrm{PGI}_{2}$, and 6 -keto- $\mathrm{PGF}_{1 \alpha} . \mathrm{PGB}_{2}, \mathrm{PGD}_{2}$, and TXB_{2} are poor substrates of $15-\mathrm{PGDH}$. In addition to prostaglandins, some other eicosanoids are also excellent substrates for $15-\mathrm{PGDH}$. These include 12-HHT; 15-HETE; 5, 15-diHETE; 8, 15-diHETE; and lipoxin A_{4} [13]. It appears that a cyclopentane ring of the prostaglandins is not required for the compound to be oxidized by 15PGDH. The enzyme is NAD^{+}specific and is a B-side specific dehydrogenase [14].

There are two different types of $15-\mathrm{PGDH}$. Type I is NAD^{+}specific, while Type II is NADP ${ }^{+}$ preferred. Type I is more prostaglandin specific and exhibits a low K_{m} for prostaglandins, whereas Type II has a much broader substrate specificity and shows a high K_{m} for prostaglandins [15]. Indeed, Type II was later found to be identical to carbonyl reductase [16]. Therefore, Type I is considered to be the key enzyme responsible for the biological inactivation of prostaglandins. Studies on the prostaglandin catabolism have focused on the Type I enzyme (hereafter referred to as 15-PGDH).

1.2.2. Function of $15-\mathrm{PGDH}$

15-PGDH catalyzes reversible oxidation/reduction of prostaglandins at $\mathrm{C}-15$. The oxidation rate is maximal at pH 9.0 , whereas the reduction is favored at pH 5.5 [17]. In addition to 15ketoprostaglandins, a variety of non-prostanoid polycyclic aromatic hydrocarbons such as $9,10-$ phenanthrenequinone can be reduced by this enzyme in the presence of NADH [18]. This suggests that $15-\mathrm{PGDH}$ may have substrate specificity much broader than previously recognized. It may function like other known oxidoreductases [19] to carry out oxidation and reduction of compounds of physiological as well as of pathological interest including procarcinogens and carcinogens. Kinetic analysis of the enzyme using initial velocity, production inhibition and dead-end inhibition studies have indicated that the enzyme exhibits an ordered $\mathrm{Bi}-\mathrm{Bi}$ mechanism in which NAD^{+}binds first to the enzyme followed by the prostaglandin, and then the 15 -ketoprostaglandin is released followed by NADH [20].

It is known that $15-\mathrm{PGDH}$ is sensitive to sulfhydryl inhibitors such as N-ethyl maleimide [21] and to metal ions such as Cu^{2+} [22] indicating that a cysteine residue is essential for activity. The enzyme is also inhibited by a variety of pharmacological agents including non-steroidal antiinflammatory drugs such as indomethacin [23], anti-platelet aggregatory drugs such as panaxynol [24], anti-allergic drugs such as flavinoid baicalein [25], anti-ulcer drug such as plaunotol [26], anti-colitic drugs such as sulfasalazine analogs [26, 27], obstetric drugs such as methylergometrine maleate [28], acrolein [29], papaverine [30], and fatty acids [31]. Among these pharmacological agents, 2-hydroxy-5-(3, 5-dimethoxycarbonyl-benzoyl)-benzene acetic acid, a sulfasalazine analog, was found to be the most potent inhibitor of $15-\mathrm{PGDH}\left(\mathrm{IC}_{50}=28 \mathrm{nM}\right)$ [32]. Inhibition appears to be non-competitive with respect to both $\mathrm{PGF}_{2 \alpha}$ and NAD^{+}. It is interesting to note that anti-psychotic drugs such as chlorpromazine and obstetric drugs such as isoxsuprine activate the enzyme in an uncompetitive manner with respect to both PGE_{2} and $\mathrm{NAD}^{+}[28,32]$.

The primary structure of the human $15-\mathrm{PGDH}$ was independently elucidated by classical peptide sequencing [33] and by cDNA cloning [34]. Subsequently, the cDNAs encoding the enzyme were cloned from mouse [35], rat [36], guinea pig [37], and bovine [38] sources. These cDNAs code for
a protein of 266 amino acids with a calculated molecular weight of $28,975 \mathrm{Da}$ for the human enzyme. It appears that the sequences are largely homologous among different species except for two regions, the C-terminal domain and the region from residue 205 to 224 . The genomic DNA of the mouse $15-\mathrm{PGDH}$ gene [39] and the promoter region of the human 15-PGDH gene [40] have also been cloned. The human gene is localized to 4q34-q35 [41]. The mouse gene is approximately 11.3 kb in length and contains seven exons and six introns. Two truncated forms of the human 15PGDH have been reported [42, 43]. One lacks the sixth exon and the other in missing fifth and sixth exons (assuming the human gene has the same gene structure as the mouse). Neither of these forms is likely to have enzyme activity since the deleted portions contain the catalytically essential Tyr 151 and Lys 155 [44, 45].

1.2. 3. Three-dimensional structure of $\mathbf{1 5 - P G D H}$

Comparison of the primary structure of $15-\mathrm{PGDH}$ with those of short-chain dehydrogenases (SDRs) reveals an overall homology of around 20\% [46]. Sequence comparisons of these SDR sequences indicate that six amino acid residues are strictly conserved in these oxidoreductases corresponding to three glycines at positions 12,18 , and 131, Asp 64, Tyr 151 and Lys 155 in 15PGDH. There are also nine residues that are highly conserved among SDRs. These residues are Thr 11, Gly 16, Asp 86, Ala 92, Gly 93, Asn 107, Ser 138, Pro 183, and Thr 188 of the human 15PGDH. Gly 12,16 , and 18 are found in the putative coenzyme binding site having a "Rossmann fold" structure with a conserved glycine pattern (GlyXaaXaaXaaGlyXaaGly). It appears that the Nterminal portion is involved in NAD^{+}binding as demonstrated by photoaffinity labeling studies of 15-PGDH with $\left[\alpha-{ }^{32} \mathrm{P}\right]$-2-azido- NAD^{+}[47] and homology modeling based on the structure of another dehydrogenase [48]. Tyr 151 and Lys 155 located in the motif of TyrXaaXaaXaaLys near to the central part of the SDRs appear to be essential for catalytic activity [49].

Structure characterization, transcriptional regulation and biological function of this enzyme have been investigated. Molecular modeling corroborated with site-directed mutagenesis has identified key residues and domains involved in coenzyme and substrate binding site. The three-dimensional structural model of a ternary complex of $15-\mathrm{PGDH}-\mathrm{NAD}^{+}-\mathrm{PGE}_{2}$ is shown in Fig. 4. The model
consists of a core domain that includes most of the polypeptide and a small lobe that produces from the core. A deep cleft is recognized between the core domain and small lobe, which is presumed to be the binding site for PGE_{2}. In the center of core domain is a seven stranded parallel β-sheet, flanked on each side by α-helices, which constitutes the "Rossmann fold" topology. The core structure is highly conserved among the SDR family member, despite relatively low residue identity between these enzymes (about 30% identify) [49, 51]. The small lobe of this model is also very similar to each oyher, although the structure of this region is highly variable among SDR family member for which a few crystal structure are know. As seen in Fig. 4, NAD^{+}is located at the bottom of the cleft between the core domain and the small lobe.

Fig. 4. A stereoview of 3 D structure of $15-\mathrm{PGDH}-\mathrm{NAD}^{+}-\mathrm{PGE}_{2}$ complex. The green molecular is
substrate PGE_{2}, the red molecular is cofactor NAD^{+}[50].

1.2.4. Reaction mechanism for 15-PGDH

By examining the high-resolution crystal structures of the apo form, binary and ternary complexes and biochemical data gathered from many SDR family members, we can propose a reaction mechanism for $15-\mathrm{PGDH}$ [51-55]. At present, the "Ser-Tyr-Lys catalytic triad" is considered to be important in SDR catalysis, whereby the side-chain oxygen of tyrosine residue functions as an acid-base catalyst for proton transfer. These conserved residues are in fact located around the hydroxyl group of PGE_{2} in the ternary complex of $15-\mathrm{PGDH}$, and the side-chain oxygen of Tyr-151 residue points toward the face of cofactor nicotinamide ring. The finding indicates that the Gln-148 also has important role in catalytic oxidation of PGE_{2} (Fig. 5). This structural conservation clearly indicates that the reaction mechanism common to the SDR family also operates in 15-PGDH, namely, the concerted transfer of a proton from the $\mathrm{C}-15$ hydroxyl group to the Tyl- 151 residue and a proton from PGE_{2} to the NAD^{+}, respectively. Tyl- 15 should be able to act as a general acid/base catalyst in the $15-\mathrm{PGDH}$ active site. Ser-138 is within hydrogen-bonging distance to the hydroxyl group of PGE_{2} from the opposite direction of Tyr-151. The distance between the side chain nitrogen of Lys-155 and the side chain oxygen of Tyr-151 is $4.5 \AA$, and Lys155 could reduce the $\mathrm{p} K_{\mathrm{a}}$ of Tyr-155 by electrostatic interaction. In addition, Lys-155 is also responsible for NAD^{+}binding. Once the catalytic cavity has oriented and fixed PGE_{2}, its hydroxyl group is placed in between oxygen atoms of side-chain of Ser-138, Gln-148 and Tyr-151. A proton can then be easily transferred from the alcohol group of PGE_{2} to the unprotonated form of residue Tyr-151. This process generates a partial positive charge on the $\mathrm{C}-15$ atom of PGE_{2} that facilitates a hydride transfer to the C-4 position of the nicotinamide ring of NAD ${ }^{+}$. Ser-138 and Gln-148 either orients the PGE_{2} or stabilizes the transient reaction intermediate during the oxidation process, or both. Lys- 155 has possibly two roles: first, to assist in the proper orientation of NAD^{+}by forming hydrogen bonds with the oxygen atoms of the nicotinamide-ribose moiety and second, to lower the $\mathrm{p} K_{\mathrm{a}}$ of the Tyr-151 residue through electrostatic interaction. The $\mathrm{p} K_{\mathrm{a}}$ of Tyr- 151 seems to be strongly influenced also by the positively charged nicotinamide ring of the NAD^{+}in the binary complex.

Fig. 5. Catalytic mechanism of $15-\mathrm{PGDH}$.

1.3. Thiazolidinediones (TDs)

Thiazolidinediones (TDs) have been the subject of extensive researches because of their deep involvement in the regulation of different physiological processes. TDs act by binding to PPARs (peroxisome proliferator-activated receptors), a group of receptor molecules inside the cell nucleus (Lehman et al., 1995). TD derivatives have been shown to possess potent immunostimulatory property, antiarthritic activity as well as oncostatic activity [56]. TDs such as troglitazone, pioglitazone, and rosiglitazone are potent reducer of plasma glucose level in vivo. Besides their anti-diabetic potency, these TDs have been shown to exert anti-inflammatory effects on vascular cells [57]. TDs were also found to inhibit the production of inflammatory cytokines and the expression of inducible nitric oxide syntheses in monocytes/macrophages [58, 59]. It has been shown that TDs suppress the growth of several cancer cell lines including colon, breast, and prostate [60-62]. TDs were also found to inhibit angiogenesis [63]. Some TD derivatives also
showed Cu^{2+} mediated lipid-peroxidation inhibitory activity and were found to inhibit serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) as well as γ Glutamyltranspeptidase (γ-GTP) levels significantly during treatment in patients with type 2 diabetes [64]. TDs are also potential cancer chemopreventive agents against colon, breast, tongue, and gastric carcinogenesis [63]. Previously, it was reported that ciglitazone, an antidiabetic thiazolidinedione, is a potent antagonist of the $15-\mathrm{PGDH}$ enzymatic activity with an IC_{50} of $2.7 \mu \mathrm{M}$ [65]. In addition, the inhibitory potency of ciglitazone was higher than rosiglitazone (10 times) and troglitazone (127 times). The structures of these TDs are shown in Fig. 6. It appears the nature of the moiety linking to benzylidenethiazolidine-2, 4-dione through an ether linkage plays an important role in its inhibitory potency [66]. Further modifications of this moiety may yield thiazolidines of greater inhibitory activity. The benzylidene thiazolidinedione CT-8 was synthesized and was found that this compound was the most potent inhibitor. Kinetic studies revealed that inhibition by CT-8 was noncompetitive with respect to NAD^{+}and uncompetitive with respect to PGE_{2}, indicating that the inhibitor interacts with the enzyme at a site distinct from the substrate binding site.

Ciglitazone

Troglitazone

Rosiglitazone

CT-8

Fig. 6. Structures of ciglitazone, rosiglitazone, troglitazone and CT-8.

1.4. Necessity of $\mathbf{1 5 - P G D H}$ inhibitors

PGE_{2} participates in a wide range of body functions such as the contraction and relaxation of
smooth muscle, the dilation and contraction of blood vessels, control of blood pressure, and modulation of inflammation.

Recently, clinical studies demonstrated that PGE_{2} causes the growth of body hair and eyelashes in humans and animals [67]. In humans, trials carried out on the scalp have shown that PGE_{2} could increase the hair density [68]. Minoxidil, a Katp channel opener initially developed to treat hypertension in human [69] are known to stimulate human hair growth. Among its pleiotropic effects, minoxidil was able to sustain prostaglandin synthesis by dermal papilla cells, and to protect the catalytic activities of the purified prostaglandin endoperoxide synthase, against its selfinactivating catalytic process [70]. Early observations reported an increase of eyelash pigmentation [71, 72] as well as hypertrichosis of eyelashes and ancillary hairs around eyelids [73]. A central question rapidly emerged in the field of androgenic alopecia about the trichogenic potential of prostaglandins [74] A report indeed described positive effects of PGE_{2}, the most representative prostaglandins in human and mouse skin, on hair growth and follicular melanogenesis in a murine model [75]. As far as regulation process is concerned, dihydrotestosterone-a well-known physiological androgen is involved in hair growth control [76]. Several non-steroidal antiinflammatory drugs (NSAIDs) reported to inhibit hair growth [77] not only decreased prostaglandin synthesis but also increased 15-PGDH activity [78].

In pregnancy, PGE_{2} is secreted continuously by the fetal membranes and placenta and plays an important role in the final events leading to the initiation of labor [79, 80]. It is known that PGE_{2} stimulates the production of $\mathrm{PGF}_{2 \alpha}$ which in turn sensitizes the myometrium to endogenous or exogenously administered oxytocin. Although PGE_{2} is capable of initiating uterine contractions and may interact with oxytocin to increase uterine contractility, the available evidence indicates that, in the concentrations found during the early part of labor, PGE_{2} plays an important role in cervical ripening without affecting uterine contractions [81-83]. Therefore, inhibitors of $15-\mathrm{PGDH}$ will be valuable for the therapeutic management of diseases requiring elevated PGE_{2} levels.

2. Results and discussion

2.1. Chemistry

Thiazolidine-2, 4-dione derivatives were prepared from the corresponding aryl aldehydes by the procedure shown in Scheme 2.2.1-2.2.4. The substituted benzaldehyde intermediate was afforded via a Mitsunobu coupling [84] between a starting material p-Hydroxybenzaldehyde and various substituents in reproducible good yield. Knoevenagel condensation between the substituted benzaldehyde intermediate and thiazolidine-2, 4-dione in refluxing toluene, containing a catalytic amount of piperidine and acetic acid, gave the final TDs, which cryatallized from the reaction mixture with high purity. Scheme 2.2.5 summarizes the synthetic routes of various of substituents on the thiazolidinedione ring. N-substituents of thiazolidine-2, 4-dione ring was treated with compound CT-8 with equimolar amounts of sodium hydride and iodomethane or 2-iodoethanol to give 97 and 98 respectively. Toward that end we utilized a modified conjugate reduction protocol of Pfaltz [85]. A stirring mixture of $\mathrm{CoCl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ and dimethylglyoxime in THF/H2O containing aqueous NaOH was treated with NaBH_{4} to produce a deep blue mixture. The reducing mixture was cooled in an ice-water bath and olefin thiazolidine-2, 4-diones was added. The reaction was quenched upon the disappearance of olefin to give single bond product (Scheme 2.2.6). An efficient one-step route to the thiazolidine-2, 4-dione derivatives was employed to provide compounds 107, 108 and 109 (Scheme 2.2.7).

2.1.1. Synthesis of compounds (1b-36b)

Scheme 2.1.1. Reagents and conditions: (i) $\mathrm{PPh}_{3}, \mathrm{DEAD}, \mathrm{THF}, 25^{\circ} \mathrm{C}, 18$; (ii) piperidine, AcOH , reflux, 12 h .

2.1.2. Synthesis of compounds (37b-50b)

Scheme 2.1.2. Reagents and conditions: (i) $\mathrm{PPh}_{3}, \mathrm{DEAD}, \mathrm{THF}, 25^{\circ} \mathrm{C}, 18$; (ii) piperidine, AcOH , reflux, 12 h .

2.1.3. Synthesis of compounds (51b-77b)

Scheme 2.1.3. Reagents and conditions: (i) $\mathrm{PPh}_{3}, \mathrm{DEAD}, \mathrm{THF}, 25^{\circ} \mathrm{C}, 18$; (ii) piperidine, AcOH ,
reflux, 12 h .

2.1.4. Synthesis of compounds (78b - 92b)

Scheme 2.1.4. Reagents and conditions: (i) $\mathrm{PPh}_{3}, \mathrm{DEAD}, \mathrm{THF}, 25^{\circ} \mathrm{C}, 18 \mathrm{~h}$; (ii) piperidine, AcOH , reflux, 12 h .

2.1.5. Synthesis of compounds (93-98)

Scheme 2.1.5. Reagents and conditions: (i) piperidine, AcOH, reflux, 12 h .

2.1. 6. Synthesis of compounds (99-106)

99-106

Scheme 2.1.6. Reagents and conditions: (i) $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, dimethylglyoxime, $\mathrm{NaBH}_{4}, 1.0 \mathrm{~N} \mathrm{NaOH}$, $0^{\circ} \mathrm{C}$.

2.1.7. Synthesis of compounds (107-109)

107-109
Scheme 2.1.7. Reagents and conditions: (i) piperidine, AcOH , reflux, 12 h .

2.2. In vitro evaluation

PGE_{2} is a major inflammatory product derived from arachidonic acid through the cyclooxygenase pathway, which is involved in pain and inflammatory responses and is a key player in controlling various physiological functions. PGE2 exerts its diverse effects by binding to four different EP receptor subtypes $\left(\mathrm{EP}_{1}-\mathrm{EP}_{4}\right)$ [86] (Fig. 7), resulting in the activation of different intracellular signal-transduction pathways. The EP_{1} receptor couples to Gq and mediates a rise in intracellular calcium concentration. PGE_{2} acts through EP_{1} to control the impulsive behavior associated with enhanced dopaminergic activity under stress conditions. The EP_{2} and EP_{4} receptors couple to Gs and mediate a rise in cyclic adenosine monophosphate (cAMP) concentration. Actions of PGE_{2} via EP_{2} and EP_{4} have been implicated in a number of critical mech-anisms critical to arthritis. PGE_{2} also regulates the production of cytokine and growth factor such as IL-6, vascular endothelial growth factor, parathy-roid hormone-related peptide, and macrophage colony stimulating factor though the activation of EP_{2} and EP_{4} receptors in IL-1 stimulated synovial fibroblasts [87, 88]. Both $E P_{2}$ and EP_{4} also mediate PGE_{2}-induced bone formation via osteoblastogenesis in animal models. In contrast, $\mathrm{The}_{\mathrm{EP}}^{3}$ receptor exists in multiple splice variants generated by alternative splicing of the COOH -terminal tail and triggers Gi protein-coupled
adenylate cyclase inhibition and subsequent decrease in intracellular cAMP. Transient intracellular variations of the secondary mediators cAMP or Ca^{2+} generate specific induction of cell regulation mechanisms [89].

Fig.7. Actions of PGE_{2} with EP receptors.
PGE_{2} has been also identified as an important mediator of gastric ulcer healing. [90-97] and dermal wound healing [98-103] with specific effects on fibroblast behavior. Hatazawa et al. [104] reported that endogenous PGE_{2} plays a role in the healing of NSAID-induced intestinal ulcers through the EP_{4} receptors. They also reported that the healing-promoting action of PGE_{2} is associated with an increase in angiogenesis by up-regulating vascular endothelial growth factor (VEGF) expression in the fibroblasts of the gastric ulcer bed or margin by activating the EP4 receptors [90]. Numerous In vivo studies have also identified PGE_{2} as a potent anabolic agent that stimulates both modeling (i.e. formation drift on quiescent surface) [105-110] and remodeling-
dependent (i.e. positive basic multi-cellular unit bone balance) bone gain when delivered intermittently by daily subcutaneous injections [110-118]. PGs, including $\mathrm{PGE}_{1}, \mathrm{PGE}_{2}$ and $\mathrm{PGF}_{2 \alpha}$, have been demonstrated to stimulate both bone resorption and bone formation but tend to favor bone formation, thereby increasing bone mass and bone strength [108, 109]. Endogenous PGE_{2} increases locally after fracture and the inhibition of PGE_{2} production impairs bone healing [119, 120]. In contrast, the local administration of PGE_{2} stimulates bone formation and callus development in animal models.
$15-\mathrm{PGDH}$ catalyzes the NAD^{+}dependent oxidation of the $15(\mathrm{~S})$-hydroxyl group of prostaglandins and is considered to be a key enzyme in the biological inactivation of prostaglandins. Therefore, inhibitors of $15-\mathrm{PGDH}$ will be valuable for the therapeutic management of diseases requiring elevated PGE_{2} levels.

Many studies have reported that the local administration of PGE_{2} accelerates the healing of gastric ulcers and wounds, increases bone formation and callus development in animal models. However, local administration of PGE_{2} is an unacceptable therapeutic option for human diseases due to the limited knowledge of the potential changes caused by it on the tissue and cellular level as well as the biological instability of PGE_{2}. Therefore, inhibitors of $15-\mathrm{PGDH}$ will be valuable for the therapeutic management of diseases requiring elevated prostaglandin levels.

Previously, various pharmacological agents of diverse structures have been reported for their inhibition of $15-\mathrm{PGDH}$. Among those inhibitors, CT-8 and its derivatives thiazolidinediones appear to be the most potent inhibitors for $15-\mathrm{PGDH}$. This indicates that the benzylidene thiazolidine-2, 4dione analog showed significantly higher inhibitory potency than the benzyl thiazolidine-2, 4-dione analog. It was also interesting to discover that the amine group of thiazolidine-2, 4-dione plays an important role in the inhibitory potency. These were confirmed by the synthesis of various thiazolidinedione derivatives in this study. We synthesized several TD derivatives and checked their activity against $15-\mathrm{PGDH}$. SAR of TD derivatives indicate that many compound have strong 15PGDH inhibitory activities at the nanomolar range. The synthesized compounds were evaluated for their inhibitory activity for $15-\mathrm{PGDH}\left(\mathrm{IC}_{50}\right.$ value).

Table 2.2.1. Inhibitory potency of the compounds $\mathbf{1 b} \mathbf{- 3 6 b}$

$11 b$	Thiophen-3-ylmethyl		0.428
$12 b$	2-(Thiophen-3-yl)ethyl		0.060
$13 b$	2-Morpholinoethyl		0.713
$14 b$	2-Isopropoxyethyl		1.248
15b	2-(Cyclohexyloxy)ethyl		0.218
16b	2-(Cyclohexylamino)ethyl		3.718
$17 b$	Pyridine-2-ylmethyl		2.585
$18 b$	2-(Pyridine-2-yl)ethyl		0.659
$19 b$	2-(Tetrahydro-2H-pyran-2-yl)ethyl		0.750
$20 b$	2-(Piperidin-1-yl)ethyl		1.441
$21 b$	2-(4-Methylthiazol-5-yl)ethyl		0.635
$22 b$	Cyclopentylmethyl		0.116
23b	2-Cyclopentylethyl		0.044
$24 b$	4-Methoxybenzyl		0.529

$25 b$
$26 b$
$27 b$
$28 b$
$29 b$
$30 b$

31b
$32 b$

33b Phenylbutyl
$34 b$

35b
$36 b$
4-Methylbenzyl

Phenylethyl

Benzo[d][1,3]dioxol-5-ylmethyl

4-(Chloromethyl)benzyl

2-(4-Methylcyclohex-3-en-1-yl)propoxyl

Biphenyl-4-ylmethyl

0.231

0.124
 0.252

0.050

>20

0.117
 0.225

0.186

0.814

The enzyme was assayed fluorometrically. The IC_{50} value was determined using $\mathrm{NAD}^{+}(250 \mu \mathrm{M})$ as coenzyme and $\mathrm{PGE}_{2}(21 \mu \mathrm{M})$ as substrate. $15-\mathrm{PGDH}$ was expressed as a GST fusion enzyme using pGEX-2T vector. ND: No detectable activity.

We introduced $-\mathrm{CH}_{2}$ group between cyclohexyl ring and ether linkage of phenyl in CT- 8 . The number of $-\mathrm{CH}_{2}$ was increased and the optimal for inhibitory activity observed at two $-\mathrm{CH}_{2}$ linkage $\mathbf{(1 b} \mathbf{- 5 b})$. Replacement of the cyclohexyl ring with a benzene ring (29b-33b) decreased the inhibitory potency significantly. Replacement of cyclohexane by the 5 -member ring resulted in a significant increase in its $15-\mathrm{PGDH}$ inhibitory potency, as indicated for compounds $\mathbf{9 b} \mathbf{~} \mathbf{1 2 b}$ and 23b. However, replacement of the cyclohexylethyl group with the hetero 6-member ring decreased the inhibitory potency significantly ($\mathbf{7 b} \mathbf{b} \mathbf{1 3 b}, \mathbf{1 8 b}$ and 20b). Interestingly, 4-(methylcyclohexyl) methyl group and the 2-(4-methylcyclohex-3en-1-yl) propoxyl group also increased the $15-\mathrm{PGDH}$ inhibitory potency significantly ($\mathbf{2 8 b}$ and $\mathbf{3 5 b}$). The most potent inhibitor of this series of TDs was 35b 5-\{4-[2-(4-methylcyclohex-3-en-1-yl)propoxy]benzylidene\}-1,3-thiazolidine-2,4-dione with an IC_{50} of $0.0284 \mu \mathrm{M}$.

Table 2.2.2. Inhibitory potency of the compounds 37b-50b

Compound	R_{1}	R_{2}	R_{3}	$I C_{50}(\mu M)$

$37 b$	NO_{2}	H	H	0.059
$38 b$	OCH_{3}	H	H	0.025
$39 b$	$\mathrm{OCH}_{2} \mathrm{CH}_{3}$	H	H	0.258
$40 b$	CH_{3}	H	H	0.044
$41 b$	CF_{3}	H	H	0.072
$42 b$	F	H	H	0.069
$43 b$	Cl	H	H	0.007
$44 b$	Br	H	H	0.018
45b	H	Cl	H	0.013
$46 b$	H	OCH_{3}	H	3.562
47 b	H	CF_{3}	H	0.136
$48 b$	OCH_{3}	H	OCH_{3}	0.062
$49 b$	Cl	H	OCH_{3}	0.050
$50 b$	Cl	H	F	0.177

The enzyme was assayed fluorometrically. The IC_{50} value was determined using $\mathrm{NAD}^{+}(250 \mu \mathrm{M})$ as coenzyme and $\mathrm{PGE}_{2}(21 \mu \mathrm{M})$ as substrate.15-PGDH was expressed as a GST fusion enzyme using pGEX-2T vector. ND: No detectable activity.

Substitutions on the central aromatic ring with either electron with drawing or donating group (i.e. $\mathrm{NO}_{2}, \mathrm{CH}_{3}, \mathrm{~F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{OCH}_{3}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, \mathrm{CF}_{3}$) resulted in increasing of the 15 -PGDH inhibitory activity. Substitutions at the R_{1}-position in phenyl ring play a critical role in $15-\mathrm{PGDH}$ inhibitory activity. Presented in Scheme 2.1.2, -Cl group at R_{1} position $\mathbf{4 3 b}$ shows the best IC_{50} value. The R_{1}-positions -Cl analog 43 b was about two times more potent in vitro than the R_{2}-position -Cl analog 45b and $-\mathrm{CF}_{3}$ analog 41b was also about two times more potent than $-\mathrm{CF}_{3}$ analog $\mathbf{4 7 b}$. We introduced methoxy group at different position $\left(R_{1}, R_{2}\right.$ and $\left.R_{3}\right)$ are compared the IC_{50} value. The compound contains $-\mathrm{OCH}_{3}$ group at R1-positions $\mathbf{3 8 b}$ was about a hundred times stronger than $-\mathrm{OCH}_{3}$ group at R_{2}-positions 46b. 38b was also 2 times stronger than $-\mathrm{OCH}_{3}$ group at R_{3}-position 49b. Thus, we introduce two substituents in the pheny ring, Compounds $\mathbf{4 8 b}$ with $-\mathrm{OCH}_{3}$ group at
R_{1}-position, $-\mathrm{OCH}_{3}$ group at R_{3}-position; 49 b with -Cl group at R_{1}-position, $-\mathrm{OCH}_{3}$ group at R_{3} position; 50b with -Cl group at R_{1}-position, -F group at R_{3}-position. These compounds are weaker inhibitors than one substitution. The most potent inhibitor of this series of TDs was compound 43b 5-(3-chloro-4-(2-cyclohexylethoxy)benzylidene)thiazolidine-2,4-dione with an IC_{50} of 7.7 nM .

Table 2.2.3. Inhibitory potency of the compounds 51b-77b

Compound	R	$\boldsymbol{R}_{\boldsymbol{I}}$	R_{2}	$I C_{50}(\mu M)$
$51 b$	Cyclohexyl	Cl	H	0.047
52b	Cyclohexylmethyl	Cl	H	0.027
$53 b$	Cyclohexylpropyl	Cl	H	0.010
54b	Cyclohexylbutyl	Cl	H	0.024
55b	Cyclohexyl	H	Cl	0.233
$56 b$	Cyclohexylmethyl	H	Cl	2.449
57b	Cyclohexylpropyl	H	Cl	0.284
$58 b$	Cyclohexylbutyl	H	Cl	1.645
$59 b$	Benzyl	Cl	H	0.047
$60 b$	Phenylethyl	Cl	H	0.019
$61 b$	Phenylpropyl	Cl	H	0.038
$62 b$	Phenylbutyl	Cl	H	0.047
63b	Benzyl	H	Cl	0.487
64b	Phenylethyl	H	Cl	0.178
65b	Phenylpropyl	H	Cl	0.052

$66 b$	Phenylbutyl	H	Cl	0.081
$67 b$	Cyclohexylpropyl	NO_{2}	H	0.324
$68 b$	Phenylbutyl	NO_{2}	H	1.082
69	Cyclohexylmethyl	CH_{3}	H	0.049
70	Cyclohexylpropyl	CH_{3}	H	0.104
71	Cyclohexylbutyl	CH_{3}	H	0.399
72	4-Nitrobenzyl	H	Cl	ND
73	2-Thiomorpholine-1,1-dioxideethyl	Cl	H	0.223
74	2-Thiomorpholine-1,1-dioxideethyl	NO_{2}	H	2.449
75	2-(Thiophen-2yl)ethyl	CF_{3}	H	0.031
76	2-(Thiophen-2yl)ethyl	OCH_{3}	H	0.084
77	4-(Methylcyclohexyl)methyl	Cl	H	0.681

The enzyme was assayed fluorometrically. The IC_{50} value was determined using $\mathrm{NAD}^{+}(250 \mu \mathrm{M})$ as coenzyme and $\mathrm{PGE}_{2}(21 \mu \mathrm{M})$ as substrate.15-PGDH was expressed as a GST fusion enzyme using pGEX-2T vector. ND: No detectable activity.

TDs 51b - 54b exhibited significant 15-PGDH inhibitory activity at lower concentrations at nanomolar range. TDs 59b-62b also showed potent activity than TDs 63b-66b. SAR study revealed that most compounds contain -Cl at R_{1}-position showed significant inhibitory activity than other positions. The most potent inhibitor of this series of TDs was 53b 5-(3-chloro-4-(2cyclohexylpropoxy) benzylidene)thiazolidine-2,4-dione with an IC_{50} of $0.010 \mu \mathrm{M}$.

Table 2.2.4. Inhibitory potency of the compounds 78b - 92b

Compound	R	R_{1}	R_{2}	$1 C_{50}(\mu M)$
$78 b$	Cyclohexyl	Cl	H	0.212
$79 b$	Cyclohexylmethyl	Cl	H	0.058
$80 b$	Cyclohexylethyl	Cl	H	0.029
$81 b$	Cyclohexylpropyl	Cl	H	0.059
82b	Cyclohexylbutyl	Cl	H	0.095
$83 b$	Benzyl	Cl	H	0.257
84b	Phenylethyl	Cl	H	0.122
85b	Phenylpropyl	Cl	H	0.044
86 b	Cyclohexylbutyl	Cl	H	0.054
87b	Cyclohexylethyl	H	OCH_{3}	1.157
$88 b$	Cyclohexylethyl	H	NO_{2}	2.820
$89 b$	Cyclohexylethyl	Cl	OCH_{3}	0.109
90 b	4-(Methylcyclohexyl)methyl	Cl	H	0.135
916	4-Nitrobenzyl	H	H	1.671
92 b	2-(Thiophen-2yl)ethyl	Cl	OCH_{3}	11.700

The enzyme was assayed fluorometrically. The IC_{50} value was determined using $\mathrm{NAD}^{+}(250 \mu \mathrm{M})$ as coenzyme and $\mathrm{PGE}_{2}(21 \mu \mathrm{M})$ as substrate.15-PGDH was expressed as a GST fusion enzyme using pGEX-2T vector. ND: No detectable activity.

In this series of compounds, we evaluated ether linkage at 3-position in phenyl ring. SAR shows that this linkage was also good $15-\mathrm{PGDH}$ inhibitory properties. As we increased $-\mathrm{CH}_{2}$ chain between cyclohexyl and ether linkage, we found that TDs contains two $-\mathrm{CH}_{2}$ chains between cyclohexyl and ether linkage are optimal for $15-\mathrm{PGDH}$ inhibitory activity. TDs contains -Cl group at R_{1}-position 80b 5-(2-chloro-3-(2-cyclohexylethoxy)benzylidene)thiazolidine-2,4-dione is the best 15-PGDH inhibitor with an IC_{50} of $0.010 \mu \mathrm{M}$ in this series.

Table 2.2.5. Inhibitory potency of the compounds 93-98

Compound	Z	X	R	$I C_{50}(\mu M)$
93	S	S	H	0.689
94	S	O	$\mathrm{CH}_{2} \mathrm{CH}_{3}$	ND
95	O	NH	H	0.865
96	O	CH_{2}	H	3.788
97	O	S	CH_{3}	ND
98	O	S	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	0.526

The enzyme was assayed fluorometrically. The IC_{50} value was determined using $\mathrm{NAD}^{+}(250 \mu \mathrm{M})$ as coenzyme and $\mathrm{PGE}_{2}(21 \mu \mathrm{M})$ as substrate.15-PGDH was expressed as a GST fusion enzyme using pGEX-2T vector. ND: No detectable activity.

It was interesting to discover that the amine group of thiazolidine-2, 4-dione plays an important role in the inhibitory potency. This was confirmed by the synthesis of another N-methylated derivative (97), in which protection of the amine group in the molecule by methylation rendered the compound totally inactive. In order to demonstrate the role of the amine group in the molecule, an ethyl hydroxyl group was introduced instead of hydrogen and the inhibitory potency of the compounds (98) was compared. The introduction of an ethyl hydroxyl group at the amine group in CT-8 still produced a good inhibitory effect. This suggests that the hydrogen bond donating groups of thiazolidine-2, 4-dione are essential to orient the molecule more favorably toward the binding site in the enzyme. Further structure-activity analysis indicated that the replacement of S in thiazolidine-2, 4-dione with NH or CH_{2} decreased the inhibitory potency of CT-8 significantly, as shown in Table 2.2.5. Replacement of 2, 4-thiazolidindione ring with other analogue such as rhodanine (93), 3-ethyl-2-thioxolidinone (94) decrease 15-PGDH inhibitory activity. These information suggested that the thiazolidinedione is important for binging with enzyme $15-\mathrm{PGDH}$.

Table 2.2.6. Inhibitory potency of the compounds 99-106

Compound.	\boldsymbol{R}	$\boldsymbol{R}_{\boldsymbol{1}}$	$\boldsymbol{R}_{\mathbf{2}}$	$\boldsymbol{I C _ { 5 0 } (\mu M)}$
$\mathbf{9 9}$	Cyclohexylethyl	H	H	0.977
$\mathbf{1 0 0}$	Cyclohexylmethyl	H	H	4.190
$\mathbf{1 0 1}$	Cyclohexylethyl	Cl	H	0.147
$\mathbf{1 0 2}$	Cyclopentylmethyl	H	H	0.854
$\mathbf{1 0 3}$	Benzyl	H	H	5.061
$\mathbf{1 0 4}$	2-Cyclopentylethyl	H	Cl	0.251
$\mathbf{1 0 5}$	Biphenyl-4-ylmethyl	H	H	20.726
$\mathbf{1 0 6}$	Cyclohexylethyl	H	H	2.232

The enzyme was assayed fluorometrically. The IC_{50} value was determined using $\mathrm{NAD}^{+}(250 \mu \mathrm{M})$ as coenzyme and $\mathrm{PGE}_{2}(21 \mu \mathrm{M})$ as substrate.15-PGDH was expressed as a GST fusion enzyme using pGEX-2T vector. ND: No detectable activity.

Interestingly, the benzylidene analog showed increase in 15 -PGDH inhibitory potency. The olefinic bond between central aromatic ring and 2,4-thiazolidinedione ring appears to orient the molecule more favorably toward the binging site in the enzyme. This is conformed by the synthesis of other benzyl derivatives $(\mathbf{9 9}-\mathbf{1 0 6})$ in which the introduction of olefinic bond in the molecule increased dramatically the inhibitory potency of substituted benzyl 2, 4-thiazolidinediones.

Table 2.2.7. Inhibitory potency of the compounds 107-109

Compoun

The enzyme was assayed fluorometrically. The IC_{50} value was determined using $\mathrm{NAD}^{+}(250 \mu \mathrm{M})$ as coenzyme and $\mathrm{PGE}_{2}(21 \mu \mathrm{M})$ as substrate. $15-\mathrm{PGDH}$ was expressed as a GST fusion enzyme using pGEX-2T vector. ND: No detectable activity.

This series of TDs decreased 15-PGDH inhibitory potency. It proved that ether linkage at 3-or4position in phenyl ring is important.

3. Experimental

3.1. Materials and chemical agents

$\mathrm{PGE}_{2}, \quad \mathrm{NAD}^{+}, \quad \mathrm{NADH}, \quad$ Glutathione-Sepharose 4B, Dithiothretitol (DTT), Sodium dodecylsulfate (SDS), EDTA and reduced glutathione were obtained from Sigma. The cDNA of human $15-\mathrm{PGDH}$ was cloned from a human placenta cDNA libraryAll chemical reagents were commercially available. The UV spectra were obtained using a UV-VIS spectrophotometer (SHIMADZU). TLC plates were prepared by using Kieselgel 60 PF254. Column chromatography was performed using silica gel (230-400 mesh, Whatman Inc). The NMR spectra were recorded on a JEOL JNM-LA 300 spectrometer (JOEL, Tokyo, Japan). Chemical shifts were reported in parts per million (δ) and signala were quoted as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet).

3.2. Expression and purification of $\mathbf{1 5}-\mathbf{P G D H}$

The sequence of $15-\mathrm{PGDH}$ cDNA plasmid cantaining BamHI and EcoRI sites of the pGEX-2T expression vector was used to transform Escherichia coli BL-21 LysS. Cells were grown in 500 mL LB medium containing $50 \mu \mathrm{~g} / \mathrm{mL}$ ampicillin at $37^{\circ} \mathrm{C}$ with 220 rpm until OD_{600} reached 0.6 . Isopropyl B-D-thiogalactoside (1 mM) was added and cells were allowed to grow for 12 h at $25^{\circ} \mathrm{C}$. Cells were then harvested by centrifugation at 4000 xg for 30 min at $4^{\circ} \mathrm{C}$. The cell pellets was resuspended in 20 mL of cold cell lysis buffer $[1 \times$ PBS buffer $(\mathrm{pH} 7.4)$ containing 1 mM EDTA and 0.1 mM DTT] and sonicated $\left(14 \times 10 \mathrm{~s}\right.$ at $\left.4^{\circ} \mathrm{C}\right)$. Disrupted cells were centrifuged at 4000 g for 20 min at $4^{\circ} \mathrm{C}$. The supernatant was slowly applied to the Glutathione-Sepharose 4 B column (about 3 ml) which was equilibrated at $4^{\circ} \mathrm{C}$ with lysis buffer $[1 \times \mathrm{PBS}$ buffer (pH 7.4) containing 1 mM EDTA and 0.1 mM DTT]. After washing with lysis buffer until the OD_{280} reached less than 0.005 . The $15-\mathrm{PGDH}$ was eluted from the Glutathione-Sepharose 4 B column by incubation at room temperature for 5 min with the elution buffer [50 mM Tris-HCL (pH 8.0) containing 10 mM reduced glutathione 1 mM EDTA and 0.1 mM DTT]. The concentration of the purified enzyme was determined and the purity of the 15 -PGDH was assessed by SDS-PAGE.

3.3. 15-PGDH inhibitors activity assay

Assays for activity of $15-\mathrm{PGDH}$ inhibitors was performed using a fluorescence spectrophotometer by measuring the formation of NADH at 468 nm following excitation at 340 nm . 50 mM Tris- $\mathrm{HCl}(\mathrm{pH} 7.5), 0.1 \mathrm{mM}$ DTT, $0.25 \mathrm{mM} \mathrm{NAD}^{+}, 10 \mu \mathrm{~g}$ of purified enzyme, $21 \mu \mathrm{M} \mathrm{PGE}{ }_{2}$, and various concentrations of inhibitors (total 2 mL) were added in cell. Each concentration was assayed in triplicate. The absorbance of the reaction mixture was read at 340 nm and the activity of 15-PGDH inhibitors was determined from a standard curve prepared various concentrations of NADH absorbance at 340 nm .

3.4. General procedure for the synthesis of compounds

Synthesis of compounds 1-36

1a: 4-(cyclohexyloxy)benzaldehyde

1 a

Diethyl azodicarboxylate (40% in toluene, $4.79 \mathrm{~g}, 11 \mathrm{mmol}$) was added slowly to a stirring solution of cyclohexanemethanol ($1 \mathrm{~g}, 10 \mathrm{mmol})$, p-hydroxybenzaldehyde $(1.22 \mathrm{~g}, 10 \mathrm{mmol})$ and triphenylphosphine $(2.89 \mathrm{~g}, 11 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ for 10 min. at $0^{\circ} \mathrm{C}$. The mixture was then stirred at room temperature until the starting materials (TLC analysis) began to disappear. The resulting solution was concentrated under reduced pressure and purified by column chromatography over silica gel (elution with hexane/ethyl acetate, $20: 1$) to afford 1.5 g of $\mathbf{1 a}$ (87%), as a yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.235(\mathrm{~s}, 1 \mathrm{H}), 7.398(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $6.946(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.387(\mathrm{q}, 1 \mathrm{H}), 1.724-1.976(\mathrm{~m}, 2 \mathrm{H}), 1.498-1.697(\mathrm{~m}, 2 \mathrm{H}), 1.323-1.498$ $(\mathrm{m}, 3 \mathrm{H}), 1.123-1.297(\mathrm{~m}, 3 \mathrm{H}), 1.056-1.186(\mathrm{~m}, 1 \mathrm{H})$.

1b: 5-(4-(cyclohexyloxy)benzylidene)thiazolidine-2,4-dione

A mixture of $1 \mathbf{1 a}(1.0 \mathrm{~g}, 4.9 \mathrm{mmol})$, 2,4-thiazolidinedione ($573 \mathrm{mg}, 4.9 \mathrm{mmol}$), piperidine $(0.24$ $\mathrm{ml}, 2.45 \mathrm{mmol})$ and acetic acid $(0.14 \mathrm{ml}, 2.45 \mathrm{mmol})$ in toluene $(20 \mathrm{~mL})$ was then added to a round bottom flask fitted with a Dean-Stark water trap and stirred under reflux for overnight. After cooling to room temperature, the precipitate was washed with hexane and dried to afford compound 1b as a yellow solid ($1.3 \mathrm{~g}, 88 \%$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.496(\mathrm{~s}, 1 \mathrm{H}), 7.724(\mathrm{~s}, 1 \mathrm{H})$ $7.532(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.091(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.455(\mathrm{q}, 1 \mathrm{H}), 1.865-2.073(\mathrm{~m}, 2 \mathrm{H}), 1.675-$ $1.865(\mathrm{~m}, 2 \mathrm{H}), 1.446-1.547(\mathrm{~m}, 3 \mathrm{H}), 1.257-1.415(\mathrm{~m}, 3 \mathrm{H}), 1.160-1.257(\mathrm{~m}, 1 \mathrm{H})$.

2a: 4-(cyclohexylmethoxy)benzaldehyde

2a
2a: yield 72%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.354(\mathrm{~s}, 1 \mathrm{H}), 7.245(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.786$ (d, $J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.534(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.587-1.768(\mathrm{~m}, 6 \mathrm{H}), 1.098-1.265(\mathrm{~m}, 3 \mathrm{H}), 0.897-$ 1.045 (m, 2H).

2b: 5-(4-(cyclohexylmethoxy)benzylidene)thiazolidine-2,4-dione

2b: yield 83%; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.345(\mathrm{~s}, 1 \mathrm{H}), 7.748(\mathrm{~s}, 1 \mathrm{H}), 7.390(\mathrm{~d}, J=11.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.895(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.752(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.629-1.819(\mathrm{~m}, 6 \mathrm{H}), 1.152-1.301(\mathrm{~m}$, $3 \mathrm{H}), 0.926-1.072(\mathrm{~m}, 2 \mathrm{H})$.

3a: 4-(2-cyclohexylethoxy)benzaldehyde

3a
3a: yield 79%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.857(\mathrm{~s}, 1 \mathrm{H}), 7.849(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.087$ (d, $J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.178(\mathrm{t}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.697-1.798(\mathrm{~m}, 6 \mathrm{H}), 1.217-1.290(\mathrm{~m}, 5 \mathrm{H}), 0.969-$ 1.007 (m, 2H).

3b: 5-(4-(2-cyclohexylethoxy)benzylidene)thiazolidine-2,4-dione

3b: yield 84%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.195(\mathrm{~s}, 1 \mathrm{H}), 7.675(\mathrm{~s}, 1 \mathrm{H}), 7.473(\mathrm{~d}, J=14.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.895(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.036(\mathrm{t}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.565-1.727(\mathrm{~m}, 5 \mathrm{H}), 1.437-1.469(\mathrm{~m}$, $1 \mathrm{H}), 1.041-1.223(\mathrm{~m}, 3 \mathrm{H}), 0.807-1.034(\mathrm{~m}, 2 \mathrm{H})$.

4a: 4-(3-cyclohexylpropoxy)benzaldehyde

4a: yield 81%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.324(\mathrm{~s}, 1 \mathrm{H}) 7.398(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.120(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.947(\mathrm{t}, J=12.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.423-1.612(\mathrm{~m}, 7 \mathrm{H}), 1.011-1.278(\mathrm{~m}, 6 \mathrm{H}), 0.786-0.899$ (m, 2H).

4b: 5-(4-(3-cyclohexylpropoxy)benzylidene)thiazolidine-2,4-dione

4b: yield $86 \% ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.505(\mathrm{~s}, 1 \mathrm{H}) 7.730(\mathrm{~s}, 1 \mathrm{H}), 7.547(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.084(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.028(\mathrm{t}, J=12.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.628-1.711(\mathrm{~m}, 7 \mathrm{H}), 1.143-1.300(\mathrm{~m}$, $6 \mathrm{H}), 0.839-0.911(\mathrm{~m}, 2 \mathrm{H})$.

5a: 4-(4-cyclohexylbutoxy)benzaldehyde

5a
5a: yield 76%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.189(\mathrm{~s}, 1 \mathrm{H}), 7.243(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.878(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.895(\mathrm{t}, J=12.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.497-1.601(\mathrm{~m}, 6 \mathrm{H}), 1.219-1.290(\mathrm{~m}, 3 \mathrm{H}), 1.012-1.197$ (m, 4H), 0.809-0.977 (m, 4H).

5b: 5-(4-(4-cyclohexylbutoxy)benzylidene)thiazolidine-2,4-dione

5a 5b

5b: yield $84 \% ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 12.453(\mathrm{~s}, 1 \mathrm{H}), 7.407(\mathrm{~s}, 1 \mathrm{H}), 7.357(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 6.933(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.003(\mathrm{t}, J=12.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.625-1.692(\mathrm{~m}, 6 \mathrm{H}), 1.37-1.398(\mathrm{~m}$, $3 H), 1.133-1.215(\mathrm{~m}, 4 \mathrm{H}), 0.815-0.956(\mathrm{~m}, 4 \mathrm{H})$.

6a: 4-(2-Thiomorpholine 1,1-Dioxideethoxy)benzaldehyde

$6 a$
6a: yield 87%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.90(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{t}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.20(\mathrm{t}, J=10.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.105(\mathrm{t}, J=10.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.04(\mathrm{t}$, $J=10.5 \mathrm{~Hz}, 2 \mathrm{H})$.

6b: 5-(4-(2-Thiomorpholine 1,1-Dioxideethoxy)benzylidene)-2,4-thiazolidinedione

6b: yield 88%; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.169(\mathrm{t}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.086(\mathrm{t}, J=10.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.033(\mathrm{t}, J=$ $10.2 \mathrm{~Hz}, 4 \mathrm{H}), 2.945(\mathrm{t}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H})$.

7a: 4-(3-Thiomorpholine 1,1-Dioxidepropoxy)benzaldehyde

$7 \mathbf{a}$
7a: yield $87 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.891(\mathrm{~s}, 1 \mathrm{H}), 7.865(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.014$ $(\mathrm{d}, J=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.158(\mathrm{t}, J=12 \mathrm{~Hz}, 2 \mathrm{H}), 3.077(\mathrm{~m}, 8 \mathrm{H}), 2.749(\mathrm{t}, J=14.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.953-$ 2.047 (m, 2H).

7b: 5-[4-(3-Thiomorpholine-1,1-dioxidepropoxy)benzylidene]-thiazolidine-2,4-dione

7b: yield $81.1 \% ;{ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \quad \delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.705(\mathrm{~s}, 1 \mathrm{H}), 7.540(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.088(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{t}, J=12 \mathrm{~Hz}, 2 \mathrm{H}), 3.06-3.89(\mathrm{~m}, 8 \mathrm{H}), 2.616(\mathrm{t}, J=14.1$ $\mathrm{Hz}, 2 \mathrm{H}), 1.819-1.911(\mathrm{~m}, 2 \mathrm{H})$.

8a: 4-(Thiophen-2-ylmethoxy)benzaldehyde

8a
8a: yield $86 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.893(\mathrm{~s}, 1 \mathrm{H}), 7.862(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.368(\mathrm{~d}, J$
$=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.153(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.103(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.042(\mathrm{~m}, 1 \mathrm{H}), 5.309(\mathrm{~s}, 2 \mathrm{H})$.

8b: 5-(4-(Thiophen-2-ylmethoxy)benzylidene)thiazolidine-2,4-dione

8b: yield 80.7% yield; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 12.513(\mathrm{~s}, 1 \mathrm{H}), 7.745(\mathrm{~s}, 1 \mathrm{H}), 7.569(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.559(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.248(\mathrm{t}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.194(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.052(\mathrm{~m}, 1 \mathrm{H}), 5.37(\mathrm{~s}, 2 \mathrm{H})$.

9a: 4-(2-(Thiophen-2-yl)ethoxy)benzaldehyde

9a
9a: yield 79\%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.89(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=$ $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.92-6.98(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{t}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{t}, J=$ 13.2 Hz, 2H).

9b: 5-(4-(2-(Thiophen-2-yl)ethoxy)benzylidene)thiazolidine-2,4-dione

9b: yield 87.8% yield; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.558(\mathrm{~d}, J=$ - 37 -
$8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.354(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.942-6.973(\mathrm{~m}, 2 \mathrm{H}), 4.28(\mathrm{t}, J=$ $12.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.285(\mathrm{t}, J=12.6 \mathrm{~Hz}, 2 \mathrm{H})$.

10a: 4-(furan-2-ylmethoxy)benzaldehyde

$10 a$
10a: yield 83%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.895(\mathrm{~s}, 1 \mathrm{H}) 7.872(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.473$ (q, 1H), $7.118(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.483(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.413(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.093(\mathrm{~s}$, $2 \mathrm{H})$.

10b: 5-[4-(furan-2-ylmethoxy) benzylidene] thiazolidine-2,4-dione

10b: yield 87%; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 12.518(\mathrm{~s}, 1 \mathrm{H}), 7.747(\mathrm{~s}, 1 \mathrm{H}), 7.705(\mathrm{t}, J=1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.572(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.200(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.630(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.481(\mathrm{~d}, J$ $=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.142(\mathrm{~s}, 2 \mathrm{H})$.

11a: 4-(Thiophen-3-ylmethoxy)benzaldehyde

11a
11a: yield 83%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.926(\mathrm{~s}, 1 \mathrm{H}), 7.865(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.382$ $(\mathrm{d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.367(\mathrm{~s}, 1 \mathrm{H}), 7.164(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.092(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.160(\mathrm{~s}$, $2 \mathrm{H})$.

11b: 5-[4-(Thiophen-3-ylmethoxy)benzylidene]thiazolidine-2,4-dione

11b: yield $86 \% ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.504(\mathrm{~s}, 1 \mathrm{H}), 8.590(\mathrm{~s}, 1 \mathrm{H}), 7.864(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.733(\mathrm{~s}, 1 \mathrm{H}), 7.573(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.521(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.197(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 5.252(\mathrm{~s}, 2 \mathrm{H})$.

12a: 4-(2-(Thiophen-3-yl)ethoxy)benzaldehyde

12a
12a: yield 83%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.89(\mathrm{~s}, 1 \mathrm{H}), 7.876(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J$ $=13.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.383(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.357(\mathrm{~s}, 1 \mathrm{H}), 7.164(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{t}, J=$ $13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.18(\mathrm{t}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H})$.

12b: 5-(4-(2-(Thiophen-3-yl)ethoxy)benzylidene)thiazolidine-2,4-dione

12b: yield 86%; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) N $8.12(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.556(\mathrm{~d}, J=11.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.305(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.088(\mathrm{~s}$, $1 \mathrm{H}), 4.28(\mathrm{t}, J=13.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{t}, J=13.8 \mathrm{~Hz}, 2 \mathrm{H})$.

13a: 4-(2-(morpholinoethoxy))benzaldehyde

13a
13a: yield $79 \% ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.17(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J$ $=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{t}, J=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{t}, J=9.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.83(\mathrm{t}, J=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{t}, J$ $=9.0 \mathrm{~Hz}, 4 \mathrm{H})$.

13b: 5-(4-(2-Morpholinoethoxy)benzylidene)thiazolidine-2,4-dione

13b: yield 81.7%; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.705(\mathrm{~s}, 1 \mathrm{H}), 7.544$ (d, $J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.104(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.219(\mathrm{t}, J=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.808(\mathrm{t}, J=9.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.134(\mathrm{t}, J$ $=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.764(\mathrm{t}, J=9.6 \mathrm{~Hz}, 4 \mathrm{H})$.

14a: 4-(2-isopropoxyethoxy)benzaldehyde

14a
14a: yield $82 \% ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.88(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J$ $=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{t}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{t}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.63-3.75(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 6 \mathrm{H})$.

14b: 5-(4-(2-Isopropoxyethoxy)benzylidene)thiazolidine-2,4-dione

14b: yield $85.7 \% ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.805(\mathrm{~s}, 1 \mathrm{H}), 7.432(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.022(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{t}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{t}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.65-3.76(\mathrm{~m}$, $1 \mathrm{H}), 1.24(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H})$.

15a: 4-(2-(Cyclohexyloxy)ethoxy)benzaldehyde

15a: yield $85 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.923(\mathrm{~s}, 1 \mathrm{H}), 7.852(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.052$ $(\mathrm{d}, J=14.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.212(\mathrm{t}, J=9.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.862(\mathrm{t}, J=9.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.300-3.373(\mathrm{~m}, 1 \mathrm{H})$, $1.964-2.175(\mathrm{~m}, 2 \mathrm{H}), 1.731-1.822(\mathrm{~m}, 2 \mathrm{H}), 1.523-1.567(\mathrm{~m}, 1 \mathrm{H}), 1.167-1.426(\mathrm{~m}, 5 \mathrm{H})$.

15b: 5-(4-(2-(Cyclohexyloxy)ethoxy)benzylidene)thiazolidine-2,4-dione

15a
15b
15b: yield $82.0 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.645(\mathrm{~s}, 1 \mathrm{H}), 7.733(\mathrm{~s}, 1 \mathrm{H}), 7.437(\mathrm{~d}, J=14.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.020(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.197(\mathrm{t}, J=9.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.302(\mathrm{t}, J=9.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.321-$ $3.397(\mathrm{~m}, 1 \mathrm{H}), 1.956-2.179(\mathrm{~m}, 2 \mathrm{H}), 1.754-1.770(\mathrm{~m}, 2 \mathrm{H}), 1.549-1.592(\mathrm{~m}, 1 \mathrm{H}), 1.218-1.389(\mathrm{~m}$, $5 \mathrm{H})$.

16a: 4-(2-cyclohexylamino)ethoxybenzaldehyde

16a
16a: yield 75\%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.885(\mathrm{~s}, 1 \mathrm{H}), 7.855(\mathrm{~d}, \mathrm{~J}=14.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.034$ $(\mathrm{d}, \mathrm{J}=14.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.173(\mathrm{t}, \mathrm{J}=10.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.082(\mathrm{t}, \mathrm{J}=10.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.452-2.546(\mathrm{~s}, 1 \mathrm{H})$, $1.834-1.943(\mathrm{~m}, 2 \mathrm{H}), 1.734-1.788(\mathrm{~m}, 2 \mathrm{H}), 1.642-1.649(\mathrm{~m}, 3 \mathrm{H}), 1.264-1.449(\mathrm{~m}, 2 \mathrm{H}), 1.041-$ $1.179(\mathrm{~m}, 2 \mathrm{H})$.

16b: 5-(4-(2-(Cyclohexylamino)ethoxy)benzylidene)thiazolidine-2,4-dione

16b: 75.5\% yield; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.504(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.310(\mathrm{~s}, 1 \mathrm{H})$, $7.069(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.244(\mathrm{t}, J=9.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.302(\mathrm{t}, J=9.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.876-2.942(\mathrm{~m}, 1 \mathrm{H})$, $2.284(\mathrm{~s}, 1 \mathrm{H}), 1.894-2.071(\mathrm{~m}, 2 \mathrm{H}), 1.733-1.894(\mathrm{~m}, 2 \mathrm{H}), 1.571-1.610(\mathrm{~m}, 1 \mathrm{H}), 1.094-1.304(\mathrm{~m}$, 4H).

4-(piridin-2-ylmethoxy)benzaldehyde (17a)

17a
17a: yield 83%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.932(\mathrm{~s}, 1 \mathrm{H}), 8.630(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.870(\mathrm{~d}$, $J=14.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.767(\mathrm{t}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.513(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.284(\mathrm{t}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.129 (d, $J=14.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.295$ (s, 2H).

17b: 5-(4-(piridin-2-ylmethoxy)benzylidene)thiazolidine-2,4-dione

17b: yield 87%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 12.525(\mathrm{~s}, 1 \mathrm{H}), 8.585(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.865(\mathrm{t}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.735(\mathrm{~s}, 1 \mathrm{H}), 7.575(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.527(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.372 (m, 1H), 7.197 (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.251$ (s, 2H).

18a: 4-(2-(piridin-2-yl)ethoxy)benzaldehyde

18a

18a: yield 84%; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 9.86(\mathrm{~s}, 1 \mathrm{H}), 8.572(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.834$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.199-7.288(\mathrm{~m}, 1 \mathrm{H}), 7.183-7.196(\mathrm{~m}, 1 \mathrm{H}), 7.015(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.489(\mathrm{t}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.32(\mathrm{t}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H})$.

18b: 5-(4-(2-(Pyridin-2-yl)ethoxy)benzylidene)thiazolidine-2,4-dione

18b: yield $84.6 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 10.36(\mathrm{~s}, 1 \mathrm{H}), 8.452(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.783(\mathrm{~s}, 1 \mathrm{H}), 7.719-7.277(\mathrm{~m}, 1 \mathrm{H}), 7.488(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.277(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.190-$ $7.232(\mathrm{~m}, 1 \mathrm{H}), 6.924(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.169(\mathrm{t}, J=14.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.048(\mathrm{t}, J=14.7 \mathrm{~Hz}, 2 \mathrm{H})$.

19a: 4-(tetrahydropyran-2-methoxy)benzaldehyde

19a
19a: yield $86 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.881(\mathrm{~s}, 1 \mathrm{H}), 7.839(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.044(\mathrm{~d}, J$ $=14.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.034-4.087(\mathrm{~m}, 2 \mathrm{H}), 3.943-3.990(\mathrm{~m}, 1 \mathrm{H}), 3.703-3.780(\mathrm{~m}, 1 \mathrm{H}), 3.481-3.566(\mathrm{~m}$, 1H), 1.908-1.948 (m, 1H), 1.451-1.692 (m, 5H).

19b: 5-(4-(tetrahydropyran-2-methoxy)thiazolidine)-2,4-dione

19b: yield $88 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 8.290(\mathrm{~s}, 1 \mathrm{H}), 7.726(\mathrm{~s}, 1 \mathrm{H}), 7.545(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.978(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.850-3.892(\mathrm{~m}, 2 \mathrm{H}), 3.595-3.638(\mathrm{~m}$, $1 \mathrm{H}), 1.974-2.119(\mathrm{~m}, 4 \mathrm{H}), 1.601-1.858(\mathrm{~m}, 2 \mathrm{H}), 1.279-1.470(\mathrm{~m}, 2 \mathrm{H})$.

20a: 4-(2-(piperidin-1-yl)ethoxy)benzaldehyde

20a

20a: yield $85 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.88(\mathrm{~s}, 1 \mathrm{H}), 7.839(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.013(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.223(\mathrm{t}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.828(\mathrm{t}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.544(\mathrm{t}, J=10.5 \mathrm{~Hz}, 4 \mathrm{H})$, 1.583-1.657 (m, 4H), 1.418-1.494 (m, 2H).

20b: 5-[4-(2-(piperidin-1-yl)ethoxy)benzylidene]thiazolidine-2,4-dione

20b: yield $87 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.522(\mathrm{~s}, 1 \mathrm{H}), 7.411(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H})$, $6.967(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.096(\mathrm{t}, J=11.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.814(\mathrm{t}, J=11.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.379(\mathrm{~m}, 4 \mathrm{H})$,

21a: 4-(2-(4-methylthiazol-5-yl)ethoxy)benzaldehyde

21a
21a: yield 85%; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.89(\mathrm{~s}, 1 \mathrm{H}), 8.612(\mathrm{~s}, 1 \mathrm{H}), 7.854(\mathrm{~d}, J=10.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.014(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.247(\mathrm{t}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.309(\mathrm{t}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.463(\mathrm{~s}$, $3 \mathrm{H})$.

21b: 5-(4-(2-(4-methylthiazol-5-yl)ethoxy)benzylidene)thiazolidine-2,4-dione

21b: yield $88 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 12.487(\mathrm{~s}, 1 \mathrm{H}), 8.824(\mathrm{~s}, 1 \mathrm{H}), 7.721(\mathrm{~s}, 1 \mathrm{H})$, $7.556(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.102(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.238(\mathrm{t}, J=12.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.250(\mathrm{t}, J=12.3$ Hz, 2H), 2.284 ($\mathrm{s}, 3 \mathrm{H}$).

22a: 4-(cyclopentylmethoxy)benzaldehyde

22a
22a: yield 86%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.878(\mathrm{~s}, 1 \mathrm{H}), 7.848(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.018$
$(\mathrm{d}, J=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.928(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.340-2.439(\mathrm{~m}, 1 \mathrm{H}), 1.822-1.911(\mathrm{~m}, 2 \mathrm{H}), 1.581-$ $1.808(\mathrm{~m}, 4 \mathrm{H}), 1.312-1.424(\mathrm{~m}, 2 \mathrm{H})$.

22b: 5-(4-(cyclopentylmethoxy)benzylidene)thiazolidine-2,4-dione

22b: yield $86 \% ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 12.503(\mathrm{~s}, 1 \mathrm{H}), 7.732(\mathrm{~s}, 1 \mathrm{H}), 7.547(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.094(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.922(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.253-2.351(\mathrm{~m}, 1 \mathrm{H}), 1.750-1.770$ $(\mathrm{m}, 2 \mathrm{H}), 1.525-1.603(\mathrm{~m}, 4 \mathrm{H}), 1.283-1.344(\mathrm{~m}, 2 \mathrm{H})$.

23a: 4-(2-cyclopentylethoxy)benzaldehyde

23a
23a: yield $89 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.878(\mathrm{~s}, 1 \mathrm{H}), 7.850(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.014$ $(\mathrm{d}, J=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.085(\mathrm{t}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.878-2.031(\mathrm{~m}, 1 \mathrm{H}), 1.698-1.870(\mathrm{~m}, 4 \mathrm{H}), 1.494-$ $1.675(\mathrm{~m}, 4 \mathrm{H}), 1.109-1.228(\mathrm{~m}, 2 \mathrm{H})$.

23b: 5-(4-(2-cyclopentylethoxy)benzylidene)thiazolidine-2,4-dione

23b: yield 81%; ${ }^{1}$ H NMR (300 MHz, DMSO- d_{6}) $\delta 12.502(\mathrm{~s}, 1 \mathrm{H}), 7.737(\mathrm{~s}, 1 \mathrm{H}), 7.550(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.093(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.136(\mathrm{t}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.807-1.976(\mathrm{~m}, 1 \mathrm{H}), 1.700-1.769$ $(\mathrm{m}, 4 \mathrm{H}), 1.455-1.611(\mathrm{~m}, 4 \mathrm{H}), 1.102-1.185(\mathrm{~m}, 2 \mathrm{H})$.

24a: 4-(4-methoxybenzyloxy)benzaldehyde

24a
24a: yield 86%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.889(\mathrm{~s}, 1 \mathrm{H}), 7.854(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.378(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.087(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.095(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.077(\mathrm{~s}, 2 \mathrm{H}), 3.826(\mathrm{~s}, 3 \mathrm{H})$.

24b: 5-[4-(4-methoxybenzyloxy)benzylidene]thiazolidine-2,4-dione

24b: yield 86%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 12.523(\mathrm{~s}, 1 \mathrm{H}), 7.897(\mathrm{~s}, 1 \mathrm{H}) 7.470(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.249(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.307(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.165(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.055(\mathrm{~s}$, $2 \mathrm{H}), 3,785(\mathrm{~s}, 3 \mathrm{H})$.

25a: 4-(4-methylbenzyloxy)benzaldehyde

25a
25a: yield 86%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.885(\mathrm{~s}, 1 \mathrm{H}) 7.891(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.335(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.261(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) 7.095(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 2.371(\mathrm{~s}, 3 \mathrm{H})$.

25b: 5-(4-(4-metylbenzyloxy)benzylidene)thiazolidine-2,4-dione

25b: yield 80%; ${ }^{1}$ H NMR (300 MHz, DMSO- d_{6}) $\delta 12.514(\mathrm{~s}, 1 \mathrm{H}), 7.800(\mathrm{~s}, 1 \mathrm{H}), 7.560(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.346(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.206(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.165(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.125(\mathrm{~s}$, 2H), 2.295 (s, 3H).

26a: 5-(4-benzo[d][1,3]dioxol-5-ylmethoxy)benzaldehyde

26a
26a: yield 86%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.887(\mathrm{~s}, 1 \mathrm{H}), 7.861(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.084 $(\mathrm{d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.923(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.884(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.771(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~s}$, 2H), 5.042 (s, 2H).

26b: 5-[4-(benzo[d][1,3]dioxol-5-ylmethoxy)benzylidene]thiazolidine-2,4-dione

26b: yield 84%; ${ }^{1}$ H NMR (300 MHz, DMSO- $_{6}$) $\delta 12.498(\mathrm{~s}, 1 \mathrm{H}), 7.722(\mathrm{~s}, 1 \mathrm{H}), 7.558(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.157(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.014(\mathrm{~s}, 1 \mathrm{H}), 6.962(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.919(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, 1H), 6.011 (s, 2H), $5.059(\mathrm{~s}, 2 \mathrm{H})$.

27a: 4-(4-(chloromethylbenzyloxy)benzaldehyde

$27 a$
27a: yield $87 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $89.932(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.433(\mathrm{~d}$, $J=5.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.096(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.157(\mathrm{~s}, 2 \mathrm{H}), 4.605(\mathrm{~s}, 2 \mathrm{H})$.

27b: 5-[4-(4-(chlorometyl)benzyloxy)benzylidene]thiazolidine-2,4-dione

27b: yield 87%; ${ }^{1}$ H NMR (300 MHz, DMSO- $_{6}$) $\delta 12.549(\mathrm{~s}, 1 \mathrm{H}), 7.748(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=12.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.454(\mathrm{~m}, 4 \mathrm{H}), 7.190(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.219(\mathrm{~s}, 2 \mathrm{H}), 4.760(\mathrm{~s}, 2 \mathrm{H})$.

28a: 4-(4-methylcyclohexylmethoxy)benzaldehyde

28a
28a: yield 89%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.371(\mathrm{~s}, 1 \mathrm{H}), 7.378(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.531(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.419(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.19-1.499(\mathrm{~m}, 3 \mathrm{H}), 0.943-$ $1.047(\mathrm{~m}, 4 \mathrm{H}), 0.64-0.821(\mathrm{~m}, 2 \mathrm{H}), 0.375-0.596(\mathrm{~m}, 4 \mathrm{H})$.

28b: 5-[4-((4-metylcyclohexyl)methoxy)benzylidene]thiazolidine-2,4-dione

28b: yield 86%; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 12.493(\mathrm{~s}, 1 \mathrm{H}), 7.693(\mathrm{~s}, 1 \mathrm{H}), 7.536(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.101(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.963(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.851(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.662-$ $1.976(\mathrm{~m}, 4 \mathrm{H}), 1.185-1.516(\mathrm{~m}, 4 \mathrm{H}), 0.975-1.161(\mathrm{~m}, 2 \mathrm{H}), 0.852-0.935(\mathrm{~m}, 3 \mathrm{H})$.

29a: 4-(phenoxy)benzaldehyde

29a
29a: yield $78 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.065(\mathrm{~s}, 1 \mathrm{H}), 7.432-7.569(\mathrm{~m}, 5 \mathrm{H}), 7.214(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.763(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$.

29b: 5-(4-phenoxybenzylidene)-1, 3-thiazolidine-2, 4-dione

29b: yield $72.0 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.302(\mathrm{~s}, 1 \mathrm{H}), 7.536-7.639(\mathrm{~m}, 5 \mathrm{H})$, $7.349(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.903(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$.

30a: 4-(benzyloxy)benzaldehyde

30a
30a: yield 79\%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.088(\mathrm{~s}, 1 \mathrm{H}), 7.395(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.190-$ $7.268(\mathrm{~m}, 5 \mathrm{H}), 6.945(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.008(\mathrm{~s}, 2 \mathrm{H})$.

30b: 5-(4-(benzyloxy)benzylidene)thiazolidine-2,4-dione

30b: yield 83%; ${ }^{1}$ H NMR (300 MHz, DMSO- $_{6}$) $\delta 12.498(\mathrm{~s}, 1 \mathrm{H}), 7.736(\mathrm{~s}, 1 \mathrm{H}) 7.566(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.306-7.468(\mathrm{~m}, 5 \mathrm{H}), 7.18(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.176(\mathrm{~s}, 2 \mathrm{H})$.

31a: 4-(2-phenylethoxy)benzaldehyde

31a
31a: yield 78%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.006(\mathrm{~s}, 1 \mathrm{H}), 7.325(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, 7.123-7.241 (m, 5H), $6.954(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.045(\mathrm{t}, J=14.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.009(\mathrm{t}, J=14.1$ Hz, 2H).

31b: 5-[4-(2-phenylethoxy)benzylidene]-1,3-thiazolidine-2,4-dione

31b: yield 62.7%; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.806(\mathrm{~s}, 1 \mathrm{H}), 7.466(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.262-7.369(\mathrm{~m}, 5 \mathrm{H}), 7.196(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.261(\mathrm{t}, J=14.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.153(\mathrm{t}, J=14.1$ $\mathrm{Hz}, 2 \mathrm{H})$.

32a: 4-(2-phenylpropoxy)benzaldehyde

32a
32a: yield 82%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.02(\mathrm{~s}, 1 \mathrm{H}), 7.327(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.008-$ $7.215(\mathrm{~m}, 5 \mathrm{H}), 6.894(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.998(\mathrm{t}, J=12.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.687(\mathrm{t}, J=15.0 \mathrm{~Hz}, 2 \mathrm{H})$, 1.995-2.067 (m, 2H).

32b: 5-[4-(2-phenylpropoxy)benzylidene]-1,3-thiazolidine-2,4-dione

32a
32b
32b: yield 80.1%; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.820(\mathrm{~s}, 1 \mathrm{H}), 7.465(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.201-$ $7.329(\mathrm{~m}, 5 \mathrm{H}), 6.993(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.020(\mathrm{t}, J=12.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.851(\mathrm{t}, J=15.0 \mathrm{~Hz}, 2 \mathrm{H})$, 2.094-2.187 (m, 2H).

33a: 4-(2-phenylbutoxy)benzaldehyde

33a
33a: yield 84%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 10.012(\mathrm{~s}, 1 \mathrm{H}), 7.239(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, 7.062-7.187 (m, 5H), $6.887(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.910(\mathrm{t}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.647(\mathrm{t}, J=13.8 \mathrm{~Hz}$, $2 H), 1.589-1.721(\mathrm{~m}, 4 \mathrm{H})$.

33b: 5-[4-(2-phenylbutoxy)benzylidene]-1,3-thiazolidine-2,4-dione

33b: yield 85.0%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.816(\mathrm{~s}, 1 \mathrm{H}), 7.468(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.174-$ 7.323(m, 5H), $6.903(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.048(\mathrm{t}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.724(\mathrm{t}, J=13.8 \mathrm{~Hz}, 2 \mathrm{H})$,
1.786-1.876 (m, 4H).

34a: 4-((2,3-Dihydrobenzo[b][1,4]dioxin-2-
yl)methoxy)benzaldehyde

34a
34a: yield 83%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.904(\mathrm{~s}, 1 \mathrm{H}), 7.880(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.843-6.941(\mathrm{~m}, 4 \mathrm{H}), 4.556-4.643(\mathrm{~m}, 1 \mathrm{H}), 4.386-4.433(\mathrm{~m}, 1 \mathrm{H}), 4.311-4.361(\mathrm{~m}$, $1 \mathrm{H}), 4.061-4.279(\mathrm{~m}, 2 \mathrm{H})$.

34b: 5-(4-((2,3-Dihydrobenzo[b][1,4]dioxin-2-yl)methoxy)benzylidene)thiazolidine-2,4-dione

34b: yield $82.4 \% ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}\right.$, DMSO- $\left._{6}\right) \delta 12.513(\mathrm{~s}, 1 \mathrm{H}), 7.733(\mathrm{~s}, 1 \mathrm{H}), 7.576(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.167(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.817-6.922(\mathrm{~m}, 4 \mathrm{H}), 4.458-4.578(\mathrm{~m}, 1 \mathrm{H}), 4.409-4.455(\mathrm{~m}$, 1H), 4.263-4.409 (m, 2H), 4.111-4.173 (m, 1H).

35a: 4-[2-(4-methylcyclohex-3-en-1-yl)propoxy]benzaldehyde

35a: yield $81.4 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 12.496(\mathrm{~s}, 1 \mathrm{H}), 7.726(\mathrm{~s}, 1 \mathrm{H}), 7.547(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.106(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.344(\mathrm{~s}, 1 \mathrm{H}), 3.991-4.042(\mathrm{~m}, 1 \mathrm{H}), 3.844-3.898(\mathrm{~m}, 1 \mathrm{H})$, $1.085-2.069(\mathrm{~m}, 7 \mathrm{H}), 1.711(\mathrm{~s}, 3 \mathrm{H}), 1.347-1.637(\mathrm{~m}, 2 \mathrm{H}), 1.257(\mathrm{t}, J=13.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.860-0.882$ (m, 1H).

35b: 5-\{4-[2-(4-methylcyclohex-3-en-1-yl)propoxy]benzylidene\}-1,3-thiazolidine-2,4-dione

35b: yield 89.8%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 12.496(\mathrm{~s}, 1 \mathrm{H}), 7.726(\mathrm{~s}, 1 \mathrm{H}), 7.547(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.106(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.344(\mathrm{~s}, 1 \mathrm{H}), 3.991-4.042(\mathrm{~m}, 1 \mathrm{H}), 3.844-3.898(\mathrm{~m}, 1 \mathrm{H})$, $1.085-2.069(\mathrm{~m}, 7 \mathrm{H}), 1.711(\mathrm{~s}, 3 \mathrm{H}), 1.347-1.637(\mathrm{~m}, 2 \mathrm{H}), 1.257(\mathrm{t}, J=13.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.860-0.882$ (m, 1H).

36a: 4-(biphenyl-4-ylmethoxy)benzaldehyde

36a
36a: yield 83%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.897(\mathrm{~s}, 1 \mathrm{H}), 7.881(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.584-$ $7.788(\mathrm{~m}, 4 \mathrm{H}), 7.428-7.555(\mathrm{~m}, 4 \mathrm{H}), 7.334-7.391(\mathrm{~m}, 1 \mathrm{H}), 7.130(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.194(\mathrm{~s}$, $2 \mathrm{H})$.

36b: 5-(4-(Biphenyl-4-ylmethoxy)benzylidene)thiazolidine-2,4-dione

36b: yield 83.6%; ${ }^{1}$ H NMR (300 MHz, DMSO- d_{6}) $\delta 12.513(\mathrm{~s}, 1 \mathrm{H}), 7.735(\mathrm{~s}, 1 \mathrm{H}), 7.703(\mathrm{t}, J=$ $15.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.580(\mathrm{t}, J=15.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.486(\mathrm{t}, J=14.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.384(\mathrm{~m}, 1 \mathrm{H}), 7.206(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.235(\mathrm{~s}, 2 \mathrm{H})$.

Synthesis of compounds 37-50

37a: 4-(2-cyclohexylethoxy)-3-nitrobenzaldehyde

37a
37a: yield $84 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.931(\mathrm{~s}, 1 \mathrm{H}), 8.345(\mathrm{~s}, 1 \mathrm{H}), 8.081(\mathrm{~d}, J=10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.267(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.190(\mathrm{t}, J=12.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.839-1.934(\mathrm{~m}, 2 \mathrm{H}), 1.644-1.754(\mathrm{~m}$, $4 \mathrm{H}), 1.335-1.408(\mathrm{~m}, 2 \mathrm{H}), 1.086-1.262(\mathrm{~m}, 3 \mathrm{H}), 0.864-0.970(\mathrm{~m}, 2 \mathrm{H})$.

37b: 5-(4-(2-cyclohexylethoxy)-3-nitrobenzylidene)thiazolidine-2,4-dione

37b: yield 89%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 12.649(\mathrm{~s}, 1 \mathrm{H}), 8.165(\mathrm{~s}, 1 \mathrm{H}), 7.931(\mathrm{~s}, 1 \mathrm{H})$, $7.800(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.539(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.276(\mathrm{t}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.662-1.976(\mathrm{~m}$, $4 \mathrm{H}), 1.594-1.725(\mathrm{~m}, 6 \mathrm{H}), 1.444-1.457(\mathrm{~m}, 1 \mathrm{H}), 1.090-1.212(\mathrm{~m}, 4 \mathrm{H}), 0.874-0.981(\mathrm{~s}, 2 \mathrm{H})$.

38a: 4-(2-cyclohexylethoxy-3-methoxy)benzaldehyde

38a
38a: yield 82%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $89.774(\mathrm{~s}, 1 \mathrm{H}), 7.383(\mathrm{~s}, 1 \mathrm{H}), 7.365(\mathrm{~d}, J=11.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.912(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.096(\mathrm{t}, J=9.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.892(\mathrm{~s}, 3 \mathrm{H}), 1.617-1.755(\mathrm{~m}, 6 \mathrm{H})$, $1.388-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.146-1.258(\mathrm{~m}, 4 \mathrm{H}), 0.87-0.978(\mathrm{~m}, 2 \mathrm{H})$.

38b: 5-(4-(2-cyclohexylethoxy)-3-methoxybenzylidene)thiazolidine-2,4-dione

38b: yield 89%; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 8.221(\mathrm{~s}, 1 \mathrm{H}), 7.728(\mathrm{~s}, 1 \mathrm{H}), 7.028(\mathrm{~d}, J=10.2$ $\mathrm{Hz}, 2 \mathrm{H}), 6.924(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.895(\mathrm{~s}, 1 \mathrm{H}), 4.074(\mathrm{t}, J=14.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.846(\mathrm{~s}, 3 \mathrm{H}), 1.716$ $(\mathrm{t}, J=14.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.434-1.515(\mathrm{~m}, 4 \mathrm{H}), 1.078-1.214(\mathrm{~m}, 4 \mathrm{H}), 0.782-0.976(\mathrm{~m}, 3 \mathrm{H})$.

39a: 4-(2-cyclohexylethoxy-3-ethoxy)benzaldehyde

39a
39a: yield $78 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.832(\mathrm{~s}, 1 \mathrm{H}), 7.434-7.440(\mathrm{~m}, 1 \mathrm{H}), 7.413(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.976(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.109-4.178(\mathrm{~m}, 4 \mathrm{H}), 1.634-1.811(\mathrm{~m}, 7 \mathrm{H}), 1.400-1.583(\mathrm{~m}$, $4 \mathrm{H}), 1.148-1.327(\mathrm{~m}, 3 \mathrm{H}), 0.904-1.140(\mathrm{~m}, 2 \mathrm{H})$.

39b: 5-(4-(2-cyclohexylethoxy)-3-ethoxybenzylidene)thiazolidine-2,4-dione

39b: yield $83.0 \% ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.582(\mathrm{~s}, 1 \mathrm{H}), 7.786(\mathrm{~s}, 1 \mathrm{H}), 7.116(\mathrm{~d}, J=10.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.959(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.000(\mathrm{~s}, 1 \mathrm{H}), 4.089(\mathrm{~m}, 4 \mathrm{H}), 1.653-1.795(\mathrm{~m}, 7 \mathrm{H}), 1.459-$ $1.577(\mathrm{~m}, 4 \mathrm{H}), 1.146-1.282(\mathrm{~m}, 3 \mathrm{H}), 0.941-1.05(\mathrm{~m}, 2 \mathrm{H})$.

40a: 4-(2-cyclohexyleyhoxy)-3-methylbenzaldehyde

40a

40a: yield 76.0%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.845(\mathrm{~s}, 1 \mathrm{H}), 7.707(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.678$ (s, 1H), $6.89(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.111(\mathrm{t}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.259(\mathrm{~s}, 3 \mathrm{H}), 1.749(\mathrm{t}, J=13.2 \mathrm{~Hz}$, $2 \mathrm{H}), 1.493-1.585(\mathrm{~m}, 5 \mathrm{H}), 1.217-1.325(\mathrm{~m}, 5 \mathrm{H}), 1.009-1.048(\mathrm{~m}, 1 \mathrm{H})$.

40b: 5-(4-(2-cyclohexylethoxy)-3-methylbenzylidene)thiazolidine-2,4-dione

40b: yield 75.7%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.783(\mathrm{~s}, 1 \mathrm{H}), 7.087(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.058(\mathrm{~s}, 1 \mathrm{H}), 6.788(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.023(\mathrm{t}, J=14.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.196(\mathrm{~s}, 3 \mathrm{H}), 1.739(\mathrm{t}, J=$ $14.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.577(\mathrm{~m}, 1 \mathrm{H}), 1.213-1.284(\mathrm{~m}, 2 \mathrm{H}), 0.965-1.044(\mathrm{~m}, 4 \mathrm{H}), 0.826-0.880(\mathrm{~m}, 4 \mathrm{H})$.

41a: 4-(2-cyclohexylethoxy)-3-(trifluoromethyl)benzaldehyde

41a: yield $64.0 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.915(\mathrm{~s}, 1 \mathrm{H}), 8.102(\mathrm{~s}, 1 \mathrm{H}), 8.044(\mathrm{~d}, J=10.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.125(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.208(\mathrm{t}, J=12.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.639-1.788(\mathrm{~m}, 6 \mathrm{H}), 1.466-1.567$ $(\mathrm{m}, 1 \mathrm{H}), 1.177-1.338(\mathrm{~m}, 4 \mathrm{H}), 0.882-1.041(\mathrm{~m}, 2 \mathrm{H})$.

41b: 5-(4-(2-cyclohexylethoxy)-3-(trifluromethyl)benzylidene)thiazolidine-2,4-dione

41b: yield 79.7%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}^{2} d_{6}$) $\delta 8.270(\mathrm{~s}, 1 \mathrm{H}), 7.812(\mathrm{~s}, 1 \mathrm{H}), 7.461(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.262(\mathrm{~s}, 1 \mathrm{H}), 6.934(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.080(\mathrm{t}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.576-1.738(\mathrm{~m}, 7 \mathrm{H})$, $1.284-1.506(\mathrm{~m}, 1 \mathrm{H}), 1.035-1.245(\mathrm{~m}, 3 \mathrm{H}), 0.926-0.995(\mathrm{~m}, 2 \mathrm{H})$.

42a: 4-(2-cyclohexylethoxy)-3-fluorobenzaldehyde

42a
42a: yield 84.0%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.857(\mathrm{~s}, 1 \mathrm{H}), 7.633(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.087$ $(\mathrm{d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.178(\mathrm{t}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.697-1.798(\mathrm{~m}, 6 \mathrm{H}), 1.217-1.290(\mathrm{~m}, 5 \mathrm{H}), 0.969-$

42b: 5-(3-chloro-4-(2-cyclohexylethoxy)benzylidene)thiazolidine-2,4-dione

42b: yield 82%; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6) $\delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.738(\mathrm{~s}, 1 \mathrm{H}), 7.522(\mathrm{~s}, 1 \mathrm{H})$, $7.386(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.012(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H})), 4.155(\mathrm{t}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.800(\mathrm{t}, J=$ $13.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.657-1.800(\mathrm{~m}, 4 \mathrm{H}), 1.500-1.606(\mathrm{~m}, 1 \mathrm{H}), 1.151-1.335(\mathrm{~m}, 4 \mathrm{H}), 0.854-1.052(\mathrm{~m}$, $2 \mathrm{H})$.

43a: 3-chloro-4-(2-cyclohexylethoxy)benzaldehyde

43a
43a: yield $81.2 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.859(\mathrm{~s}, 1 \mathrm{H}), 7.906(\mathrm{~s}, 1 \mathrm{H}), 7.759(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.034(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.158(\mathrm{t}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.815(\mathrm{t}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.698-$ $1.892(\mathrm{~m}, 2 \mathrm{H}), 1.483-1.659(\mathrm{~m}, 1 \mathrm{H}), 1.184-1.350(\mathrm{~m}, 4 \mathrm{H}), 0.896-1.152(\mathrm{~m}, 4 \mathrm{H})$.

43b: 5-(3-chloro-4-(2-cyclohexylethoxy)benzylidene)thiazolidine-2,4-dione

43b: yield 88.3%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.738(\mathrm{~s}, 1 \mathrm{H}), 7.522(\mathrm{~s}, 1 \mathrm{H}), 7.386$
$(\mathrm{d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.012(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H})), 4.155(\mathrm{t}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.800(\mathrm{t}, J=13.2 \mathrm{~Hz}$, $2 H), 1.657-1.800(\mathrm{~m}, 4 \mathrm{H}), 1.500-1.606(\mathrm{~m}, 1 \mathrm{H}), 1.151-1.335(\mathrm{~m}, 4 \mathrm{H}), 0.854-1.052(\mathrm{~m}, 2 \mathrm{H})$.

44a: 3-bromo-4-(2-cyclohexylethoxy)benzaldehyde

44a
44a: yield $87.6 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.831(\mathrm{~s}, 1 \mathrm{H}), 8.077(\mathrm{~s}, 1 \mathrm{H}), 7.808(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.995(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.223(\mathrm{t}, J=14.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.650-1.811(\mathrm{~m}, 7 \mathrm{H}), 1.468-1.627$ (m, 1H), 1.142-1.296 (m, 3H), 0.947-1.111 (m, 2H).

44b: 5-(3-bromo-4-(2-cyclohexylethoxy)benzylidene)thiazolidine-2,4-dione

44b: yield 82.4%; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 12.576(\mathrm{~s}, 1 \mathrm{H}), 7.841(\mathrm{~s}, 1 \mathrm{H}), 7.833(\mathrm{~s}, 1 \mathrm{H})$, $7.570(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.284(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})), 4.174(\mathrm{t}, J=12.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.617-1.750(\mathrm{~m}$, $7 \mathrm{H}), 1.460-1.529(\mathrm{~m}, 1 \mathrm{H}), 1.062-1.265(\mathrm{~m}, 3 \mathrm{H}), 0.896-0.966(\mathrm{~m}, 2 \mathrm{H})$.

45a: 2-chloro-4-(2-cyclohexylethoxy)benzaldehyde

45a

45a: yield 78.8%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.447(\mathrm{~s}, 1 \mathrm{H}), 7.867(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.369$ $(\mathrm{s}, 1 \mathrm{H}), 7.043(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.195(\mathrm{t}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.221-1.475(\mathrm{~m}, 6 \mathrm{H}), 1.183-1.434(\mathrm{~m}$, $1 \mathrm{H}), 1.095-1.161(\mathrm{~m}, 4 \mathrm{H}), 0.847-0.945(\mathrm{~m}, 2 \mathrm{H})$.

45b: 5-(2-chloro-4-(2-cyclohexylethoxy)benzylidene)thiazolidine-2,4-dione

45b: yield $80.3 \% ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 12.654(\mathrm{~s}, 1 \mathrm{H}), 7.877(\mathrm{~s}, 1 \mathrm{H}), 7.517(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.110(\mathrm{~s}, 1 \mathrm{H}), 7.012(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})), 4.111(\mathrm{t}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.434-1.642(\mathrm{~m}$, $6 \mathrm{H}), 1.263-1.434(\mathrm{~m}, 1 \mathrm{H}), 1.094-1.221(\mathrm{~m}, 4 \mathrm{H}), 0.847-0.989(\mathrm{~m}, 2 \mathrm{H})$.

46a: 4-(2-cyclohexylethoxy-2-methoxy)benzaldehyde

46a
46a: yield 81.9%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.280(\mathrm{~s}, 1 \mathrm{H}), 7.809(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.552$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.434(\mathrm{~s}, 1 \mathrm{H}), 4.085(\mathrm{t}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.901(\mathrm{~s}, 3 \mathrm{H}), 1.552-1.783(\mathrm{~m}, 7 \mathrm{H})$, $1.341-1.538(\mathrm{~m}, 1 \mathrm{H}), 1.107-1.297(\mathrm{~m}, 3 \mathrm{H}), 0.912-1.042(\mathrm{~m}, 2 \mathrm{H})$.

46b: 5-(4-(2-cyclohexylethoxy)-2-methoxybenzylidene)thiazolidine-2,4-dione

46b: yield $83.9 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 12.446(\mathrm{~s}, 1 \mathrm{H}), 7.915(\mathrm{~s}, 1 \mathrm{H}), 7.907(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.709(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.667(\mathrm{~s}, 1 \mathrm{H}), 4.102(\mathrm{t}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.878(\mathrm{~s}, 3 \mathrm{H})$, $1.587-1.750(\mathrm{~m}, 7 \mathrm{H}), 1.451-1.586(\mathrm{~m}, 1 \mathrm{H}), 1.104-1.271(\mathrm{~m}, 3 \mathrm{H}), 0.884-0.994(\mathrm{~m}, 2 \mathrm{H})$.

47a: 4-(2-cyclohexylethoxy)-2-(trifluoromethyl)benzaldehyde

47a: yield $75.2 \% ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.477(\mathrm{~s}, 1 \mathrm{H}), 7.164(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.111$ $(\mathrm{s}, 1 \mathrm{H}), 7.083(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.1868(\mathrm{t}, J=12.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.639-1.788(\mathrm{~m}, 7 \mathrm{H}), 1.466-1.567$ $(\mathrm{m}, 1 \mathrm{H}), 1.177-1.338(\mathrm{~m}, 3 \mathrm{H}), 0.882-1.041(\mathrm{~m}, 2 \mathrm{H})$.

47b: 5-(4-(2-cyclohexylethoxy)-2-(trifluromethyl)benzylidene)thiazolidine-2,4-dione

47b: yield $79.7 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 12.731(\mathrm{~s}, 1 \mathrm{H}), 7.778(\mathrm{~s}, 1 \mathrm{H}), 7.689(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.407(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.371(\mathrm{~s}, 1 \mathrm{H}), 4.168(\mathrm{t}, J=12.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.598-1.750(\mathrm{~m}$, $7 \mathrm{H}), 1.455-1.598(\mathrm{~m}, 1 \mathrm{H}), 1.099-1.265(\mathrm{~m}, 3 \mathrm{H}), 0.884-0.994(\mathrm{~m}, 2 \mathrm{H})$.

48a: 4-(2-cyclohexylethoxy)-3,5-dimethoxybenzaldehyde

48a
48a: yield 82.0%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.904(\mathrm{~s}, 1 \mathrm{H}), 7.273(\mathrm{~s}, 2 \mathrm{H}), 4.129(\mathrm{t}, J=13.2$ $\mathrm{Hz}, 2 \mathrm{H}), 3.914(\mathrm{~s}, 6 \mathrm{H}), 1.646(\mathrm{t}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.424-1.781(\mathrm{~m}, 5 \mathrm{H}), 1.095-1.169(\mathrm{~m}, 4 \mathrm{H})$, 0.882-0.989 (m, 2H).

48b: 5-(4-(2-cyclohexylethoxy)-3,5-dimethoxybenzylidene)thiazolidine-2,4-dione

48b: yield 84.2% yield; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.623(\mathrm{~s}, 1 \mathrm{H}), 7.781(\mathrm{~s}, 1 \mathrm{H}), 6.768(\mathrm{~s}, 2 \mathrm{H})$, $4.10(\mathrm{t}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.887(\mathrm{~s}, 6 \mathrm{H}), 1.620(\mathrm{t}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.505-1.738(\mathrm{~m}, 6 \mathrm{H}), 1.096-$ $1.325(\mathrm{~m}, 3 \mathrm{H}), 0.884-0.951(\mathrm{~m}, 2 \mathrm{H})$.

49a: 3-chloro-4-(2-cyclohexylethoxy)-5-methoxybenzaldehyde

49a
49a: yield $88.7 \% ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.346(\mathrm{~s}, 1 \mathrm{H}), 7.734(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.926$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.067(\mathrm{t}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 1.554-1.823(\mathrm{~m}, 5 \mathrm{H}), 1.751(\mathrm{t}, J=13.2$

49b: 5-(3-chloro-4-(2-cyclohexylethoxy)-5-methoxybenzylidene)thiazolidine-2,4-dione

49b: yield 84.2%; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 12.656(\mathrm{~s}, 1 \mathrm{H}), 7.738(\mathrm{~s}, 1 \mathrm{H}), 7.262(\mathrm{~s}, 1 \mathrm{H})$, $7.239(\mathrm{~s}, 1 \mathrm{H}), 4.043(\mathrm{t}, J=12.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.872(\mathrm{~s}, 3 \mathrm{H}), 1.557-1.754(\mathrm{~m}, 8 \mathrm{H}), 1.144-1.239(\mathrm{~m}, 3 \mathrm{H})$, 0.891-0.964 (m, 2H).

50a: 3-chloro-5-fluoro-4-(2-cyclohexylethoxy)benzaldehyde

50a
50a: yield $85.1 \%{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.843(\mathrm{~s}, 1 \mathrm{H}), 7.710(\mathrm{~s}, 1 \mathrm{H}), 7.531(\mathrm{~s}, 1 \mathrm{H})$, $4.332(\mathrm{t}, J=15.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.595-2.047(\mathrm{~m}, 7 \mathrm{H}), 1.446-1.502(\mathrm{~m}, 1 \mathrm{H}), 1.109-1.329(\mathrm{~m}, 3 \mathrm{H}), 0.895-$ $1.024(\mathrm{~m}, 2 \mathrm{H})$.

50b: 5-(3-chloro-5-fluoro-4-(2-cyclohexylethoxy)benzylidene)thiazolidine-2,4-dione

50b: yield 75.4%; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 12.061(\mathrm{~s}, 1 \mathrm{H}), 7.950(\mathrm{~s}, 1 \mathrm{H}), 7.532(\mathrm{~s}, 1 \mathrm{H})$, $7.488(\mathrm{~s}, 2 \mathrm{H}), 4.178(\mathrm{t}, J=15.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.588-1.749(\mathrm{~m}, 7 \mathrm{H}), 1.505-1.580(\mathrm{~m}, 1 \mathrm{H}), 1.107-1.237$ (m, 3H), 0.903-0.980 (m, 2H).

Synthesis of compounds 51-77

51a: 3-chloro-4-(cyclohexyloxy)benzaldehyde

51a
51a: yield $86 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.834(\mathrm{~s}, 1 \mathrm{H}), 7.906(\mathrm{~s}, 1 \mathrm{H}), 7.745(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.046(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.443-4.521(\mathrm{~m}, 1 \mathrm{H}), 1.943-1.972(\mathrm{~m}, 2 \mathrm{H}), 1.825-1.889(\mathrm{~m}, 2 \mathrm{H})$, $1.684-1.803(\mathrm{~m}, 2 \mathrm{H}), 1.511-1.673(\mathrm{~m}, 1 \mathrm{H}), 1.351-1.489(\mathrm{~m}, 3 \mathrm{H})$.

51b: 5-(3-chloro-4-(cyclohexyloxy)benzylidene)thiazolidine-2,4-dione

51b: yield 88%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}^{\left.-\mathrm{d}_{6}\right)} \delta 12.587(\mathrm{~s}, 1 \mathrm{H}), 7.724(\mathrm{~s}, 1 \mathrm{H}), 7.699(\mathrm{~s}, 1 \mathrm{H})$, $7.516(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.371(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.564-4.615(\mathrm{~m}, 1 \mathrm{H}), 2.029-2.496(\mathrm{~m}, 2 \mathrm{H})$, $1.693-1.861(\mathrm{~m}, 2 \mathrm{H}), 1.509-1.537(\mathrm{~m}, 2 \mathrm{H}), 1.350-1.450(\mathrm{~m}, 4 \mathrm{H})$.

52a: 3-chloro-4-(cyclohexylmethoxy)benzaldehyde

52a
52a: yield 85%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.840(\mathrm{~s}, 1 \mathrm{H}), 7.900(\mathrm{~s}, 1 \mathrm{H}), 7.759(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.018(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.914(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.889-2.046(\mathrm{~m}, 3 \mathrm{H}), 1.748-1.862(\mathrm{~m}$, $3 \mathrm{H}), 1.240-1.424(\mathrm{~m}, 3 \mathrm{H}), 1.042-1.231(\mathrm{~m}, 2 \mathrm{H})$.

52b: 5-(3-chloro-4-(cyclohexylmethoxy)benzylidene)thiazolidine-2,4-dione

52b: yield 88%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 12.586(\mathrm{~s}, 1 \mathrm{H}), 7.721(\mathrm{~s}, 1 \mathrm{H}), 7.697(\mathrm{~s}, 1 \mathrm{H})$, $7.527(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.305(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.949(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.626-1.826(\mathrm{~m}$, $6 \mathrm{H}), 1.034-1.269(\mathrm{~m}, 5 \mathrm{H})$.

53a: 3-chloro-4-(3-cyclohexylpropoxy)benzaldehyde

53a
53a: yield 89%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.843(\mathrm{~s}, 1 \mathrm{H}), 7.908(\mathrm{~s}, 1 \mathrm{H}), 7.766(\mathrm{~d}, J=10.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.026(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.123(\mathrm{t}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.864-1.938(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.842(\mathrm{~m}$, $5 \mathrm{H}), 1.344-1.679(\mathrm{~m}, 2 \mathrm{H}), 1.078-1.306(\mathrm{~m}, 4 \mathrm{H}), 0.854-0.974(\mathrm{~m}, 2 \mathrm{H})$.

53b: 5-(3-chloro-4-(cyclohexylpropoxy)benzylidene)thiazolidine-2,4-dione

53b: yield 88%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 12.587(\mathrm{~s}, 1 \mathrm{H}), 7.717(\mathrm{~s}, 1 \mathrm{H}), 7.695(\mathrm{~s}, 1 \mathrm{H})$, $7.531(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.302(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.125(\mathrm{t}, J=12.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.625-1.772(\mathrm{~m}$, 7H), 1.079-1.348 (m, 6H), 0.837-0.911 (m, 2H).

54a: 3-chloro-4-(4-cyclohexylbutoxy)benzaldehyde

54a: yield $86 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.842(\mathrm{~s}, 1 \mathrm{H}), 7.905(\mathrm{~s}, 1 \mathrm{H}), 7.764(\mathrm{~d}, J=11.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.029(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.136(\mathrm{t}, J=12.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.830-1.903(\mathrm{~m}, 2 \mathrm{H}), 1.679-1.809$ $(\mathrm{m}, 6 \mathrm{H}), 1.461-1.675(\mathrm{~m}, 2 \mathrm{H}), 1.112-1.294(\mathrm{~m}, 7 \mathrm{H}), 0.859-0.93(\mathrm{~m}, 2 \mathrm{H})$.

54b: 5-(3-chloro-4-(cyclohexylbutoxy)benzylidene)thiazolidine-2,4-dione

54b: yield $87 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{-}$) $\delta 12.582(\mathrm{~s}, 1 \mathrm{H}), 7.730(\mathrm{~s}, 1 \mathrm{H}), 7.695(\mathrm{~s}, 1 \mathrm{H})$, $7.532(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.309(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.141(\mathrm{t}, J=12.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.652-1.761(\mathrm{~m}$, $7 \mathrm{H}), 1.227-1.615(\mathrm{~m}, 2 \mathrm{H}), 1.067-1.205(\mathrm{~m}, 6 \mathrm{H}), 0.818-0.889(\mathrm{~m}, 2 \mathrm{H})$.

55a
55a: yield 86%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.406(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.222$ $(\mathrm{d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.0310 .406(\mathrm{~s}, 1 \mathrm{H}), 1.578-2.047(\mathrm{~m}, 6 \mathrm{H}) .1 .177-1.284(\mathrm{~m}, 4 \mathrm{H}), 0.910-0.948$ (m, 1H)

55b: 5-(2-chloro-4-(cyclohexyloxy)benzylidene)thiazolidine-2,4-dione

55b: yield 71.1\%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 10.581(\mathrm{~s}, 1 \mathrm{H}), 7.658(\mathrm{~s}, 1 \mathrm{H}), 7.529(\mathrm{~s}, 1 \mathrm{H})$, $7.398(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.273(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.451-1.465(\mathrm{~m}, 11 \mathrm{H})$.

56a: 2-chloro-4-(3-cyclohexylmethoxy)benzaldehyde

56a
56a: yield 85%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.463(\mathrm{~s}, 1 \mathrm{H}), 7.465(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.147(\mathrm{~s}$, $1 \mathrm{H}), 7.098(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.685(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.521-1.644(\mathrm{~m}, 6 \mathrm{H}), 1.003-1.144(\mathrm{~m}$, $3 \mathrm{H}), 0.988-1.021(\mathrm{~m}, 2 \mathrm{H})$.

56b: 5-(2-chloro-4-(3-cyclohexylmethoxy)benzylidene)thiazolidine-2,4-dione

56b: yield 75.5%; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 12.637(\mathrm{~s}, 1 \mathrm{H}), 7.838(\mathrm{~s}, 1 \mathrm{H}), 7.656(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.223(\mathrm{~s}, 1 \mathrm{H}), 7.110(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.881(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.641-1.797(\mathrm{~m}$, $6 \mathrm{H}), 1.194-1.263(\mathrm{~m}, 3 \mathrm{H}), 1.002-1.039(\mathrm{~m}, 2 \mathrm{H})$.

57a: 2-chloro-4-(3-cyclohexylpropoxy)benzaldehyde

57a
57a: yield $81.2 \% ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.588(\mathrm{~s}, 1 \mathrm{H}), 7.500(\mathrm{~s}, 1 \mathrm{H}), 7.374(\mathrm{~d}, J=11.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.133(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.158(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.598-2.047(\mathrm{~m}, 4 \mathrm{H}), 1.09-1.62(\mathrm{~m}$, $7 \mathrm{H}), 0.802-0.928(\mathrm{~m}, 4 \mathrm{H})$.

57b: 5-(2-chloro-4-(3-cyclohexylpropoxy)benzylidene)thiazolidine-2,4-dione

57b: yield $72.6 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.785(\mathrm{~s}, 1 \mathrm{H}), 7.439(\mathrm{~s}, 1 \mathrm{H}), 7.654(\mathrm{~d}, J=$ $11.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.515(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.014(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.135-1.642(\mathrm{~m}, 4 \mathrm{H}), 1.029-$ $1.222(\mathrm{~m}, 7 \mathrm{H}), 0.822-1.127(\mathrm{~m}, 4 \mathrm{H})$.

58a: 2-chloro-4-(3-cyclohexylbutoxy)benzaldehyde

58a
58a: yield $83 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.269(\mathrm{~s}, 1 \mathrm{H}), 7.439(\mathrm{~s}, 1 \mathrm{H}), 7.324(\mathrm{~d}, J=9.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.115(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.004(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.602-1.693(\mathrm{~m}, 4 \mathrm{H}), 1.289-1.421$ $(\mathrm{m}, 4 \mathrm{H}), 1.052-1.154(\mathrm{~m}, 7 \mathrm{H}), 0.810-0.844(\mathrm{~m}, 2 \mathrm{H})$.

58b: 5-(2-chloro-4-(3-cyclohexylbutoxy)benzylidene)thiazolidine-2,4-dione

58b: yield 76\%; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 12.649(\mathrm{~s}, 1 \mathrm{H}), 7.880(\mathrm{~s}, 1 \mathrm{H}), 7.497(\mathrm{~s}, 1 \mathrm{H})$, $7.497(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.515(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.014(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.653-1.724(\mathrm{~m}$, $4 \mathrm{H}), 1.315-1.642(\mathrm{~m}, 4 \mathrm{H}), 1.069-1.215(\mathrm{~m}, 7 \mathrm{H}), 0.820-0.852(\mathrm{~m}, 2 \mathrm{H})$.

59a: 4-(benzyloxy)-3-chlorobenzaldehyde

3-chloro-4-hydroxybenzaldehyde
DEAD, PPh3

59a: yield 77.2%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.847(\mathrm{~s}, 1 \mathrm{H}), 7.778(\mathrm{~s}, 1 \mathrm{H}), 7.652(\mathrm{~d}, J=10.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.116-7.338(\mathrm{~m}, 5 \mathrm{H}), 6.987(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.104(\mathrm{~s}, 2 \mathrm{H})$.

59b: 5-(4-(benzyloxy)-3-chlorobenzylidene)thiazolidine-2,4-dione

59b: yield $86.4 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.024(\mathrm{~s}, 1 \mathrm{H}), 7.936(\mathrm{~s}, 1 \mathrm{H}), 7.747(\mathrm{~d}, J=$ $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.324-7.479(\mathrm{~m}, 5 \mathrm{H}), 7.093(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.259(\mathrm{~s}, 2 \mathrm{H})$.

60a: 3-chloro-4-phenethoxybenzaldehyde

60a
60a: yield 79.3\%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.836(\mathrm{~s}, 1 \mathrm{H}), 7.904(\mathrm{~s}, 1 \mathrm{H}), 7.743(\mathrm{~d}, J=11.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.230-7.344(\mathrm{~m}, 5 \mathrm{H}), 7.003(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.306(\mathrm{t}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.195(\mathrm{t}, J=$ $13.5 \mathrm{~Hz}, 2 \mathrm{H})$.

60b: 5-(3-chloro-4-phenethoxybenzylidene)thiazolidine-2,4-dione

60b: yield $86.2 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 12.547(\mathrm{~s}, 1 \mathrm{H}), 7.894(\mathrm{~s}, 1 \mathrm{H}), 7.694(\mathrm{~s}, 1 \mathrm{H})$,
$7.533(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.311-7.348(\mathrm{~m}, 5 \mathrm{H}), 7.248(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.367(\mathrm{t}, J=13.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.109(\mathrm{t}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H})$.

61a: 3-chloro-4-(3-phenylpropoxy)benzaldehyde

$61 a$
61a: yield 73.6\%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.588(\mathrm{~s}, 1 \mathrm{H}), 7.467(\mathrm{~s}, 1 \mathrm{H}), 7.533(\mathrm{~d}, J=10.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.158-7.311(\mathrm{~m}, 6 \mathrm{H}), 4.143(\mathrm{t}, J=12.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.802(\mathrm{t}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.022-2.093$ ($\mathrm{m}, 2 \mathrm{H}$).

61b: 5-(3-chloro-4-(3-phenylpropoxy)benzylidene)thiazolidine-2,4-dione

61b: yield 83.1%; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 12.538(\mathrm{~s}, 1 \mathrm{H}), 7.714(\mathrm{~s}, 1 \mathrm{H}), 7.706(\mathrm{~s}, 1 \mathrm{H})$, $7.533(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.158-7.311(\mathrm{~m}, 6 \mathrm{H}), 4.143(\mathrm{t}, J=12.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.802(\mathrm{t}, J=12.8$ $\mathrm{Hz}, 2 \mathrm{H}), 2.022-2.093(\mathrm{~m}, 2 \mathrm{H})$.

62a: 3-chloro-4-(4-phenylbutoxy)benzaldehyde

62a: yield 74.5%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.838(\mathrm{~s}, 1 \mathrm{H}), 7.900(\mathrm{~s}, 1 \mathrm{H}), 7.893(\mathrm{~d}, J=10.5$
$\mathrm{Hz}, 1 \mathrm{H}), 7.127-7.305(\mathrm{~m}, 6 \mathrm{H}), 3.77(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.648(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.561-1.1 .753(\mathrm{~m}$, $4 \mathrm{H})$.

62b: 5-(3-chloro-4-(4-phenylbutoxy)benzylidene)thiazolidine-2,4-dione

62b: yield 77.6\%; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 12.577(\mathrm{~s}, 1 \mathrm{H}), 7.720(\mathrm{~s}, 1 \mathrm{H}), 7.693(\mathrm{~s}, 1 \mathrm{H})$, $7.529(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.135-7.304(\mathrm{~m}, 6 \mathrm{H}), 4.155(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.671(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $2 H), 1.741-1.761(\mathrm{~m}, 4 \mathrm{H})$.

63a: 4-(benzyloxy)-2-chlorobenzaldehyde

2-chloro-4-hydroxybenzaldehyde
DEAD, PPh3

63a
63a: yield 71.9%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.346(\mathrm{~s}, 1 \mathrm{H}), 7.913(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.386-$ $7.493(\mathrm{~m}, 6 \mathrm{H}), 6.987(\mathrm{~s}, 1 \mathrm{H}), 6.958(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.133(\mathrm{~s}, 2 \mathrm{H})$.

63b: 5-(4-(benzyloxy)-2-chlorobenzylidene)thiazolidine-2,4-dione

63b: yield 70.1%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.850(\mathrm{~s}, 1 \mathrm{H}), 7.561(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H})$,
7.332-7.499 (m, 6H), 7.221 (d, $J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.224(\mathrm{~s}, 2 \mathrm{H})$.

64a: 2-chloro-4-phenethoxybenzaldehyde

64a: yield 77%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.317(\mathrm{~s}, 1 \mathrm{H}), 7.913(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.235-$ $7.361(\mathrm{~m}, 5 \mathrm{H}), 7.175(\mathrm{~s}, 1 \mathrm{H}), 6.986(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.258(\mathrm{t}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.144(\mathrm{t}, J=$ $13.8 \mathrm{~Hz}, 2 \mathrm{H})$.

64b: 5-(2-chloro-4-phenethoxybenzylidene)thiazolidine-2,4-dione

64b: yield $69.6 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 12.645(\mathrm{~s}, 1 \mathrm{H}), 7.863(\mathrm{~s}, 1 \mathrm{H}), 7.500(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.188-7.274(\mathrm{~m}, 6 \mathrm{H}), 7.127(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.323(\mathrm{t}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.064(\mathrm{t}, J$ $=13.8 \mathrm{~Hz}, 2 \mathrm{H})$.

65a: 2-chloro-4-phenpropoxybenzaldehyde

65a: yield $69.7 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.324(\mathrm{~s}, 1 \mathrm{H}), 7.933(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, - 76 -
7.145-7.301(m, 6H), $7.028(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.018(\mathrm{t}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.812(\mathrm{t}, J=13.8 \mathrm{~Hz}$, $2 \mathrm{H}), 2.111-2.181(\mathrm{~m}, 2 \mathrm{H})$.

65b: 5-(2-chloro-4-phenpropoxybenzylidene)thiazolidine-2,4-dione

65b: yield 72.7%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 12.548(\mathrm{~s}, 1 \mathrm{H}), 7.924(\mathrm{~s}, 1 \mathrm{H}), 7.482(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.200-7.368(\mathrm{~m}, 6 \mathrm{H}), 7.212(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.139(\mathrm{t}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.156(\mathrm{t}, J$ $=13.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.591-2.622(\mathrm{~m}, 2 \mathrm{H})$.

66a: 2-chloro-4-phenbutoxybenzaldehyde

66a: yield 72.4%; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.321(\mathrm{~s}, 1 \mathrm{H}), 7.892(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.138-7.319(m, 6H), $6.979(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.048(\mathrm{t}, J=12.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.719(\mathrm{t}, J=13.8 \mathrm{~Hz}$, 2H), 1.801-1.841 (m, 4H).

66b: 5-(2-chloro-4-phenbutoxybenzylidene)thiazolidine-2,4-dione

66b: yield 73.1%; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 12.64(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.511(\mathrm{~d}, J=9.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.161-7.296(\mathrm{~m}, 6 \mathrm{H}), 7.105(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.084(\mathrm{t}, J=12.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.654(\mathrm{t}, J=$ $13.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.653-1.724(\mathrm{~m}, 4 \mathrm{H})$.

67a: 4-(3-cyclohexylpropoxy)-3-nitrobenzaldehyde

$67 a$
67a: yield 87%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.858(\mathrm{~s}, 1 \mathrm{H}), 8.271(\mathrm{~s}, 1 \mathrm{H}), 7.679(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.145(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.118(\mathrm{t}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.607-1.653(\mathrm{~m}, 2 \mathrm{H}), 1.457-1.554(\mathrm{~m}$, $6 \mathrm{H}), 1.282-1.426(\mathrm{~m}, 3 \mathrm{H}), 0.762-1.263(\mathrm{~m}, 4 \mathrm{H})$.

67b: 5-(4-(3-cyclohexylpropoxy)-3-nitrobenzylidene)thiazolidine-2,4-dione

67b: yield 89%; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.043(\mathrm{~s}, 1 \mathrm{H}), 7.716(\mathrm{~s}, 1 \mathrm{H}), 7.399(\mathrm{~d}, J=11.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.262(\mathrm{~s}, 1 \mathrm{H}), 7.041(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.563(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.048-4.087(\mathrm{t}, J=$ $14.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.843-2.049(\mathrm{~m}, 2 \mathrm{H}), 1.631-1.889(\mathrm{~m}, 6 \mathrm{H}), 1.183-1.389(\mathrm{~m}, 5 \mathrm{H}), 0.840-0.961(\mathrm{~m}$, $2 \mathrm{H})$.

68a: 4-(2-cyclohexylbutoxy)-3-nitrobenzaldehyde (68a)

68a: yield $81 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.858(\mathrm{~s}, 1 \mathrm{H}), 8.264(\mathrm{~s}, 1 \mathrm{H}), 7.698(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.192(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.040(\mathrm{t}, J=12.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.528-1.644(\mathrm{~m}, 7 \mathrm{H}), 1.325-1.402(\mathrm{~m}$, $2 \mathrm{H}), 1.020-1.198(\mathrm{~m}, 6 \mathrm{H}), 0.744-0.889(\mathrm{~m}, 2 \mathrm{H})$.

68b: 5-(4-(2-cyclohexylbutoxy)-3-nitrobenzylidene)thiazolidine-2,4-dione

68b: yield $77.8 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.134(\mathrm{~s}, 1 \mathrm{H}), 7.847(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.787(\mathrm{~s}, 1 \mathrm{H}), 7.527(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.225(\mathrm{t}, J=12.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.625-1.751(\mathrm{~m}, 7 \mathrm{H}), 1.419-$ $1.467(\mathrm{~m}, 2 \mathrm{H}), 1.079-1.220(\mathrm{~m}, 6 \mathrm{H}), 0.831-0.896(\mathrm{~m}, 2 \mathrm{H})$.

69a: 4-(2-cyclohexylmethoxy)-3-methylbenzaldehyde

69a
69a: yield $83 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.845(\mathrm{~s}, 1 \mathrm{H}), 7.707(\mathrm{~s}, 1 \mathrm{H}), 7.678(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.920(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.111(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.259(\mathrm{~s}, 3 \mathrm{H}), 1.705-1.771(\mathrm{~m}, 6 \mathrm{H})$, $1.660-1.727(\mathrm{~m}, 1 \mathrm{H}), 0.832-1.111(\mathrm{~m}, 4 \mathrm{H})$.

69b: 5-(4-(2-cyclohexylmethoxy)-3-methylbenzylidene)thiazolidine-2,4-dione

69b: yield $77.5 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.784(\mathrm{~s}, 1 \mathrm{H}), 7.345(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.289(\mathrm{~s}, 1 \mathrm{H}), 6.912(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.074(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.302(\mathrm{~s}, 3 \mathrm{H}), 1.706-1.894(\mathrm{~m}$, $6 \mathrm{H}), 1.257-1.380(\mathrm{~m}, 3 \mathrm{H}), 1.070-1.225(\mathrm{~m}, 2 \mathrm{H})$.

70a: 4-(2-cyclohexylpropoxy-3-methyl)benzaldehyde

70a
70a: yield $80 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.845(\mathrm{~s}, 1 \mathrm{H}), 7.707(\mathrm{~s}, 1 \mathrm{H}), 7.678(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.920(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.111(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.259(\mathrm{~s}, 3 \mathrm{H}), 1.705-1.771(\mathrm{~m}, 6 \mathrm{H})$, $1.660-1.727(\mathrm{~m}, 1 \mathrm{H}), 0.832-1.111(\mathrm{~m}, 4 \mathrm{H})$.

70b: 5-(4-(2-cyclohexylpropoxy)-3-methylbenzylidene)thiazolidine-2,4-dione

70b: yield 89.1%; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 7.793(\mathrm{~s}, 1 \mathrm{H}), 7.349(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.312(\mathrm{~s}, 1 \mathrm{H}), 6.898(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.029(\mathrm{t}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.650-2.041(\mathrm{~m}, 8 \mathrm{H}), 1.089-$ $1.397(\mathrm{~m}, 4 \mathrm{H}), 0.860-0.968(\mathrm{~m}, 3 \mathrm{H})$.

71a: 4-(2-cyclohexylbutoxy-3-methyl)benzaldehyde

71a: yield 77.9\%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.846(\mathrm{~s}, 1 \mathrm{H}), 7.707(\mathrm{~s}, 1 \mathrm{H}), 7.700(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.914(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.068(\mathrm{t}, J=12.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.264(\mathrm{~s}, 3 \mathrm{H}), 1.769-1.861(\mathrm{~m}, 2 \mathrm{H})$, $1.609-1.695(\mathrm{~m}, 6 \mathrm{H}), 1.424-1.7472(\mathrm{~m}, 2 \mathrm{H}), 1.074-1.286(\mathrm{~m}, 5 \mathrm{H}), 0.860-0.921(\mathrm{~m}, 2 \mathrm{H})$.

71b: 5-(4-(2-cyclohexylbutoxy)-3-methylbenzylidene)thiazolidine-2,4-dione

71b: yield 87.5%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.787(\mathrm{~s}, 1 \mathrm{H}), 7.349(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.291(\mathrm{~s}, 1 \mathrm{H}), 6.903(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.045(\mathrm{t}, J=12.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.806-1.852(\mathrm{~m}, 2 \mathrm{H}), 1.694-$ $1.779(\mathrm{~m}, 5 \mathrm{H}), 1.438-1.510(\mathrm{~m}, 2 \mathrm{H}), 1.174-1.266(\mathrm{~m}, 6 \mathrm{H}), 0.857-0.890(\mathrm{~m}, 2 \mathrm{H})$.

72a: 2-chloro-4-(4-nitrobenzyloxy)benzaldehyde

2-chloro-4-hydroxybenzaldehyde
DEAD, PPh3

72a
72a: yield $69.4 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.349(\mathrm{~s}, 1 \mathrm{H}), 7.937(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.859(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.397(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.262(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.075(\mathrm{~s}, 1 \mathrm{H})$ $7.061(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.990(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.180(\mathrm{~s}, 2 \mathrm{H})$.

72b: 5-(2-chloro-4-(4-nitrobenzyloxy)benzylidene)thiazolidine-2,4-dione

72b: yield 65.7%; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 12.640(\mathrm{~s}, 1 \mathrm{H}), 7.887(\mathrm{~s}, 1 \mathrm{H}), 7.704$ (d, $J=$ $13.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.554(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.510(\mathrm{~s}, 1 \mathrm{H}), 7.387(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.223(\mathrm{~d}, J=$ $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.419(\mathrm{~s}, 2 \mathrm{H})$

73a: 3-chloro-4-(2-Thiomorpholine 1,1-Dioxideethoxy)benzaldehyde

73a: yield $88 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.897(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.99(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{t}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.149-3.27(\mathrm{~m}, 8 \mathrm{H}), 3.04(\mathrm{t}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H})$.

73b: 5-[3-chloro-4-(2-Thiomorpholine 1,1-Dioxideethoxy)benzylidene]-2,4-thiazolidinedione

73b: yield 86%; ${ }^{1}$ H NMR (300 MHz, DMSO- d_{6}) $\delta 12.564(\mathrm{~s}, 1 \mathrm{H}), 7.724(\mathrm{~s}, 1 \mathrm{H}), 7.706(\mathrm{~s}, 1 \mathrm{H})$, $7.547(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.263(\mathrm{t}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.031-3.119(\mathrm{~m}, 8 \mathrm{H})$, $2.990(\mathrm{t}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H})$.

74a: 3-nitro-4-(2-Thiomorpholine1,1-Dioxideethoxy)benzaldehyde

74a: yield 84%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.03(\mathrm{~s}, 1 \mathrm{H}), 7.663(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.396$ (d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.689(\mathrm{~s}, 1 \mathrm{H}), 4.296(\mathrm{t}, J=11.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.966-3.011(\mathrm{~m}, 8 \mathrm{H}), 2.847(\mathrm{t}, J=$ $11.1 \mathrm{~Hz}, 2 \mathrm{H})$.

74b: 5-[3-nitro-4-(2-Thiomorpholine1,1-Dioxideethoxy)benzylidene]-2,4-thiazolidinedione

74b: yield 67.7\%; ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 12.630(\mathrm{~s}, 1 \mathrm{H}$), 8.148 ($\mathrm{s}, 1 \mathrm{H}$), $7.860(\mathrm{~d}, \mathrm{~J}=$ $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.560(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.782(\mathrm{~s}, 1 \mathrm{H}), 4.360(\mathrm{t}, J=11.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.043-3.119(\mathrm{~m}$, $8 \mathrm{H}), 2.976(\mathrm{t}, J=11.1 \mathrm{~Hz}, 2 \mathrm{H})$.

75a: 4-((4-metylcyclohexyl)methoxy)-3-(trifluromethyl)benzaldehyde

75a: yield 83%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.012(\mathrm{~s}, 1 \mathrm{H}), 7.744(\mathrm{~s}, 1 \mathrm{H}), 7.684(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.036$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.001$ (d, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.912$ (d, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.496-1.879$ (m, $4 \mathrm{H}), 1.323-1.446(\mathrm{~m}, 4 \mathrm{H}), 1.012-1.132(\mathrm{~m}, 2 \mathrm{H}), 0.798(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.

75b: 5-[4-((4-metylcyclohexyl)methoxy)-3-(trifluromethyl)benzylidene]thiazolidine-2,4-dione

75b: yield 76.1\%; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 12.602(\mathrm{~s}, 1 \mathrm{H}), 7.878(\mathrm{~s}, 1 \mathrm{H}), 7.829(\mathrm{~s}, 1 \mathrm{H})$, $7.805(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.101(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.117(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.016(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.685-1.907(\mathrm{~m}, 4 \mathrm{H}), 1.454-1.523(\mathrm{~m}, 4 \mathrm{H}), 1.083-1.122(\mathrm{~m}, 2 \mathrm{H}), 0.927(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.

76a: 3-chloro-4-(2-(thiophen-2-yl)ethoxy)benzaldehyde

76a
76a: yield 84%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.988(\mathrm{~s}, 1 \mathrm{H}), 7.526(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.365(\mathrm{~d}$, $J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.231-7.363(\mathrm{~m}, 2 \mathrm{H}), 6.989(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.847(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4$. $263(\mathrm{t}, J=12.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.211(\mathrm{t}, J=12.6 \mathrm{~Hz}, 2 \mathrm{H})$.

76b: 5-(3-chloro-4-(2-(thiophen-2-yl)ethoxy)benzylidene)thiazolidine-2,4-dione

76b: yield 88.3%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 12.585(\mathrm{~s}, 1 \mathrm{H}), 7.725(\mathrm{~s}, 1 \mathrm{H}), 7.708(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.536(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.315-7.363(\mathrm{~m}, 2 \mathrm{H}), 7.017(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.978(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.354(\mathrm{t}, J=12.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.322(\mathrm{t}, J=12.6 \mathrm{~Hz}, 2 \mathrm{H})$.

77a: 3-methoxy-4-(2-(thiophen-2-yl)ethoxy)benzaldehyde

77a
77a: yield 83%; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.021(\mathrm{~s}, 1 \mathrm{H}), 7.254(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.139$ $(\mathrm{s}, 1 \mathrm{H}), 6.977(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 2 \mathrm{H}), 6,798-6.887(\mathrm{~m}, 2 \mathrm{H}), 4.036(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.653(\mathrm{~s}, 3 \mathrm{H})$, $3.133(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$.

77b: 5-(3-methoxy-4-(2-(thiophen-2-yl)ethoxy)benzylidene)thiazolidine-2,4-dione

77b: yield 88.4%; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 12.438(\mathrm{~s}, 1 \mathrm{H}), 7.722(\mathrm{~s}, 1 \mathrm{H}), 7.357(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.239(\mathrm{~s}, 1 \mathrm{H}), 7.197(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 2 \mathrm{H}), 6,946-6.994(\mathrm{~m}, 2 \mathrm{H}), 4.265(\mathrm{t}, J=6.6 \mathrm{~Hz}$, $2 \mathrm{H}), 3.803(\mathrm{~s}, 3 \mathrm{H}), 3.269(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$.

Synthesis of compound 78-92

78a: 2-chloro-3-(cyclohexyloxy)benzaldehyde

78a
78a: yield 71\%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.525(\mathrm{~s}, 1 \mathrm{H}), 7.524(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.315$ $(\mathrm{m}, 1 \mathrm{H}), 7.195(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.310-4.389(\mathrm{~m}, 1 \mathrm{H}), 1.933-2.046(\mathrm{~m}, 2 \mathrm{H}), 1.658-1.765(\mathrm{~m}$,
$4 \mathrm{H}), 1.216-1.487(\mathrm{~m}, 2 \mathrm{H}), 0.690-0.896(\mathrm{~m}, 2 \mathrm{H})$.

78b: 5-(2-chloro-3-(cyclohexyloxy)benzylidene)thiazolidine-2,4-dione

78b: yield 78.9\%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 12.587(\mathrm{~s}, 1 \mathrm{H}), 7.724(\mathrm{~s}, 1 \mathrm{H}), 7.524(\mathrm{~d}, J=$ $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.315(\mathrm{t}, 1 \mathrm{H}), 7.195(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.310-4.389(\mathrm{~m}, 1 \mathrm{H}), 1.933-2.044(\mathrm{~m}, 2 \mathrm{H})$, $1.734-1.822(\mathrm{~m}, 2 \mathrm{H}), 1.491-1.674(\mathrm{~m}, 2 \mathrm{H}), 1.208-1.446(\mathrm{~m}, 2 \mathrm{H}), 0.860-0.946(\mathrm{~m}, 2 \mathrm{H})$.

79a: 2-chloro-3-(cyclohexylmethoxy)benzaldehyde

79a
79a: yield $85.5 \% ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.530(\mathrm{~s}, 1 \mathrm{H}), 7.620(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.273(\mathrm{~m}, 1 \mathrm{H}), 7.146(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.862(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.866-1.963(\mathrm{~m}, 6 \mathrm{H}), 1.074-$ $1.629(\mathrm{~m}, 5 \mathrm{H})$.

79b: 5-(2-chloro-3-(cyclohexylmethoxy)benzylidene)thiazolidine-2,4-dione

79b: yield 76.3%; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 7.721(\mathrm{~s}, 1 \mathrm{H}), 7.514(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.138-7.327(\mathrm{~m}, 1 \mathrm{H}), 7.142(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.862(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.7 .3-1.933(\mathrm{~m}, 6 \mathrm{H})$, 1.088-1.579 (m, 5H).

80a: 2-chloro-3-(2-cyclohexylethooxy)benzaldehyde

80a
80a: yield 73.6%; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.532(\mathrm{~s}, 1 \mathrm{H}), 7.582(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.205-7.339 (m, 1H), $7.162(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.125(\mathrm{t}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.645-1.804(\mathrm{~m}, 6 \mathrm{H})$, 1.389-1.593 (m, 1H), 1.118-1.339 (m, 4H), 0.854-1.055 (m, 2H).

80b: 5-(2-chloro-3-(2-cyclohexylethoxy)benzylidene)thiazolidine-2,4-dione

80b: yield 87%; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 12.582(\mathrm{~s}, 1 \mathrm{H}), 7.908(\mathrm{~s}, 1 \mathrm{H}), 7.462(\mathrm{t}, J=$ $15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.283(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.150(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.140(\mathrm{t}, J=12.9 \mathrm{~Hz}, 2 \mathrm{H})$, $1.642-1.758(\mathrm{~m}, 7 \mathrm{H}), 1.493(\mathrm{~m}, 1 \mathrm{H}), 1.161-1.228(\mathrm{~m}, 3 \mathrm{H}), 0.933-0.969(\mathrm{~m}, 2 \mathrm{H})$.

81a: 2-chloro-3-(cyclohexylpropoxy)benzaldehyde

81a

81a: yield $77.3 \% ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.047(\mathrm{~s}, 1 \mathrm{H}), 7.412(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.132-7.275 (m, 1H), $7.044(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.978(\mathrm{t}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.625-1.862(\mathrm{~m}$, $2 \mathrm{H}), 1.425-1.582(\mathrm{~m}, 5 \mathrm{H}), 0.998-1.256(\mathrm{~m}, 6 \mathrm{H}), 0.747-0.869(\mathrm{~m}, 2 \mathrm{H})$.

81b: 5-(2-chloro-3-(cyclohexylpropoxy)benzylidene)thiazolidine-2,4-dione

81b: yield 74.1%; ${ }^{1}$ H NMR (300 MHz , DMSO- d_{6}) $\delta 7.943(\mathrm{~s}, 1 \mathrm{H}), 7.521(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.261-7.333 (m, 1H), $7.152(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.045(\mathrm{t}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.829-1.925(\mathrm{~m}$, $2 \mathrm{H}), 1.578-1.731(\mathrm{~m}, 5 \mathrm{H}), 1.091-1.426(\mathrm{~m}, 6 \mathrm{H}), 0.859-0.883(\mathrm{~m}, 2 \mathrm{H})$.

82a: 2-chloro-3-(cyclohexylbutoxy)benzaldehyde

82a
82a: yield 79.3\%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.226(\mathrm{~s}, 1 \mathrm{H}), 7.332(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.398$ $(\mathrm{m}, 1 \mathrm{H}), 7.114(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.006(\mathrm{t}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.810-1.8993(\mathrm{~m}, 2 \mathrm{H}), 1.520-$ $1.756(\mathrm{~m}, 5 \mathrm{H}), 1.144-1.499(\mathrm{~m}, 8 \mathrm{H}), 0.900-0.999(\mathrm{~m}, 2 \mathrm{H})$.

82b: 5-(2-chloro-3-(cyclohexylbutoxy)benzylidene)thiazolidine-2,4-dione

82b: yield $83.6 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.894(\mathrm{~s}, 1 \mathrm{H}), 7.496(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H})$,
7.264-7.342 (m, 1H), $7.203(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.103(\mathrm{t}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.839-1.913(\mathrm{~m}, 2 \mathrm{H})$, $1.569-1.726(\mathrm{~m}, 5 \mathrm{H}), 1.089-1.436(\mathrm{~m}, 8 \mathrm{H}), 0.912-0.998(\mathrm{~m}, 2 \mathrm{H})$.

83a: 3-(benzyloxy)-2-chloroben zaldehyde

83a
83a: yield 74.1\%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.753(\mathrm{~s}, 1 \mathrm{H}), 7.498(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.339-$ $7.413(\mathrm{~m}, 6 \mathrm{H}), 7.241(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.243(\mathrm{~s}, 2 \mathrm{H})$.

83b: 5-(3-(benzyloxy)-2-chlorobenzylidene)thiazolidine-2,4-dione

83b: yield 75%; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 7.753(\mathrm{~s}, 1 \mathrm{H}), 7.498(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.339-7.413 (m, 6H), $7.241(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.243(\mathrm{~s}, 2 \mathrm{H})$.

84a: 2-chloro-3-phenethoxybenzaldehyde

84a: yield $75.1 \% ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.151(\mathrm{~s}, 1 \mathrm{H}), 7.299(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$,
7.112-7.386 (m, 6H), $7.002(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.321(\mathrm{t}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.981(\mathrm{t}, J=13.2 \mathrm{~Hz}$, $2 \mathrm{H})$.

84b: 5-(2-chloro-3-phenethoxybenzylidene)thiazolidine-2,4-dione

84b: yield $77.5 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.894(\mathrm{~s}, 1 \mathrm{H}), 7.459(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.141-7.495 (m, 6H), $7.164(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.328(\mathrm{t}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.107(\mathrm{t}, J=13.2 \mathrm{~Hz}$, $2 \mathrm{H})$.

85a: 2-chloro-3-(3-phenylpropoxy)benzaldehyde

85a: yield 64.6\%; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.120(\mathrm{~s}, 1 \mathrm{H}), 7.337(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.106$ $-7.211(\mathrm{~m}, 7 \mathrm{H}), 4.025(\mathrm{t}, J=12.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.685(\mathrm{t}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.001(\mathrm{t}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H})$.

85b: 5-(2-chloro-3-(3-phenylpropoxy)benzylidene)thiazolidine-2,4-dione

85b: yield 82.4%; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 7.927(\mathrm{~s}, 1 \mathrm{H}), 7.464(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, - 90 -
$7.151-7.312(\mathrm{~m}, 7 \mathrm{H}), 4.109(\mathrm{t}, J=12.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.813(\mathrm{t}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.084(\mathrm{t}, J=13.2 \mathrm{~Hz}$, 2 H).

86a: 2-chloro-3-(4-phenylbutoxy)ben zaldehyde

86a
86a: yield $72.9 \% ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.144(\mathrm{~s}, 1 \mathrm{H}), 7.274(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.011-7.233 (m, 7H), $4.011(\mathrm{t}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.458(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.042(\mathrm{t}, J=2.7 \mathrm{~Hz}, 4 \mathrm{H})$.

86b: 5-(2-chloro-3-(4-phenylbutoxy)benzylidene)thiazolidine-2,4-dione

86b: yield $82.1 \% ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 12.719(\mathrm{~s}, 1 \mathrm{H}), 7.932(\mathrm{~s}, 1 \mathrm{H}), 7.474(\mathrm{t}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.151-7.303(\mathrm{~m}, 7 \mathrm{H}), 4.145(\mathrm{t}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.658(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.084(\mathrm{t}, J=$ $2.7 \mathrm{~Hz}, 4 \mathrm{H})$.

87a: 3-(2-cyclohexyleyhoxy)-4-methoxybenzaldehyde (87a)

87a
87a: yield 82.1%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.847(\mathrm{~s}, 1 \mathrm{H}), 7.460(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.427$ $(\mathrm{s}, 1 \mathrm{H}), 6.987(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.136(\mathrm{t}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.686(\mathrm{~s}, 3 \mathrm{H}), 1.528-1.743(\mathrm{~m}, 7 \mathrm{H})$,

```
1.445-1.505(m, 1H), 1.157-1.439(m, 3H), 0.939-1.058(m, 2H).
```

87b: 5-(3-(2-cyclohexylethoxy)-4-methoxybenzylidene)thiazolidine-2,4-dione

87b: yield $87.2 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 12.436(\mathrm{~s}, 1 \mathrm{H}), 8.165(\mathrm{~s}, 1 \mathrm{H}), 7.941(\mathrm{~d}, J=$ $9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.661(\mathrm{~s}, 1 \mathrm{H}), 7.273(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.233(\mathrm{t}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.864(\mathrm{~s}, 3 \mathrm{H})$, $1.682-1.759(\mathrm{~m}, 7 \mathrm{H}), 1.442-1.586(\mathrm{~m}, 1 \mathrm{H}), 1.182-1.242(\mathrm{~m}, 3 \mathrm{H}), 0.896-0.926(\mathrm{~m}, 2 \mathrm{H})$.

88a: 3-(2-cyclohexylethoxy)-4-nitrobenzaldehyde

88a
88a: yield 82.4%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.041(\mathrm{~s}, 1 \mathrm{H}), 7.909(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.574$ $(\mathrm{s}, 1 \mathrm{H}), 7.500(\mathrm{~s}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.239(\mathrm{t}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.549-1.765(\mathrm{~m}, 7 \mathrm{H}), 1.334-1.501(\mathrm{~m}$, $1 \mathrm{H}), 1.019-1.305(\mathrm{~m}, 3 \mathrm{H}), 0.924-0.993(\mathrm{~m}, 2 \mathrm{H})$.

88b: 5-(3-(2-cyclohexylethoxy)-4-nitrobenzylidene)thiazolidine-2,4-dione

88b: yield 87%; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 12.644(\mathrm{~s}, 1 \mathrm{H}), 8.003(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.799(\mathrm{~s}, 1 \mathrm{H}), 7.611(\mathrm{~s}, 1 \mathrm{H}), 7.273(\mathrm{~s}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.255(\mathrm{t}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.618-1.746(\mathrm{~m}$, - 92 -
$7 \mathrm{H}), 1.401-1.546(\mathrm{~m}, 1 \mathrm{H}), 1.144-1.323(\mathrm{~m}, 3 \mathrm{H}), 0.928-0.1 .006(\mathrm{~m}, 2 \mathrm{H})$.

89a: 2-chloro-3-(2-cyclohexylethoxy)-4-methoxybenzaldehyde

89a
89a: yield 88.3%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.346(\mathrm{~s}, 1 \mathrm{H}), 7.734(\mathrm{~s}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.926$ $(\mathrm{s}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.067(\mathrm{t}, J=12.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 1.610-1.77(\mathrm{~m}, 8 \mathrm{H}), 1.109-1.352(\mathrm{~m}$, $3 \mathrm{H}), 0.901-1.028(\mathrm{~m}, 2 \mathrm{H})$.

89b: 5-(2-chloro-3-(2-cyclohexylethoxy)-4-methoxybenzylidene)thiazolidine-2,4-dione

89b: yield 78.1%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 12.743(\mathrm{~s}, 1 \mathrm{H}), 7.319(\mathrm{~s}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.247(\mathrm{~s}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.007(\mathrm{t}, J=12.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.890(\mathrm{~s}, 3 \mathrm{H}), 1.516-1.764(\mathrm{~m}, 8 \mathrm{H}), 1.109-$ $1.245(\mathrm{~m}, 3 \mathrm{H}), 0.894-0.970(\mathrm{~m}, 2 \mathrm{H})$.

90a: 2-chloro-3-[(4-methylcyclohexyl)methoxy]benzaldehyde (90a)

90a
90a: yield 84.6%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.103(\mathrm{~s}, 1 \mathrm{H}), 7.147(\mathrm{~m}, 1 \mathrm{H}), 7.003(\mathrm{~d}, J=$ $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.912(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.798(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.989-2.042(\mathrm{~m}, 1 \mathrm{H}), 1.369-$
$1.598(\mathrm{~m}, 5 \mathrm{H}), 1.096-1.290(\mathrm{~m}, 2 \mathrm{H}), 0.987(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.748-0.897(\mathrm{~m}, 2 \mathrm{H})$.
90b: 5-\{2-chloro-3-[(4-methylcyclohexyl)methoxy]benzylidene\}-1,3-thiazolidine-2,4-dione

90b: yield $81.2 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$)) $\delta 8.242(\mathrm{~s}, 1 \mathrm{H}), 7.262(\mathrm{~m}, 1 \mathrm{H}), 7.111(\mathrm{~d}$, $J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.025(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.961(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.038-2.076(\mathrm{~m}, 1 \mathrm{H})$, $1.456-1.810(\mathrm{~m}, 5 \mathrm{H}), 1.233-1.339(\mathrm{~m}, 2 \mathrm{H}), 0.954(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.900-1.416(\mathrm{~m}, 2 \mathrm{H})$.

91a: 4-methoxy-3-(2-(thiophen-2-yl)ethoxy)benzaldehyde (91a)

91a
91a: yield $79.2 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.006(\mathrm{~s}, 1 \mathrm{H}), 7.325(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.198$ $(\mathrm{d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.097(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.011(\mathrm{~s}, 1 \mathrm{H}), 6,847-6.896(\mathrm{~m}, 2 \mathrm{H}), 4.014(\mathrm{t}, J=$ $13.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.745(\mathrm{~s}, 3 \mathrm{H}), 3.069(\mathrm{t}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H})$.

92a: 2-chloro-3-(4-nitrobenzyloxy)benzaldehyde (92a)

92a
92a: yield $82.1 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.405(\mathrm{~s}, 1 \mathrm{H}), 8.300(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.763(\mathrm{~d}$, $J=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.451(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.249(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.419(\mathrm{~s}, 2 \mathrm{H})$.

92b: yield $78.4 \% ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 10.379(\mathrm{~s}, 1 \mathrm{H}), 8.304(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.770(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.536(\mathrm{~m}, 1 \mathrm{H}), 7.469(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.419(\mathrm{~s}, 2 \mathrm{H})$.

Synthesis of compounds 93-98

93: 5-(4-(2-cyclohexylethoxy)benzylidene)-4-thioxothiazolidindin-2-one

To a solution of 4-(2-cyclohexylethoxy)benzaldehyde ($1 \mathrm{~g}, 4.3 \mathrm{mmol}$) and rhodanine (504 mg , $4.3 \mathrm{mmol})$ in toluene (20 mL) was added piperidine $(0.21 \mathrm{~mL}, 2.15 \mathrm{mmol})$, acetic acid $(0.14 \mathrm{~mL}$, $2.15 \mathrm{mmol})$. The procedure was described as the preparation of $\mathbf{3 b}$ to afford $\mathbf{9 3}(1.15 \mathrm{~g}, 81 \%)$ as yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.758(\mathrm{~s}, 1 \mathrm{H}) 7.499(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.970(\mathrm{~d}, J=$ $14.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.036(\mathrm{t}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.575(\mathrm{~s}, 1 \mathrm{H}), 1.704(\mathrm{t}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.565-1.756(\mathrm{~m}$, $5 \mathrm{H}), 1.434-1.528(\mathrm{~m}, 1 \mathrm{H}), 1.103-1.260(\mathrm{~m}, 3 \mathrm{H}), 0.907-1.029(\mathrm{~m}, 2 \mathrm{H})$.

94: 3-(4-(2-cyclohexylethoxy)benzylidene)-3-ethyloxazolidine-2,4-dione

94: yield 84%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.806(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.969(\mathrm{~d}, J=11.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.714(\mathrm{~s}, 1 \mathrm{H}), 4.076(\mathrm{t}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.006(\mathrm{q}, J=14.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.714(\mathrm{t}, J=13.5 \mathrm{~Hz}$, $2 \mathrm{H}), 1.568-1.786(\mathrm{~m}, 4 \mathrm{H}), 1.568-1.462(\mathrm{~m}, 1 \mathrm{H}), 1.354(\mathrm{t}, J=14.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.106-1.269(\mathrm{~m}, 4 \mathrm{H})$, $0.910-1.033(\mathrm{~m}, 2 \mathrm{H})$.

95: 5-(4-(2-cyclohexylethoxy)benzylidene)imidazolidine-2,4-dione

95: yield $83 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 11.213(\mathrm{~s}, 1 \mathrm{H}), 10.374(\mathrm{~s}, 1 \mathrm{H}), 7.517(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.884(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.315(\mathrm{~s}, 1 \mathrm{H}), 3.935(\mathrm{t}, J=12.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.655(\mathrm{t}, J=12.6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.577-1.922(\mathrm{~m}, 4 \mathrm{H}), 1.028-1.269(\mathrm{~m}, 5 \mathrm{H}), 0.787-0.862(\mathrm{~s}, 2 \mathrm{H})$.

96: 3-(4-(2-cyclohexylethoxy)benzylidene)pyrrolidine-2,5-dione

96: yield 84%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.306(\mathrm{~s}, 1 \mathrm{H}), 7.296(\mathrm{~s}, 1 \mathrm{H}), 7.055(\mathrm{~d}, J=11.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.838(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.992(\mathrm{t}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.854(\mathrm{~s}, 2 \mathrm{H}), 1.627(\mathrm{t}, J=13.2 \mathrm{~Hz}$, $2 \mathrm{H}), 1.523-1.772(\mathrm{~m}, 6 \mathrm{H}), 1.430-1.513(\mathrm{~m}, 1 \mathrm{H}), 1.134-1.271(\mathrm{~m}, 2 \mathrm{H}), 0.904-1.012(\mathrm{~m}, 2 \mathrm{H})$.

97: 5-[4-(2-cyclohexylethoxy)benzylidene]-3-methyl-1,3-thiazolidine-2,4-dione

Sodium hydride ($40.56 \mathrm{mg}, 1.01 \mathrm{~mol}, 60 \%$ dispersion in oil) was added to a solution of $\mathbf{3 b}$ (160 $\mathrm{mg}, 0.48 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ at 0° C over 10 min with stirring under nitrogen. The mixture was then stiired for 10 min . A solution of Iodomethane ($205.54 \mathrm{mg}, 1.45 \mathrm{mmol}$) in THF (5 mL) was added slowly. The mixture was then striied for 3 h , after which the reaction mixture was extracted with ethyl acetate and washed with water. The organic layer was dried used magnesium sulfate anhydrous, filtered and evaporated. The residual oil was purified by chromatography over silica gel (elution with hexane/ethyl acetate, $10: 1$) to afford 142 mg of $97(85 \%)$ as white solid; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $87.866(\mathrm{~s}, 1 \mathrm{H}), 7.483(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.992(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.075(\mathrm{t}, J$ $=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.244(\mathrm{~s}, 3 \mathrm{H}), 1.668-1.782(\mathrm{~m}, 4 \mathrm{H}), 1.446-1.539(\mathrm{~m}, 1 \mathrm{H}), 1.105-1.255(\mathrm{~m}, 4 \mathrm{H})$, $0.832-1.047(\mathrm{~m}, 4 \mathrm{H})$.

98: 5-[4-(2-cyclohexylethoxy)benzylidene]-3-(hydroxyethyl)-1,3-thiazolidine-2,4-dione

Sodium hydride ($24.14 \mathrm{mg}, 1.0 \mathrm{mmol}, 60 \%$ dispersion in oil) was added to a solution of TD9 ($200 \mathrm{mg}, 0.60 \mathrm{mmol}$) in DMF (20 mL) at room temperature with stirring under nitrogen. The mixture was then stiired for 10 min . A solution of 2-Iodoethanol ($123.81 \mathrm{mg}, 0.72 \mathrm{mmol}$) in DMF (5 mL) was added slowly and was striied at $60^{\circ} \mathrm{C}$ for 48 h . The procedure was described as the preparation of $\mathbf{9 7}$ to give $\mathbf{9 8}(82 \%)$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.878(\mathrm{~s}, 1 \mathrm{H})$, 7.485 (d, $J=14.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.007(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.078(\mathrm{t}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.001(\mathrm{t}, J=$ $10.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.891(\mathrm{t}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.049(\mathrm{~m}, 1 \mathrm{H}), 1.670-1.782(\mathrm{~m}, 7 \mathrm{H}), 1.471-1.529(\mathrm{~m}$,
$1 \mathrm{H}), 1.178-1.284(\mathrm{~m}, 3 \mathrm{H}), 0.956-1.034(\mathrm{~m}, 2 \mathrm{H})$.

Synthesis of compounds 99-106

99: 5-(4-(2-cyclohexylethoxy)benzyl) thiazolidine-2,4-dione

To a stirring solution of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(4.5 \mathrm{mg}, 0.015 \mathrm{mmol})$ and dimethylglyoxime ($70.1 \mathrm{mg}, 0.6$ $\mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added $1.0 \mathrm{~N} \mathrm{NaOH}\left(4\right.$ drops) followed by $\mathrm{NaBH}_{4}(384.6 \mathrm{mg}, 10 \mathrm{mmol})$ and the mixture was cooled to $0^{\circ} \mathrm{C}$. A solution of the $\mathbf{3 b}(1 \mathrm{~g}, 3.02 \mathrm{mmol})$ in THF-DMF $(2: 1,15$ mL) was added over 20 min . The mixture was stirred 18 h at room temperature. Acetic acid was added until the PH of the mixture was approximately 6 . The mixture was then diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with ethyl acetate and water. The organic layer was washed several times with water and dried used magnesium sulfate anhydrous, filtered and evaporated. The residual oil was purified by chromatography over silica gel (elution with hexane/ethyl acetate, $20: 1$) to afford 99 as white solid $(0.8 \mathrm{~g}, 79 \%) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 11.998(\mathrm{~s}, 1 \mathrm{H}), 7.135(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.861(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.870(\mathrm{dd}, J=3.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.966(\mathrm{t}, J=12.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.250(\mathrm{dd}, J=$ $4.5,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=8.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.548-1.615(\mathrm{~m}, 7 \mathrm{H}), 1.433-1.548(\mathrm{~m}, 1 \mathrm{H}), 1.097-$ $1.261(\mathrm{~m}, 3 \mathrm{H}), 0.869-0.977(\mathrm{~m}, 2 \mathrm{H})$.

100: 5-(4-(cyclohexylmethoxy)benzyl)thiazolidine-2,4-dione

100: yield $85.4 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.810(\mathrm{~s}, 1 \mathrm{H}), 7.145(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.854$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.528(\mathrm{dd}, J=3.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.740(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.486(\mathrm{dd}, J=4.2$, $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.138(\mathrm{dd}, J=9.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.604-1.882(\mathrm{~m}, 6 \mathrm{H}), 1.142-1.426(\mathrm{~m}, 3 \mathrm{H}), 0.976-$ 1.313 (m, 2H).

101: 5-(3-chloro-4-(2-cyclohexylethoxy)benzyl)thiazolidine-2,4-dione

101: yield 81.5%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.900(\mathrm{~s}, 1 \mathrm{H}), 7.242(\mathrm{~s}, 1 \mathrm{H}), 7.078(\mathrm{~d}, J=10.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.913(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.523(\mathrm{dd}, J=3.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.068(\mathrm{t}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H})$, 3.447 (dd, $J=4.2,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.134(\mathrm{dd}, J=9.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.689-1.793(\mathrm{~m}, 7 \mathrm{H}), 1.504-1.572$ $(\mathrm{m}, 1 \mathrm{H}), 1.144-1.329(\mathrm{~m}, 3 \mathrm{H}), 0.926-1.037(\mathrm{~m}, 2 \mathrm{H})$.

102: 5-(4-(cyclopentylmethoxy)benzyl)thiazolidine-2,4-dione

22b
dimethylglyoxime
NaBH_{4}

102

102: yield 78.6%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.742(\mathrm{~s}, 1 \mathrm{H}), 7.146(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.874$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.531(\mathrm{dd}, J=4.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.819(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.469(\mathrm{dd}, J=3.9$, $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.145(\mathrm{dd}, J=9.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.302-2.402(\mathrm{~m}, 1 \mathrm{H}), 1.799-1.867(\mathrm{~m}, 2 \mathrm{H}), 1.565-$ $1.646(\mathrm{~m}, 4 \mathrm{H}), 1.319-1.384(\mathrm{~m}, 2 \mathrm{H})$.

103: 5-(4-(benzyloxy)benzyl)thiazolidine-2,4-dione

103: yield 82.5%; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.444(\mathrm{~s}, 1 \mathrm{H}), 7.308-7.418(\mathrm{~m}, 5 \mathrm{H}), 7.167(\mathrm{~d}, J$ $=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.947(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.052(\mathrm{~s}, 2 \mathrm{H}), 4.533(\mathrm{dd}, J=3.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.487(\mathrm{dd}$, $J=4.2,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.156(\mathrm{dd}, J=9.0,4.8 \mathrm{~Hz}, 1 \mathrm{H})$.

104: 5-(4-(2-Thiomorpholine 1,1-Dioxideethoxy)benzyl)-2,4-thiazolidinedione

104: yield $77.6 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.728(\mathrm{~s}, 1 \mathrm{H}), 7.238(\mathrm{~s}, 1 \mathrm{H}), 7.568(\mathrm{~d}, J=9.3$ $\mathrm{Hz}, 2 \mathrm{H}), 6.893(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.887(\mathrm{dd}, J=4.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.163(\mathrm{t}, J=11.4 \mathrm{~Hz}, 2 \mathrm{H})$, $4.069(\mathrm{t}, J=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.095(\mathrm{~m}, 8 \mathrm{H}), 2.957(\mathrm{~m}, 2 \mathrm{H})$.

105: 5-(4-(biphenyl-4-ylmethoxy)benzyl)thiazolidine-2,4-dione

36b

105

105: yield $80.5 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.727(\mathrm{~s}, 1 \mathrm{H}), 7.661-7.703(\mathrm{~m}, 4 \mathrm{H}), 7.435-$ $7.578(\mathrm{~m}, 4 \mathrm{H}), 7.205-7.359(\mathrm{~m}, 1 \mathrm{H}), 7.205(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.952(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.112(\mathrm{~s}$, $2 \mathrm{H}), 4.894(\mathrm{dd}, J=4.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.381(\mathrm{dd}, J=4.2,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.089(\mathrm{dd}, J=8.7,4.6 \mathrm{~Hz}$,

1H).
106: 5-(4-(2-cyclopentylethoxy)benzyl)thiazolidine-2,4-dione

106: yield $81.6 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.926(\mathrm{~s}, 1 \mathrm{H}), 7.148(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.86$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.529(\mathrm{dd}, J=3.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{t}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.485(\mathrm{dd}, J=3.9$, $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.143(\mathrm{dd}, J=9.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.810-1.845(\mathrm{~m}, 1 \mathrm{H}), 1.764-1.787(\mathrm{~m}, 4 \mathrm{H}), 1.510-$ $1.623(\mathrm{~m}, 4 \mathrm{H}), 1.125-1.192(\mathrm{~m}, 2 \mathrm{H})$.

Synthesis of compound 107-109

107: 5-((4-phenylthiophen-2-yl)methylene)thiazolidine-2,4-dione

107
To a solution of 4-phenylthiophene-2-carboxaldehyde ($1 \mathrm{~g}, 4.3 \mathrm{mmol}$) and 2,4-thiazolidinedione ($504 \mathrm{mg}, 4.3 \mathrm{mmol}$) in toluene (20 mL) was added piperidine ($0.21 \mathrm{ml}, 2.15 \mathrm{mmol}$), acetic acid ($0.14 \mathrm{ml}, 2.15 \mathrm{mmol}$) subsequently, the mixture was boiled under reflux in a Dean-Stark water trap overnight. Then the mixture was cooled and filtered, the precipitate washed with ether or hexane and dried in the oven to give $107(1.19 \mathrm{~g}, 83 \%) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 12.606(\mathrm{~s}, 1 \mathrm{H})$, $8.312(\mathrm{~s}, 1 \mathrm{H}), 8.086(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.738(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~m}, 2 \mathrm{H}), 7.313-7,362(\mathrm{~m}$, $1 \mathrm{H})$.

108: 5-[(5-phenylthiophen-2-yl)methylidene]-1,3-thiazolidine-2,4-dione

108

108: yield $84.3 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 12.560(\mathrm{~s}, 1 \mathrm{H}), 8.026(\mathrm{~s}, 1 \mathrm{H}), 7.770(\mathrm{~d}, J$ $=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.719(\mathrm{q}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.462(\mathrm{t}, J=14.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.359-7.392(\mathrm{~m}, 1 \mathrm{H})$.

109: 5-[(5-phenylfuran-2-yl)methylidene]-1,3-thiazolidine-2,4-dione

109
109: yield 86.1\%; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 12.465(\mathrm{~s}, 1 \mathrm{H}), 8.271(\mathrm{~s}, 1 \mathrm{H}), 7.835(\mathrm{~d}, J$ $=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.807(\mathrm{~s}, 1 \mathrm{H}), 7.551(\mathrm{t}, J=15.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.423(\mathrm{t}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.284(\mathrm{~d}, J$ $=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.234(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$.

4. Conclusion

PGE_{2} has been implicated in a wide variety of physiological and pathological processes. PGE_{2} is short-lived in vivo since it is rapidly metabolized by first oxidation to 15-ketoprostaglandins catalyzed by cytosolic enzyme 15-PGDH. Various pharmacological agents of diverse structures have been reported for their inhibition of $15-\mathrm{PGDH}$. Among these compounds, only 2-hydroxy-5(3, 5-dimethoxycarbonyl-benzoyl)benzene acetic acid, a sulfasalazine analoge, was found to inhibit the enzyme at nanomolar range. Inhibition appears to be noncompetitive with respect to both prostaglandin substrate and NAD^{+}. However, this compound is of azo nature and may rapidly undergo decomposition following absorption. TDs compound CT-8 is chemically stable. Thiazolidinediones have been used in clinical trials as antidiabetic agents. The use of TDs as chemopreventive agent in animal model is currently under investigation. Recently, knockout mice deficient in $15-\mathrm{PGDH}$ have been generated. It has been shown that metabolism of PGE_{2} by $15-$ PGDH is essential for remodeling the ductus arteriosus. Therefore, inhibitors of $15-\mathrm{PGDH}$ may be useful in the clinical management of ductus-dependent congenital heart defects in which elevated PGE_{2} levels are deemded to be investigators, more physiological and pathological roles of 15PGDH will be uncovered. Inhibitors of $15-\mathrm{PGDH}$ will be valuable for the therapeutic management of disease in which elevated prostaglandin levels are needed.

In conclusion, series of TDs were designed, synthesized and evaluated for their 15-PGDH inhibitory activities. We introduced $-\mathrm{CH}_{2}$ group between cyclohexyl ring and ether linkage of compound CT-8. The number of $-\mathrm{CH}_{2}$ was increased and followed by the optimal for inhibitory
activity observed at two $-\mathrm{CH}_{2}$ linkage. Replacement of the cyclohexyl ring with a benzene ring decreased significantly the inhibitory potency. Replacement of cyclohexane by the 5 -member ring resulted in a significant increase in its $15-\mathrm{PGDH}$ inhibitory potency. Substitutions on the central aromatic ring of CT- 8 with either electron withdrawing or donating group resulted in increasing of the $15-\mathrm{PGDH}$ inhibitory activity. The olefinic bond between central aromatic ring and 2,4thiazolidinedione ring appears to orient the molecule more favorably toward the binging site in this enzyme. It was also interesting to discover that the amine group of thiazolidine-2, 4-dione plays an important role in the inhibitory potency. 109 thiazolidinedione derivatives we synthesized and the compound 43b 5-(3-chloro-4-(2-cyclohexylethoxy)benzylidene)thiazolidine-2,4-dione was the most potent inhibitor that was effective in the nanomolar range.

5. References

1. L.J. Marnett, S.W. Rowlinson, D.C. Goodwin, A.S. Kalgutkar, C.A. Lanzo. Arachidonic acid oxygenation by COX-1 and COX-2. Mechanisms of catalysis and inhibition. J Biol Chem. 274. 22903. (1999).
2. D.A. Six, E. A. Dennis, The expanding superfamily of phospholipase A2 enzymes: classification and characterization. Biochim. Biophys. Acta. 1488. 1. (2000).
3. J.H. Evans, D.M. Spencer, A. Zweifach, C.C. Leslie. Intracellular calcium signals regulating cytosolic phospholipase A2 translocation to internal membrances J. Biol. Chem. 276. 30150. (2001).
4. W.L. Smith, D. L. DeWitt, R. M. Garavito, Cyclooxygenases: structure, cellular, and molecular biology. Annu. Rev. Biochem. 69. 145. (2000).
5. P.J. Jakobsson, S. Thoren, R. Morgenstern, B. Samuelsson, Identification of human prostaglandin E synthase: A microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Proc. Natl. Acad. Sci. U.S.A. 96. 7220. (1999).
6. J.A. Mancini, K. Blood, J. Guay, R. Gordon, D. Claveau, C.C. Chan, D. Riendeau. Cloning, expression, and up-regulation of inducile rat prostaglandin e synthase during lipopolysaccharideinduced pyresis and adjuvant-induced arthritis. J. Biol. Chem. 276. 4469. (2001).
7. J.P. Iyer, P.K Srivastava, R. Dev, S.G. Dastidar and A. Ray. Prostaglandin E2 synthase inhibition as a therapeutic target. Expert Opin. Ther. Targets. 13. 7. (2009) .
8. H.S. Hansen. 15-Hydroxy prostaglandin dihydrogenase-A review. Prostaglandins. 12. 647. - 105 -
(1976).
9. H.S. Hansen. Purification and characterization of a 15-ketoprostaglandin delta 13-reductase from boving lung. Biochem. Biophys. Acta. 547. 136. (1979).
10.W. Bothwell, M. Vernburg, M. Wynalda, E.G. Daniels and F.A. Fitzpatrick. A radioim unoassay for the unstable pulmonary metabolites of prostaglandin E1 and E2: An indirect index of their in vivo disposition and pharmacokinetics. J. Pharmacol Exp. Ther. 220. 229. (1982).
10. N. Diczfalusy, S.E.H. Alexson and J.I. Pedersen. Chain-shortening of prostaglandin $\mathrm{F}_{2 a}$ by rat liver peroxisomes. Biochem. Biophys. Res. Commun. 144. 1206. (1987).
11. W. Hohl, B. Stahl, R. Mundkowski, U. Hofmann, C. Meese, U. Kuhlmann et al., Mass determination of 15-hydroxyprostaglandin acid as substrate dehydrogenase from human placenta and kinetic studies with (5Z, 8E, 10E, 12S)-12-hydroxy-5,8,10-heptadecatrienoic. Eur. J. Biochem. 214. 67. (1993).
12. C.M. Ensor and H.H. Tai. 15-Hydroxyprostaglandin dehydrogenase. J. Lipid Mediat. Cell Signalling. 12, 313. (1995).
13. H.H. Tai, Enzymatic synthesis of $(15 \mathrm{~S})-\left[15-{ }^{3} \mathrm{H}\right]$ prostaglandins and their use in the development of a single and sensitive assay for 15-hydroxyprostaglandin dehydrogenase. Biochemistry. 15. 4586. (1976).
14. C.M. Ensor, H.H. Tai, 15-hydroxyprostaglandin dehydrogenase. J. Lipid Mediat. Cell Signal. 12. 313. (1995).
15. B.Wermuth, Purification and properties of an NADPH-dependent carbonyl reductase from human brain. Relationship to prostaglandin 9-ketoreductase and xenobiotic ketone reductase. J. Biol. Chem. 256. 1206. (1981).
16. M. Yamazaki and M. Sasaki, Formation of prostaglandin E_{1} from 15-ketoprostaglandin E_{1} by guinea pig lung 15-hydroxyprostaglandin dehydrogenase. Biochem. Biophys. Res. Commun. 66. 255. (1975).
17. J. Jarabak, Polycyclic aromatic hydrocarbon quinones may be either substrates for or irreversible inhibitors of the human placental NAD^{+}-linked 15-hydroxyprostaglandin - 106 -
dehydrogenase. Arch. Biochem. Biophys. 292. 239. (1992).
18. J.M. Jez, M.J. Bennett, B.P. Schlegel, M. Lewis and T.M. Penning. Comparative anatomy of the aldo-keto reductase superfamily. Biochem. J. 126. 625. (1997).
19. D. Kung-Chao and H.-H. Tai, NAD ${ }^{+}$-dependent 15 -hydroxyprostaglandin from porcine kidney. II. Kinetic studies. Biochim. Biophys. Acta. 614. 14. (1980).
20. O. Mak, Y. Liu and H.-H. Tai, Purification and characterization of NAD^{+}-dependent 15hydroxyprostaglandin dehydrogenase from porcine kidney. Biochim. Biophys. Acta. 1035. 190. (1990).
21. H.S. Hansen. 15-Hydroxyprostaglandin dehydrogenase. Prostaglandins. 12. 647. (1976).
22. Y. Fujimoto, S. Sakuma, S. Komatsu, D. Sato, H. Nishida, Y.Q. Xiao et al., Inhibition of 15hydroxyprostaglandin dehydrogenase activity in rabbit gastric antral mucosa by panaxynol isolated from oriental medicines. J. Pharm. Pharmacol. 50. 1075. (1998).
23. Y. Iijima, N. Kawakita and M. Yamazaki, Inhibition of 15-hydroxyprostaglandin dehydrogenase by anti-allergic agents. Biochem. Biophys. Res. Commun. 93. 912. (1980).
24. T. Oda, S. Ushiyama, K. Matsuda and Y. Iijima. Effect of an anti-ulcer drug, planuotoll, and its metabolites on NAD^{+}-dependent 15-hydroxyprostaglandin dehydrogenase from gastric mucosa. Life Sci. 43. 1647. (1988).
25. C.N. Berry, J.R.S. Hoult, J.A. Phillips, T.M. McCarthy and H. Agback, Highly potent inhibition of prostaglandin 15-hydroxydehydrogenase in vitro and of prostaglandin inactivation in perfused lung by the new azobenzene analogue Ph Cl 28A. J. Pharm. Pharmacol. 37. 622. (1985).
26. C.M. Ensor, H.X. Zhang and H.H. Tai, Purification, cDNA cloning and expression of 15ketoprostaglandin 13-reductase from porcine lung. Biochem. J. 330. 103. (1998).
27. K. Nagai, T. Tanaka, K. Tsuruta and N. Mori, Regulation of placental 15-hydroxyprostaglandin dehydrogenase activity by obstetric drugs. Prostaglandins Leukot. Med. 29. 165. (1987).
28. Y. Liu and H.H. Tai, Inactivation of pulmonary NAD^{+}-dependent 15 -hydroxyprostaglandin dehydrogenase by acrolein. Biochem. Pharmacol. 34 . 4275. (1985).
29. Y. Iijima, T. Ueno, K. Sasagawa and M. Yamazaki, Inhibition of 15-hydroxyprostaglandin dehydrogenase by papaverine. Biochem. Biophys. Res. Commun. 80. 484. (1978).
30. D.T. Kung-Chao and H.H. Tai, NAD^{+}-dependent 15 -hydroxyprostaglandin dehydrogenase from swine kidney. I. Purification and partial characterization. Biochim. Biophys. Acta. 614. 1. (1980).
31. H.H. Tai and C.S. Hollander, Regulation of prostaglandin metabolism: activation of 15hydroxyprostglandin dehydrogenase by chlorpromazine and imipramine related drugs. Biochem. Biophys. Res. Commun. 68. 814. (1976).
32. M. Krook, L. Marekov and H. Jornvall, Purification and structural characterization of placental NAD^{+}-linked 15-hydroxyprostaglandin dehydrogenase. The primary structure reveals the enzyme belongs to the short-chain alcohol dehydrogenase family. Biochemistry. 29. 738. (1990).
33. C.M. Ensor, J.Y. Yang, R.T. Okita and H.H. Tai, Cloning and sequence analysis of the cDNA for human placental NAD^{+}-dependent 15-hydroxyprostaglandin dehydrogenase. J. Biol. Chem. 265. 14888. (1990).
34. M. Matsuo, C.M. Ensor and H.H. Tai, Cloning and expression of the cDNA for mouse NAD ${ }^{+}$ dependent 15-hydroxyprostaglandin dehydrogenase. Biochim. Biophys. Acta. 1309. 21. (1996).
35. H.X. Zhang, M. Matsuo, H.P. Zhou, C.M. Ensor and H.H. Tai , Cloning and expression of the cDNA for rat NAD^{+}-dependent 15-hydroxyprostaglandin dehydrogenase. Gene. 188. 41. (1997).
36. K.G. Bracken, W. Elger, I. Jantke, A. Nanninga and B. Gellersen. Cloning of guinea pig cyclooxygenase complementary deoxyribonucleic acids: steroid-modulated gene expression correlates to prostaglandin $\mathrm{F}_{2 \alpha}$ secretion in cultured endometrial cells. Endocrinology. 138. 237. (1997).
37. O. Mak, Y.S. Lee. Cloning and sequence analysis of the cDNA for bovine lung NAD ${ }^{+}$ dependent 15-hydroxyprostaglandin dehydrogenase. GenBank access number CAA11017, in press.
38. M. Matsuo, C.M. Ensor and H.H. Tai, Characterization of the genomic structure and promoter of the mouse NAD^{+}-dependent 15-hydroxyprostaglanidn dehydrogenase gene. Biochem. Biophys. Res. Commun. 235. 582. (1997).
39. K.J. Greenland, I. Jantke, S. Tenatschke, K.E. Bracken, C. Vinson and B. Gellersen. The human NAD^{+}-dependent 15-hydroxyprostaglandin dehydrogenase gene promoter is controlled by Ets and activating protein-1 transcription factors and progesterone. Endocrinology. 141. 581. (2000).
40. F. Pichaud, R. Delage-Mourroux, E. Pidoux, A. Jullienne, M.F. Rousseau-Merck. Chromosomal localization of the type I 15-PGDH gene to 4q34-q35. Hum. Gene. 99. 279. (1997).
41. F. Pichaud, J.L. Frendo, R. Delage-Mourroux, M.C. de Vernejoul, M.S. Moukhtar, A. Jullienne. Sequence of a novel mRNA coding for a C-terminal truncated form of a human NAD^{+}dependent 15-hydroxyprostaglandin dehydrogenase. Gene. 162. 319. (1995).
42. R.D. Mourroux, F. Pichaud, J.L. Frendo, E. Pidoux, J.M. Guliana, M.S. Moukhtar. Cloning and sequencing of a new 15-hydroxyprostaglandin dehydrogenase related mRNA. Gene. 188. 143. (1997).
43. C.M. Ensor and H.H. Tai. Site-directed mutagenesis of the conserved tyrosine 151 of human placental NAD^{+}-dependent 15-hydroxyprostaglandin dehydrogenase yields an catalytically inactive enzyme. Biochem. Biophys. Res. Commun. 176. 840. (1991).
44. C.M. Ensor and H.H. Tai, Bacterial expression and site-directed mutagenesis of two critical residues (tyrosine-151 and lysine-155) of human placental NAD^{+}-dependent 15 hydroxyprostaglandin dehydrogenase. Biochim. Biophys. Acta. 1208. 151. (1994).
45. H.H. Jornvall, B. Persson, M. Krook, S. Atrian, R.G. Duarte, J. Jeffery. Short-chain dehydrogenases/reductases. Biochemistry. 34. 6003. (1995).
46. A.J. Chavan, C.M. Ensor, P. Wu, B.E. Haley and H.H. Tai. Photoaffinity labeling of human placental NAD^{+}-dependent 15-hydroxyprostaglanidn dehydrogenase with $\left[\alpha^{32} \mathrm{P}\right]-2-\mathrm{N}_{3} \mathrm{NAD}^{+}$: identification of a peptide in the adenine ring binding domain. J. Biol. Chem. 268. 16437. (1993).
47. M. Krook, D. Ghosh, W. Duax, H. Jornvall. Three-dimensional model of NAD ${ }^{+}$-dependent $15-$ hydroxyprostaglandin dehydrogenase and relationships to the NADP^{+}-dependent enzyme (carbonyl reductase). FEBS Lett. 322. 139. (1993).
48. H.H Jornvall, B. Persson,M. Krook, S. Atrian, R.G. Duarte, J. Jeffery, D. Ghosh. Biochemistry. 34, 6003. (1995).
49. H. Cho. Structural study of 15-Hydroxyprostaglandin dehydrogenase for drug design. Applied Chemistry. 10. 196. (2006)
50. D. Ghosh, V.Z. Pletnev, D.W. Zhu, Z. Wawrzak, W.L. Duax, W. Pangborn, F. Labrie, S.X. Lin. Structure of human estrogenic 17β-hydroxysteroid dehydrogenase 2 t 2.20 a resoulution. Structure. 3. 503. (1995).
51. H. Cho, M. A. Oliveira, H.H.Tai, Eur J Biochem. 268. 3368. (2001).
52. D. Ghosh, Z. Wawrzak, C.M. Weeks, W.L. Duax, M. Erman. The refined three-dimensional structure of $3 \alpha, 20 \beta$-hydroxysteroid dehydrogenase and possible roles of the residues conserved in short-chain. Structure. 2. 629. (1994)
53. N. Tanaka, T. Nonaka, T. Tanabe, T. Yoshimoto, D. Tsuru, Y. Mitsui. Transthoracic echocardiography in models of cardiac disease in the mouse. Biochemistry. 35. 7715. (1996).
54. R. Breton, D. Housset, C. Mazza, J.C. Fontecilla-Camps. The structure of a complex of human 17-hydroxysteroid dehydrogenase with estradiol and NADP^{+}identifies two principal targets for design of inhibitors. Structure. 4. 905. (1996).
55. T. Nomura, R. Lu, M. L. Pucci, V. L. Schuster. The two-step model of prostaglandin signal termination: in vitro reconstitution with the prostaglandin transporter and prostaglandin 15 dehydrogenase. Mol Pharmacol. 65. 973. (2004).
57.R.M. Moretti, M.M. Marelli, M. Motta, P. Limonta. Oncostatic activity of a thiazolidinedione derivative on human androgen-denpendent prostate cancer cells. Int. J. Cancer. 92. 733. (2001).
58.S. Kurebayashi, X. Xu, S. Ishii, M. Shiraishi, H. Kouhara, S. Kasayama. A novel thiazolidinedione MCC-555 down-regulates tumor necrosis factor- α-induced expression of vascular cell adhesion molecule-1 in vascular endothelial. Atherosclerosis. 180. 71. (2005).
56. C. Jiang, A.T. Ting, B. Seed. PPAR- γ agonists inhibit production of monocyte inflammatory cytokines. Nature. 391, 82. (1998).
57. M. Ricote, A.C. Li, T.M. Willson, C.J. Kelly, C.K. Glass. The peroxisome proliferate-activated receptor- γ is a negative regulator of macrophage activation. Nature. 391, 78. (1998).
58. P. Sarraf, E. Muellen, D. Jones, F.J. King, D.J. DeAngelo, J.B. Partridge, S.A. Holden, L.B. Chen, S. Singer, C. Fletcher, B.M. Spiegelman. Differentiation and reversal of malignant changes in colon cancer through PPAR γ. Nat. Med. 4. 1046. (1998).
59. E. Elstner, C. Muller, K. Koshizuka, E.A. Williamson, D. Park, H. Asou, P. Shintaku, J.W. Said, D. Heber, H.P. Koeffler. Ligands for peroxisome proliferator-activated receptory and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX micw. Proc. Natl. Acad. Sci. U.S.A. 95, 8806. (1998)
60. T. Kubota, K. Koshizuka, E.A. Williamson, H. Asou, J.W. Said, S. Holden, I. Miyoshi, H.P. Koeffler. Ligand for peroxisome proliferator-activated receptor γ (troglitazone) has potent antitumor effect against human prostate cancer both in vitro and in vivo. Cancer Res. 58. 3344. (1998)
61. D. Panigrahy, S. Singer, L.Q. Shen, C.E. Butterfield, D.A. Freedman, E.J. Chen, M.A. Moses, S. Kilroy, S. Duensing, C. Fletcher, J.A. Fletcher, L. Hlatky, P. Hahnfeldt, J. Folkman, A. Kaipainen1. PPAR γ ligands inhibit primary tumor growth and metastasis by inhibiting angiogenesis. J. Clin. Invest. 110. 923. (2002).
62. H. Cho, H.H. Tai. Inhibition of NAD^{+}-dependent 15-hydroxyprostaglandin dehydrogenase (15PGDH) by cyclooxygenase inhibitors and chemopreventive agents. Prostaglandins, Leukotrienes and Essential Fatty Acids. 67. 461. (2002).
63. H. Cho, H.H. Tai. Thiazolidinediones as a novel class of NAD^{+}-dependent $15-$ hydroxyprostaglandin dehydrogenase inhibitors. Archives of Biochemistry and Biophysics. 405. 247. (2002).
64. M.A. Johnstone. Hypertrichosis and increased pigmentation of eyelashes and adjacent hair in
the region of the ipsilateral eyelids of patients treated with unilateral topical latanoprost. Am. J. Opht. 124. 544. (1997).
65. H.H. Roenigk. New topical agents for hair growth. Clin. Dermatol. 6. 119. (1988).
66. J. L. Burton, A. Marshall. Hypertrichosis due to minoxidil. Br J Dermatol. 101. 593. (1979).
67. J.F. Michelet, S. Commo, N. Billoni, Y.F. Mahe, B.A. Bernard. Activation of cytoprotective prostaglandin synthase-1 by minoxidil as a possible explanation for its hair growth-stimulating effect. J Invest Dermatol. 108. 205. (1997).
68. P.A. Netland, T. Landry, E.K. Sullivan. Travoprost compared with latanoprost and timolol in patients with open-angle glaucoma or ocular hypertension. Am J Ophthalmol. 132. 472. (2001).
69. Y. Kitazawa. Iris-color change developed after topical isopropyl unoprostone treatment. J Glaucoma. 6. 430. (1997).
70. M.A. Johnstone. Hypertrichosis and increased pigmentation of eyelashes and adjacent hair in the region of the ipsilateral eyelids of patients treated with unilateral topical latanoprost. $\mathrm{Am} J$ Ophthalmol. 124. 544. (1997).
71. M.A. Johnstone, D.M. Albert. Prostaglandin-induced hair growth. Surv Ophthalmol. 47. 185. (2002).
72. S. Sasaki, Y. Hozumi, S. Kondo. Influence of prostaglandin F2 α and its analogues on hair regrowth and follicular melanogenesis in a murine model. Exp Dermatol. 14, 323. (2005).
73. R. Hoffmann. Steroidogenic isoenzymes in human hair and their potential role in androgenetic alopecia. Dermatology. 206. 85. (2003).
74. M. Tong, H. H. Tai. Synergistic induction of the nicotinamide adenine dinucleotide-linked 15hydroxyprostaglandin dehydrogenase by an androgen and interleukin-6 or forskolin in human prostate cancer cells. Endocrinology. 145. 2141. (2004).
75. M.E. Llau, R. Viraben, J.L. Montastruc. Drug-induced alopecia: review of the literature. Therapi. 50. 145. (1995).
76. J.A. Pritchard, P.C. MacDonald, N.F. Gant. Physiology of Labor In: Eds. Williams Obstetrics.

Century-Crofts, Conn. 295. (1985).
80.T.W. Rall, L.S. Schliefer. Oxytocin. prostaglandin, ergot alkaloids, and other drugs; tocolytics agents, In: The Pharmacological Basis of Therapeutics. Eds. Gilman, A.G., Goodman, L.S., Rall, T.W., and Murad, F. MacMillan, Publ. Co. New York. 926. (1985).
81.C.M. Olson, S.J. Lye, K. Skinner, J.R.G. Challis. Prostanoid concentrations in maternal/fetal plasma and amniotic fluid and intrauterine tissue prostanoid output in relation to myometrial contractility during the onset of Endocrinology. 116. 389. (1985).
82. W.L. Ledger, D.A. Ellwood, M.J. Taylor. Cervical softening in late pregnant sheep by infusion of Prostaglandin E_{2} into cervical artery. J. Reprod. Fert. 69. 511. (1983).
83. D.M. Olson, S.J. Lye, K. Skinner, J.R.G. Challis. Early changes in prostaglandin concentrations in ovine maternal and fetal plasma, amniotic fluid and from dispersed cells of intrauterine tissues before the onset of ACTH-induced pre-term labor. J. Reprod. Fert, 71. 45. (1984)
84. O. Mitsunobu. The use of diethyl azodicarboxylate and triethylphosphine in synthesis and transformation of natural products. Synthesis. 1. (1981).
85. Leutenegger, U. Madin, A. Pfaltz. A. Enantioselective reduction of a, β-Unsaturated carboxylates with NaBH 4 and catalytic amounts of chiral cobalt semicorrin complexes. Angew. Chem., Int. Ed. Engl. 28. 60. (1989).
86. A.N. Hata, R.M. Breyer. Pharmacology and signaling of prostaglandin receptors: muitiple roles in inflammation and immune modulation. Pharmacol Tber. 103. 147. (2004).
87. H. Inoue, M. Takamori, Y. Shimoyama, H. Ishibashi, S. Yamamoto, Y. Koshihara. Regulationby PGE_{2} of the production of interleukin-6, macrophage colony stimulating factor, and vascular endothelial growth factor in human synovial fibroblasts. Br J Pharmacol, 136. 287. (2002).
88. T. Yoshida, H. Sakamoto, T. Horiuchi. Involvement of prostaglandin E_{2} in interleukin1alphainduced parathyroid hormone-related peptide production in synovial fibroblasts of patients with rheumatoid arthritis. J Clin Endocrinol Metab. 86, 3272. (2001).
89. R.M. Breyer, C.K. Bagdassarian, S.A. Myers, M.D. Breyer. Prostanoid receptors: subtypes and
signaling. Annu Rev Pharmacol Toxicol. 41. 661. (2001).
90. R. Hatazawa, A. Tanaka, M. Tanigami, K. Amagase, S. Kato, Y. Ashida, K. Takeuchi, Cyclooxygenase-2/prostaglandin E_{2} accelerates the healing of gastric ulcers via EP_{4} receptors. Am. J. Physiol. Gastrointest. Liver Physiol. 293. 788. (2007).
91. L. John, Wallace. Prostaglandins, NSAIDs, and Gastric Mucosal Protection: Why Doesn't the Stomach Digest Itself? Physiological Reviews. 88. 1547. (2008).
92. K. Gudis, C. Sakamoto. The role of cyclooxygenase in gastric mucosal protection. Digestive Diseases and Sciences. 50. 16. (2005).
93. S. Miura, A. Tatsuguchi, K. Wada, H. Takeyama, Y. Shinji, T. Hiratsuka, S. Futagami, K. Miyake, K. Gudis, Y. Mizokami, T. Matsuoka, C. Sakamoto. Cyclooxygenase-2-regulated vascular endothelial growth factor release in gastric fibroblasts. Am. J. Physiol. Gastrointest. Liver Physiol. 287. 444. (2004).
94. H. Araki, Y. Komoike, M. Matsumoto, A. Tanaka, K. Takeuchi. Healing of duodenal ulcers in not impaired by indomethacin and rofecoxib, the selective COX-2 inhibitor, in rats. Digestion. 66. 145. (2002).
95. F. Halter, A.S. Tarnawski, A. Schmassmann, B.M. Peskar. Cyclooxygenase 2-implications on maintenance of gastric mucosal integrity and ulcer healing: controversial issues and perspectives. Gut. 49. 443. (2001).
96. H. Mizuno, T. Akamatsu, M. Kasuga. Induction of cyclooxygenase-2 in gastric mucosal lesions and its inhibition by the specific antagonist delays healing in mice. Gastroenterology. 112. 387. (1997).
97. J. Shigeta, S. Takahashi, S. Okabe. Role of cyclooxygenase-2 in the healing of gastric ulcers in rats. J. Pharmacol. Exp. Ther. 286. 1383. (1998).
98. A. Parekh, V.C. Sandulache, T. Singh, S. Cetin, M.S. Sacks, J.E. Dohar, P.A. Hebda. Prostaglandin E_{2} differentially regulates contraction and structural reorganization of anchored collagen gels by human adult and fetal dermal fibroblasts. Wound Repair Regen. 17. 88. (2009).
99. A. Futagami, M. Ishizaki, Y. Fukuda, S. Kawana, N. Yamanaka. Wound healing involves
induction of cyclooxygenase-2 expression in rat skin. Lab Invest. 82. 1503. (2002).
100.T. A. Wilgus, V.K. Bergdall, K.L. Tober, K.J. Hill, S. Mitra, N.A. Flavahan, T.M. Oberyszyn. The impact of cyclooxygenase-2 mediated inflammation on scarless fetal wound healing. Am. J. Pathol. 165. 753. (2004).
101.T. Kohyama, R.F. Ertl, V. Valenti, J. Spurzem, M. Kawamoto, Y. Nakamura, T. Veys, L. Allegra, D. Romberger, S.I. Rennard. Prostaglandin E_{2} inhibits fibroblast chemotaxis. Am. J. Physiol.-Lung C. 281. 1257. (2001).
102. J. Choung, L. Taylor, K. Thomas, X. Zhou, H. Kagan, X. Yang, P. Polgar. Role of EP_{2} receptors and cAMP in prostaglandin E_{2} regulated expression of type I collagen alpha1, lysyl oxidase, and cyclooxygenase-1 genes in human embryo lung fibroblasts. J. Cell Biochem. 71. 254. (1998).
103. T. Watanabe, H. Satoh, M. Togoh, S. Taniguchi, Y. Hashimoto, K. Kurokawa. Positive and negative regulation of cell proliferation through prostaglandin receptors in NIH-3T3 cells. J. Cell. Physiol. 169. 401. (1996).
104. R. Hatazawa, R. Ohno, M. Tanigami, A. Tanaka, K. Takeuchi. Roles of endogenous prostaglandins and cyclooxygenase isozyme in healing of indomethacin-induced small intestinal lesions in rats. J. Pharmacol. Exp. Ther. 318. 691. (2006).
105. M. Li, D.D. Thompson, V.M. Paralkar. Prostaglandin E_{2} receptors in bone formation. International Orthopaedics (SICOT). 31. 767. (2007).
106. C. Xie, B. Liang, M. Xue, A.S.P.Lin, A. Loiselle, E.M. Schwarz, R.E. Guldberg, R.J. O'Keefe, X. Zhang. Rescue of impaired fracture healing in $\mathrm{COX}-2^{-/-}$mice via activation of prostaglandin E_{2} receptor subtype 4. The American Journal of Pathology. 175. 772. (2009).
107. J.R. Hartke, M.W. Lundy. Bone anabolic therapy with selective prostaglandin analogs. J. Musculoskel. Neuron Inteact. 2. 25. (2001).
108. H. Kawaguchi, C.C. Pilbeam, J.R. Harrison, L.G. Raisz. The role of prostaglandins in the regulation of bone metabolism. Clinical Orthop. Rel. Res. 313. 36. (1995).
109. J. Keller, A. Klamer, B. Bak, S.Z. He, L. Tidd, A. Schwartz, S. Sørensen, C. Bünger. Short
term effect of local application of PGE_{2} on callus in rabbit osteotomy. Eur. J. Exp. Musculoskeletal Res. 1. 86. (1992).
110. K. Ueno, T. Haba, D. Woodbury, P. Price, R. Anderson, W.S.S. Jee. The effects of prostaglandin E_{2} in rapidly growing rats: depressed longitudinal and radial growth and increased metaphyseal hard tissue mass. Bone. 6. 79. (1985).
111. L.Y. Tang, W.S.S. Jee, H.Z. Ke, D.B. Kimmel. Restoring and maintaining bone in osteopenic female rat skeleton. I. Changes in bone mass and structure. J. Bone Miner Res. 7. 1093. (1992).
112. H.Z. Ke, W.S.S. Jee, Q.Q. Zeng, M. Li, B.Y. Ling. Prostaglandin E_{2} increased rat cortical bone mass when administered immediately following ovariectomy. Bone Miner. 21. 189. (1993).
113. M. Li, W.S.S. Jee, H.Z. Ke, X.G. Liang, B.Y. Lin, Y.F. Ma, R.B. Setterberg. Prostaglandin E 2 restores cancellous bone to immobilized limb and adds bone to overloaded limb in right hindlimb immobilization rats. Bone. 14. 283. (1993).
114. Y.F. Ma, H.Z. Ke, W.S.S. Jee. Prostaglandin E_{2} adds bone to a cancellous bone site with a closed growth plate and low bone turnover in ovariectomized rats. Bone. 15. 137. (1994).
115. W.S.S. Jee, Y.F. Ma. The in vivo anabolic action of prostaglandins in bone. Bone. 21. 297. (1997)
116. W. Yao, W.S.S. Jee, H. Zhou, J. Lu, L. Cui, R. Setterberg, T. Liang, Y. Ma. Anabolic effect of prostaglandin E_{2} on cortical bone of aged male rats comes mainly from modeling-dependent bone gain. Bone. 25. 697. (1999).
117. H. Zhou, Y.F. Ma, W. Yao, L. Cui, R.B. Setterberg, T.C. Liang, W.S.S. Jee. Lumbar vertebral cancellous bone is capable of responding to PGE_{2} treatment by stimulating both modeling and remodeling-dependent bone gain in aged male rats. Calcif. Tissue Int. 68. 179. (2001).
118. X.Y. Tian, Q. Zhang, R. Zhao, R.B. Setterberg, Q.Q. Zeng, S.J. Iturria, Y.F. Ma, W.S.S. Jee. Continuous PGE_{2} leads to net bone loss while intermittent PGE_{2} leads to net bone gain in lumbar vertebral bodies of adult female rats. Bone. 42. 914. (2008).
119. S. Dekel, G. Lenthall, M.J. Francis. Release of prostaglandins from bone and muscle after
tibial fracture. An experimental study in rabbits. J. Bone Joint Surg. Br. 63. 185. (1981).
120. J. Keller, C. Bünger, T.T. Andreassen, B. Bak, U. Lucht, Bone repair inhibited by indomethacin. Effects on bone metabolism and strength of rabbit osteotomies. Acta Orthop. Scand. 58. 379. (1987).

${ }^{1}$ H NMR Spectra

5-(4-(cyclohexyloxy)benzylidene)thiazolidine-2,4-dione (1b)

5-(4-(cyclohexylmethoxy)benzylidene)thiazolidine-2,4-dione(2b)

5-(4-(2-cyclohexylethoxy)benzylidene)thiazolidine-2,4-dione(3b)

5-(4-(3-cyclohexylpropoxy)benzylidene)thiazolidine-2,4-dione (4b)

5-(4-(4-cyclohexylbutoxy)benzylidene)thiazolidine-2,4-dione (5b)

5-(4-(2-Thiomorpholine 1,1-Dioxideethoxy)benzylidene)-2,4-thiazolidinedione (6b)

5-[4-(3-Thiomorpholine-1,1-dioxidepropoxy)benzylidene]-thiazolidine-2,4-dione (7b)

5-(4-(Thiophen-2-ylmethoxy)benzylidene)thiazolidine-2,4-dione (8b)

5-(4-(2-(Thiophen-2-yl)ethoxy)benzylidene)thiazolidine-2,4-dione (9b)

5-[4-(furan-2-ylmethoxy) benzylidene] thiazolidine-2,4-dione (10b)

5-[4-(Thiophen-3-ylmethoxy)benzylidene]thiazolidine-2,4-dione (11b)

5-(4-(2-Isopropoxyethoxy)benzylidene)thiazolidine-2,4-dione (14b)

(2-(Cyclohexyloxy)ethoxy)benzylidene)thiazolidine-2,4-dione (15b)

5-(4-(2-(Cyclohexylamino)ethoxy)benzylidene)thiazolidine-2,4-dione (16b)

5-(4-(piridin-2-ylmethoxy)benzylidene)thiazolidine-2,4-dione (17b)

- 125 -

5-(4-(2-(Pyridin-2-yl)ethoxy)benzylidene)thiazolidine-2,4-dione (18b)

5-(4-(tetrahydropyran-2-methoxy)thiazolidine)-2,4-dione (19b)

5-[4-(2-(piperidin-1-yl)ethoxy)benzylidene]thiazolidine-2,4-dione (20b)

5-(4-(2-(4-methylthiazol-5-yl)ethoxy)benzylidene)thiazolidine-2,4-dione (21b)

5-(4-(cyclopentylmethoxy)benzylidene)thiazolidine-2,4-dione (22b)

5-(4-(2-cyclopentylethoxy)benzylidene)thiazolidine-2,4-dione (23b)

5-(4-(4-metylbenzyloxy)benzylidene)thiazolidine-2,4-dione (25b)

5-[4-(benzo[d][1,3]dioxol-5-ylmethoxy)benzylidene]thiazolidine-2,4-dione (26b)

5-[4-(4-(chlorometyl)benzyloxy)benzylidene]thiazolidine-2,4-dione (27b)

5-[4-((4-metylcyclohexyl)methoxy)benzylidene]thiazolidine-2,4-dione (28b)

5-(4-(benzyloxy)benzylidene)thiazolidine-2,4-dione (30b)

5-[4-(2-phenylethoxy)benzylidene]-1,3-thiazolidine-2,4-dione (31b)

5-[4-(2-phenylpropoxy)benzylidene]-1,3-thiazolidine-2,4-dione (32b)

5-[4-(2-phenylbutoxy)benzylidene]-1,3-thiazolidine-2,4-dione (33b)

5-(4-((2,3-Dihydrobenzo[b][1,4]dioxin-2-yl)methoxy)benzylidene)thiazolidine-2,4-dione (34b)

5-(4-(Biphenyl-4-ylmethoxy)benzylidene)thiazolidine-2,4-dione (36b)

5-(4-(2-cyclohexylethoxy)-3-ethoxybenzylidene)thiazolidine-2,4-dione (39b)

5-(4-(2-cyclohexylethoxy)-3-methylbenzylidene)thiazolidine-2,4-dione (40b)

5-(3-chloro-4-(2-cyclohexylethoxy)benzylidene)thiazolidine-2,4-dione (43b)

5-(3-bromo-4-(2-cyclohexylethoxy)benzylidene)thiazolidine-2,4-dione (44b)

5-(2-chloro-4-(2-cyclohexylethoxy)benzylidene)thiazolidine-2,4-dione (45b)

5-(4-(2-cyclohexylethoxy)-2-methoxybenzylidene)thiazolidine-2,4-dione (46b)

5-(4-(2-cyclohexylethoxy)-2-(trifluromethyl)benzylidene)thiazolidine-2,4-dione (47b)

5-(3-chloro-5-fluoro-4-(2-cyclohexylethoxy)benzylidene)thiazolidine-2,4-dione (50b)

5-(3-chloro-4-(cyclohexylmethoxy)benzylidene)thiazolidine-2,4-dione (52b)

5-(3-chloro-4-(cyclohexylpropoxy)benzylidene)thiazolidine-2,4-dione (53b)

5-(3-chloro-4-(cyclohexylbutoxy)benzylidene)thiazolidine-2,4-dione (54b)

5-(4-(3-cyclohexylpropoxy)-3-nitrobenzylidene)thiazolidine-2,4-dione (67b)

5-(4-(2-cyclohexylbutoxy)-3-nitrobenzylidene)thiazolidine-2,4-dione (68b)

- 140 -

5-[3-chloro-4-(2-Thiomorpholine 1,1-Dioxideethoxy)benzylidene]-2,4-thiazolidinedione (73b)

5-[4-((4-metylcyclohexyl)methoxy)-3-(trifluromethyl)benzylidene]thiazolidine-2,4-dione (75b)

5-(2-chloro-3-(2-cyclohexylethoxy)benzylidene)thiazolidine-2,4-dione (80b)

5-(3-(2-cyclohexylethoxy)-4-nitrobenzylidene)thiazolidine-2,4-dione (88b)

5-(2-chloro-3-(2-cyclohexylethoxy)-4-methoxybenzylidene)thiazolidine-2,4-dione (89b)

5-(4-(2-cyclohexylethoxy)benzylidene)-4-thioxothiazolidindin-2-one (93)

3-(4-(2-cyclohexylethoxy)benzylidene)-3-ethyloxazolidine-2,4-dione (94)

3-(4-(2-cyclohexylethoxy)benzylidene)pyrrolidine-2,5-dione (96)

5-[4-(2-cyclohexylethoxy)benzylidene]-3-methyl-1,3-thiazolidine-2,4-dione (97)

5-[4-(2-cyclohexylethoxy)benzylidene]-3-(hydroxyethyl)-1,3-thiazolidine-2,4-dione (98)

5-(4-(2-cyclohexylethoxy)benzyl) thiazolidine-2,4-dione (99)

5-(4-(cyclohexylmethoxy)benzyl)thiazolidine-2,4-dione (100)

- 146 -

5-(3-chloro-4-(2-cyclohexylethoxy)benzyl)thiazolidine-2,4-dione (101)

5-(4-(cyclopentylmethoxy)benzyl)thiazolidine-2,4-dione (102)

- 147 -

5-(4-(benzyloxy)benzyl)thiazolidine-2,4-dione (103)

5-(4-(2-cyclopentylethoxy)benzyl)thiazolidine-2,4-dione (106)

- 148 -

5-((4-phenylthiophen-2-yl)methylene)thiazolidine-2,4-dione (107)

5-[(5-phenylthiophen-2-yl)methylidene]-1,3-thiazolidine-2,4-dione (108)

5-[(5-phenylfuran-2-yl)methylidene]-1,3-thiazolidine-2,4-dione (109)

Acknowledgements

I would like to express sincere gratitude to principal supervisor, Prof. Hoon Cho, for providing this especial opportunity and support. By this constant guidance, I have been able to complete it successfully. I would like to thank Prof. Jae-Kon Choi, Prof. Ji-Kang Yoo, Prof. Joon-Seop Kim, Prof. Jin-Who Hong and Prof. Cheol-Hee Choi for their valuable suggestion. I am also grateful to all other members of our lab for their help during my study period.

Last but not least, I would like to express heartfelt to my family members for their constant support and encouragement to me in my pursuit.

저작물 이용 허락서

학 과	고분자공학과	학 번	20067756	과 정	박 사
성 명	한글 : 무영 한문: 武营 영문 : Ying Wu				
주 소	광주광역시 동구 서석동 조선대학교 공대2호관				

본인이 저작한 위의 저작물에 대하여 다음과 같은 조건아래 조선대학교가 저작물을 이용할 수 있도록 허락하고 동의합니다.

$$
\begin{aligned}
\text { - 다 } & \text { 음 - } \\
& -151-
\end{aligned}
$$

1. 저작물의 DB 구축 및 인터넷을 포함한 정보통신망에의 공개를 위한 저작물의 복제, 기억장치에의 저장, 전송 등을 허락함
2. 위의 목적을 위하여 필요한 범위 내에서의 편집과 형식상의 변경을 허락함. 다만, 저작물의 내용변경은 금지함.
3. 배포•전송된 저작물의 영리적 목적을 위한 복제, 저장, 전송 등은 금지함.
4. 저작물에 대한 이용기간은 5 년으로 하고, 기간종료 3 개월 이내에 별도의 의사표시가 없을 경우에는 저작물의 이용기간을 계속 연장함.
5. 해당 저작물의 저작권을 타인에게 양도하거나 또는 출판을 허락을 하였을 경우에는 1 개월 이내에 대학에 이를 통보함.
6. 조선대학교는 저작물의 이용허락 이후 해당 저작물로 인하여 발생하는 타인에 의한 권리 침해에 대하여 일체의 법적 책임을 지지 않음
7. 소속대학의 협정기관에 저작물의 제공 및 인터넷 등 정보통신망을 이용한 저작물의 전송-출력을 허락함.
동의여부: 동의(O) 반대()

$$
2010 \text { 년 } 6 \text { 월 }
$$

조선대학교 총장 귀하

